
Computing and Informatics, Vol. 36, 2017, 55–85, doi: 10.4149/cai 2017 1 55

DESIGN PATTERN INSTANCES WITHIN MODEL
DRIVEN DEVELOPMENT BASED ON ABSTRACTION,
CONCRETIZATION AND VARIABILITY

Peter Lacko, Peter Kajsa, Pavol Návrat

Faculty of Informatics and Information Technologies
Slovak University of Technology
Ilkovičova 2, 842 16 Bratislava, Slovakia
e-mail: {lacko, kajsa, navrat}@fiit.stuba.sk

Abstract. The main goal of the paper is to present the method of design pat-
tern support based on principles of model driven development: the abstraction,
semantics and model transformations. More specifically, the method is based on
the principle of suggestion of design pattern instances via the semantic marking of
model elements or source code fragments and on the subsequent transformations
of this way marked models or source code. Thanks to the continual support of
the design patterns at more levels of abstraction and thanks to the transforma-
tions between particular model levels and source code, the method is targeted to
achieve the applicability in the area of the iterative, incremental and model driven
development.

Keywords: Design patterns, semantics, transformations, concretization, special-
ization, variability, models of design patterns, model driven development

Mathematics Subject Classification 2010: 68N19

1 INTRODUCTION

The concept of patterns was first introduced in the work of Alexander [1] dealing
with urban solutions, but soon the patterns were defined and used in software engi-
neering as well. The idea of applying verified pattern solutions to common recurring
problems in the software design attracted considerable attention very quickly, since

56 P. Lacko, P. Kajsa, P. Návrat

the quality of software systems depends greatly on the design solutions chosen by
developers.

Patterns have been applied in various phases of the software development lifecy-
cle. Patterns were discovered and defined in software analysis, design, integration,
testing and other areas [21]. Currently, design patterns represent an important tool
for developers in the process of software design construction, and provide especially
effective ways to improve the quality of software systems. Software development
teams are capable to produce better software effectively thanks to patterns appli-
cation. Consequently, the suitable tool based support of design patterns has great
significance. As Berkane et al. [2] noted, using variability and design patterns can
be very productive in improving adaptability of the software systems under devel-
opment.

Section 2 introduces several related approaches to the design pattern support
and Section 3 concludes with the open problems in the problem area. Section 4
explains the presented approach of design pattern support also with its realization
and implementation. Next, Section 5 contains the evaluation of the method in form
of case studies. The paper is completed by summarization and proposals for the
future work.

2 RELATED WORKS

There exist several related approaches which introduce their own tool-based support
of design patterns.

Mapelsden et al. [14] introduce an approach to design pattern application based
on the Design Pattern Modelling Language. The authors describe the language,
which is a notation for the specification of solutions of design patterns and their
instantiation into UML models. Design pattern instances are regarded as part of
the object model, providing another construct that can be used in the description
of a program. Once all design pattern instance elements are linked to one or more
UML design elements, consistency checks are made. A deficiency of this approach is
that the developer needs to model all pattern participants manually and then link
these parts to the pattern model.

Another method was introduced by Ó Cinnéide et al. [17]. They present a me-
thod for the creation of behavior-preserving design pattern transformations and ap-
ply this method to GoF design patterns. The method involves a refactoring process
which provides descriptions of transformations to modify the spots for pattern in-
stance placement (so called precursors). Placement is achieved by the application of
so called ‘micropatterns’ to the final pattern instances. While Ó Cinnéide’s approach
is supposed to guide the developers pattern placement in the phase of refactoring
(based on source code analysis), Briand et al. [3] try to identify the spots for pattern
instances in the design phase (based on UML model analysis). They provide a semi-
automatic suggestion mechanism based on a decision tree combining an evaluation
of the automatic detection rules with user queries.

Design Pattern Instances within Model Driven Development 57

All the former approaches focus on the creation of pattern instances. The ones
presented by Dong et al. [8, 7] presume the presence of pattern instances in the
model. They provide support for evolution of the existing pattern instances resulting
from application changes. In the former [8], the implementation employs QVT
based model transformations, and in the latter [7] the same is achieved by XSLT
transformations over the model stored as XMI. However, both work with a single
configuration pattern template allowing only changes in the presence of hot spots
participants. Other possible variations are omitted.

Debnath et al. [5] propose a level architecture of UML profiles for design pat-
terns. Authors introduce a profile for patterns and analyze the advantages of using
profiles to define, document, and visualize the design. Authors provide a guide to the
creation of UML Profiles, but they give no concrete way of providing support in any
tool. Dong et al. [6] discuss some of the relevant aspects of the UML profile. The pa-
per presents an approach to the creation of UML profiles for design patterns. The ap-
proach allows an explicit representation of design patterns in software designs and in-
troduces a notation for names of stereotypes and tagged values: Type<name:String
[instance:integer], role:String>; for example: PatternClass<Observer [1], Concrete-
Observer>. The introduced notation is useful because it visualizes individual in-
stances of design patterns, but the Type part of the notation is redundant because
the stereotype definition itself already carries this information.

Meffert [15] introduces an approach assisting developers in selection of the cor-
rect design pattern for a given context. The approach introduces the annotations to
the source code in order to express an intention of the given source code fragment.
Meffert also proposes the description of the intention for some design patterns. The
suitable pattern is recommended to a developer on the basis of comparison of the
annotated source code intention with the intention defined for the design pattern’s
parts.

Sabo et al. [19] present a method of preserving the correct form of applied
design patterns during the process of software system evolution. The method aims
to explicit indication of the pattern participants in the source code by annotations.
The authors also propose a mechanism determining whether the applied pattern
instances are still valid or have been broken due to a meantime code modification.

Kirasić et al. [12] present an ontology-based architecture for pattern recognition.
The authors integrate the knowledge representation ground and static code analysis
for pattern recognition. Goa at al. [10] created an on-line repository for embedded
software to facilitate component management and retrieval using ontology-based
approach. This approach can be effectively used for component-based development.

Another method of the patterns recovery based on code annotations and regular
expressions has been introduced by Rasool et al. [18]. The authors extend the list of
annotations defined in [15] in order to detect the similarity of different annotations
used in multiple patterns. Authors’ intention is to use the annotations for the static
analysis of the source code and subsequent recognition of structural design patterns.

Fülleborn et al. [9] present an approach of the documentation of the particular
source code or UML models that have design deficiency, in order to document the

58 P. Lacko, P. Kajsa, P. Návrat

problems in their context that the chosen design pattern solves. Documenting is
done by adding non-functional requirements in form of annotations. Next, the au-
thors formally document also the solved problems so that they can be compared to
the situation before the chosen design pattern was applied. By the way of compar-
ison, the transformation between the situation before and after the application of
the design pattern is made explicitly in order to derive the reusable cross-domain
representation of the situation. One of current challenges in the area of Model-
Driven Architecture (MDA) is transformation of Computation-Independent Models
(CIM) to Platform-Independent Models (PIM), which usually requires a thorough
understanding of domain, expertise and creativity, which enhances the difficulty of
this transition [11, 4]. In our work, we have focused on PIM to (Platform-Specific
Model) PSM transformation.

3 OPEN PROBLEMS

Most of the current approaches focused on the pattern support only at one level
of abstraction and they do not provide any mechanism for preserving the pattern
support also on other abstraction levels. For example, many of the approaches
focus mainly at the design level (i.e. model), but by the transition to the source
code level the pattern instances become almost invisible in the huge amount of
source code lines without any further support. As a consequence, the evolution
of the pattern instances is very difficult without any tool-based support, because
a developer does not have a good view of all the participants of pattern instances in
the source code. Moreover, due to the inability to identify the individual participants
of pattern instances in the source code, they may be modified in an incorrect way
during the system evolution and maintenance, and this may lead to a breakdown
of the pattern and the loss of the benefits gained by its application in the software
system.

Since the patterns provide abstracted and generalized solutions to recurring
problems, their application to solve a specific problem requires to concretize and to
specialize the solution described by the pattern [16].

Specialization process of a design pattern lies typically in its integrating into the
specific context of the problem. This knowledge is mainly available to developers and
domain experts involved in the design process, because it requires very specialized
and detailed understanding of the domain context and the specific application. This
is why this process is difficult to automate. Despite this, it is possible to make
specialization of a pattern much easier by providing an appropriate mechanism for
application of design patterns.

Goal of the concretization of a design pattern is to recast its abstract form into
a concrete realization with all its parts, methods, attributes and associations, but
only within the scope of the pattern instance and its participants, but not the rest
of the application model. The more parts the structure of the pattern instance
contains, the more concrete it becomes. The most concrete level of a design pattern

Design Pattern Instances within Model Driven Development 59

instance is the source code, because at this level of abstraction the pattern instance
contains all parts from its structure. Majority of activities in the concretization
process depends on stable and fixed definition of the design pattern structure so
that these activities are fairly routine. This is a good starting point for automating
the process.

CASE or other modeling tools and approaches provide today some kind of
support for design pattern instantiation, but it is often based on simple copy-
ing of pattern template into the model with minimal possibilities for modification
and with minimal support for instance integration into the context – application
model.

Similarly the approaches that focus on creation of pattern instances are typi-
cally based on strict forward participant generation – participants in all roles are
created according to a single template. Likewise as the support of design patterns
available in the traditional CASE or other modeling tools is usually based on UML
templates of each design pattern. So they are simply copied into the model with
a minimal possibility for modification and integration in the rest of model when
pattern instance is created. However, patterns describe not only the main solution,
but also many alternative solutions and variations. But a developer is not allowed
to choose an appropriate variant or concrete structure of the design pattern. Only
one generic form is offered to the developer for use. Any other adjustments need
to be performed manually without any tool based support. Moreover, the instances
of patterns created by a tool is typically without any connection to the rest of the
application model. So the instance of a pattern is not integrated into the appli-
cation model, into its context. Associations are missing and the names of pattern
participants are general, and so on. All these activities of instance specialization
have to be done by the developer manually. Even in the approach presented in [14],
the developer needs to model all pattern participants manually, and then link these
parts to the pattern model.

Our intention is to automate these activities. Our vision is that the developer
simply suggests and specifies a pattern instance occurrence directly in the context
via semantic marking of context elements, and the rest of the pattern structure
is then automatically generated by subsequent transformations of models into the
appropriate form.

4 DESIGN PATTERN SUPPORT BASED ON PRINCIPLES
OF MODEL DRIVEN DEVELOPMENT

The main ideas of the approach are presented in Subsection 4.1. The solution of
design pattern semantics definition and expression in the model and source code
are described in Subsection 4.2. Subsection 4.3 presents the main support of design
patterns and Subsection 4.4 explains the continual support of design patterns in the
source code.

60 P. Lacko, P. Kajsa, P. Návrat

4.1 Main Ideas

The abstraction, semantics and model transformations represent the key principles
of Model Driven Development and Model Driven Architecture. Thanks to these prin-
ciples, the automation of many aspects of the system development can be achieved.
The semantics applied in the models enable the possibility to understand the model
and its elements, and also to recognize which elements play which roles in the model.
Consequently, on the basis of understanding the models and their elements, it is pos-
sible to construct the transformations which transform the models to a lower level of
abstraction. These principles represent the basis of the elaborated method of design
pattern support.

Patterns are often being described as a collection of cooperating roles. Our
approach is based also on the idea that the pattern roles can be divided into roles
dealing with the domain of the created software system and roles performing the
pattern’s infrastructure. The domain roles can be considered as the “hot spots”
when they can be modified, added or deleted according to the requirements of the
particular software environment. The roles performing the pattern infrastructure
are not changing too much between the pattern instances. Their purpose is to glue
the domain roles together to be able to perform desired common functionality. The
examples of domain dependent roles are presented in Table 1.

Employment of the patterns into the project allows the developer to think about
higher level of abstraction. When he/she decides to employ the pattern, the first
thing he/she needs to take care of is how it will be connected to his/her project,
how the solution will be integrated to the rest of his/her model or code. At this
moment he/she does not focus on the entire inner structure of the patterns, at this
moment it is irrelevant. The way how he/she integrates the pattern to the project is
in specification of the domain roles. Their participants can be existing parts of the
project or new parts of the project created for this situation. Once the domain roles
are specified, the specification of the infrastructure roles takes place. This is quite
a routine when the developer subsequently adds participants of the infrastructure
roles according the sample instance from the pattern catalogue.

When we look closer on such instantiation process from the perspective of its
division into two more or less independent processes specialization and concretization
(described in Section 3 “Open Problems” [16]), we can see that the user does the
specialization process when he/she is specifying the domain roles. When he/she is
supplementing pattern instance with the infrastructure roles he/she only finishes
the concretization process. In our approach we do not want to replace the developer
in the specialization process, but we want to relieve him/her of the necessity to
instantiate the infrastructure roles meanwhile the concretization process. We want
the developer to make a suggestion by the application of semantics as to where
and which design pattern he/she wishes to be applied in the model and to specify
the domain dependent roles. Then he/she can also specify which variant of the
pattern to employ, and in what way he/she wants it to generate. Subsequently
the rest of the pattern instance structure will be automatically generated by model

Design Pattern Instances within Model Driven Development 61

Pattern Domain Dependent Roles Description

Composite Leaf and its Operations Leafs and their operations provide all
domain dependent functionality. Every-
thing else is just infrastructure allow-
ing the hierarchical access to the leaf in-
stances.

Flyweight Concrete Flyweight Concrete Flyweight provides all domain
dependent functionality. The rest is
infrastructure for storing instances in
memory providing access to them.

Proxy Real Subject, Proxy The domain dependent is the Real Sub-
ject (which often exists before Proxy
pattern application) and functionality of
Proxy participants that provide access to
the Real Subject.

Table 1. Examples of domain dependent roles of patterns

transformations to lower levels of abstraction according to the instance suggestion
and specification.

In case the transformations are driven by an appropriate model of design pat-
tern, and both the model of an application and the model of the pattern contain
information on semantics, the transformation is capable of comparing these mod-
els and to create mappings between them. So in this way the transformation can
recognize participants of design patterns that are present in the application model
already, and which are not. As a consequence, the transformation is able to generate
missing participants in a desired form obtained from the pattern model.

Moreover, we try to support the design patterns at more levels of abstraction
in accord with ideas of the MDA development process. The elaborated approach
provides the support of design patterns at three levels of abstraction:

1. suggested and specified platform independent instances of design patterns in the
model (PIM),

2. more concrete and platform specific instances of design patterns in the model
(PSM),

3. concrete and application specific instances of design patterns in the source code.

4.2 Semantics of Design Patterns

In order to achieve the specified goals, it is necessary to provide an appropriate
mechanism of pattern semantics in the application model and source code. It is
important to support insertion of semantics directly onto the elements of the model
or source code, because such approach supports the specialization of pattern in-
stances and makes the creation of the instances specification effortless. Thanks to

62 P. Lacko, P. Kajsa, P. Návrat

the semantics, these model transformations are able to understand the model of the
application and recognize its parts.

4.2.1 Semantics of Design Patterns at Model Level

We choose the semantic extension of UML in a form of UML profile as a standard
extension of UML, since one of our goals is to remain compliant with the majority
of other UML tools. UML profiles provide a standard way to extend the UML se-
mantics in the form of definitions of stereotypes, tagged values – meta-attributes of
stereotypes, enumeration and constraints. All these elements can be applied directly
onto specific model elements such as Classes, Attributes, and Operations [13]. In
this way it is possible to specify participants of design patterns and relations be-
tween them directly in the context – on the elements of the application model. The
snippet of UML profile for Observer pattern is shown in Figure 1. Authored UML
profile for design patterns provides semantics to various pattern instances adjust-
ments, suggestions and specifications. However, it is not mandatory to apply all the
semantic elements (stereotypes). The developer applies and specifies only what he
needs to express. Because of the default values of meta-attributes of stereotypes,
the transformation always has enough information for default behavior. Inconsis-
tent specifications of pattern instances can be handled by OCL constraints which
are part of UML profile as well.

Figure 1. The snippet of UML profile with some elements for Observer pattern

4.2.2 Semantics of Design Patterns at Source Code Level

Source code annotations work as metadata information for different artifacts and
fragments of the source code. This information can be processed by various tools
(compilers, etc.). Thanks to the source code annotations, the semantics and visibility

Design Pattern Instances within Model Driven Development 63

of patterns can be preserved and propagated from model also into the source code.
We propose the following definition of annotation for design patterns (see Figure 2).

Figure 2. Definition of the source code annotation for design patterns

The attribute patternName of the annotation expresses the name of the pat-
tern, e.g. Observer, Mediator, Command, etc. Because one pattern (for example
Observer) may have more different instances applied, the pattern instance “alias”
is necessary for the recognition among these instances. The attribute roleName ex-
presses the name of the pattern participant, e.g. Subject, ConcreteSubject, Attach,
etc. Some participants of the pattern instances may have more possible variants and
therefore the attribute variant is also necessary.

The presented proposal is intended for Java platform, but it can be simply ad-
justed also for other platforms, even if they do not support source code annotations.
In such case the annotations may be enclosed in comments. However, because Java
does not support the annotation of one code unit (i.e. method, class, etc.) by more
than one annotation with the identical name, this approach is limited in the case
that one fragment – unit of the code – represents more roles in more patterns (for
example, in the case of pattern composition). This problem can be resolved by
enclosing the next DesignPattern annotations in comments as well.

4.3 Design Pattern Support

In the first step the developer suggests pattern instance occurrence by the insertion of
semantics, i.e. application of stereotypes into the model. In the second optional step,
the developer specifies a desired variant or configuration of instance by setting tagged
values of inserted stereotypes. Then he runs the transformation to a lower level of
abstraction. The transformation generates the rest of the pattern, and also marks
the participants of the pattern. From the second step the process can be repeated
at lower level of the abstraction. The only difference is that at the lower level of
abstraction (PSM) in the second step, more implementation dependent choices (e.g.
data types) are offered which the developer was not asked previously at the higher
level (PIM). The overall illustration of design patterns support process is illustrated
in Figure 3.

64 P. Lacko, P. Kajsa, P. Návrat

Figure 3. The overall illustration of design pattern support process

The suggestion and the specification of pattern instance are realized by ap-
plying information on the semantics into the models provided by semantical ex-
tension of UML. For example, Figure 4 shows a suggestion of the Observer pat-
tern instance via applying one stereotype <<Observes>> to a desired element, in
this case, an association. From this information the transformation can recognize
that the source element of the association represents a Concrete Observer and the
destination element is a Concrete Subject. Consequently, on the basis of this in-
formation and the available pattern model and semantics, the transformation can
recognize other missing pattern participants which must be added into the model.
The transformation also needs information how to generate the rest of the pat-
tern instance, e.g. variant of pattern, desired adjustments of the pattern instance
and so on. The next step is the specification of pattern instance. This goal is
achieved by setting up values of meta-attributes of stereotype (see Figure 4). In
our approach this step is not mandatory because default values of meta-attributes
of the stereotype are set and are available. Consequently, the application of a de-
sired pattern can consist only one suggestion mark – the stereotype – that can be

Design Pattern Instances within Model Driven Development 65

applied onto the specified model element, when the developer wants the default
pattern variant. Any other activities will be completed by a tool via model trans-
formations. In this phase, developers do not have to warry about the concrete
details of the pattern structure and can comfortably work with pattern instances
at a higher level of abstraction. Application of the desired pattern is realized on
elements of the system model or context, and thus the specialization process is
supported.

Figure 4. An example of the suggestion and specification of the Observer pattern instance
into the model

The concretization process is realized and automated by model transformations
to lower levels of abstraction until the source code level is reached. One of the
possible results of the transformation of the model from Figure 4 is shown in Figure 5.
As can be seen the transformation generates the rest of pattern structure in a desired
form in accord with pattern suggestion and specification from the Figure 4. The
pattern instance becomes more concrete, so the form of the instance now represents
its lower abstraction level. Thanks to the realization of the pattern instance by
placing the suggestion and specification directly into the context of elements in
the application model, the transformation is also able to integrate the generated
participants with participants already present in the model. As a result, the pattern
instance is in the application specific form.

It is important that the transformation is realized and launched with a choice
of target platform, because at this point the first differences may occur in the struc-
ture of pattern instances depending on a target platform. The choice of a target
platform also determines the set of possible choices of data types before the sub-
sequent transformation to the source code level. As one can see in Figure 5, the
transformation also adds explicit marks (stereotypes) to all identified and generated
pattern participants. The addition of marks and also the whole transformation is
performed on the basis of the pattern model. As a consequence, the instances are

66 P. Lacko, P. Kajsa, P. Návrat

Figure 5. The result of transformation to Java target platform of the model from Figure 4
in accord with the instance suggestion and specification

clearly visible in the models, and the developer can repeat the instantiation process
at lower level (PSM) directly from the optional second step, i.e. specifying the in-
stance and choosing a more detailed adjustments of pattern instance (e.g. concrete
data types). Again, the default values of the stereotype meta-attributes are set, so
the developer can run the transformation to source code directly.

So the models with concretized instances of patterns are transformed into the
source code in the next step. In order to propagate the visibility of the applied
patterns from the model into the source code we have used proposed annotations
(see Figure 2). In Figure 6 the source code snippet of Subject generated from the
model in Figure 5 is illustrated. Each generated pattern participant is annotated
with the proposed definition of annotation. The transformation of the model into
the source code is made in the form of source code templates which also generates the
pattern participants with correct annotations. For classes marked with a stereotype,
the template with the same name as the stereotype name is used. For example, for
the model classes marked with the stereotype <<Subject>>, the template with the
name subject.javajet is used, etc.

Consequently, in this approach we propagate and expand two applied stereotypes
from higher level of abstraction (i.e. << Observes >> from Figure 4) onto lots of
annotations in the source code (e.g. Figure 6 – however, it is only a small snippet
from one class). So this way, the huge manual annotation of pattern participants in
a large source code is not required and it is reduced to a little manual suggestion
via stereotypes at the highest level of abstraction (e.g. Figure 4).

Moreover, two separate groups of classes are generated by the initial transforma-
tion to source code. The first one is the base group which is always overwritten by
subsequent source code generation (see Figure 6 – SubjectBaseclass). The second
one is the development group which is generated only by initial transformation. The
developer can write and add a specific implementation here without the threat of
overwriting.

Design Pattern Instances within Model Driven Development 67

Figure 6. The source code snippet of Subject generated from the model in Figure 5

4.3.1 Realization of Transformations

The model transformations are driven by properly specified and marked models of
design patterns. These prepared models cover all supported pattern variants and
possible modifications. Each element of these models is marked. There are two
types of marks in pattern models. The first type of marks expresses the role of the
element in the scope of the pattern. On the basis of this type of marks the tool is
capable of creating mappings between models. The second type of marks expresses
an association of the element with a variant of the pattern. On the basis of this type
of marks the tool is capable of deciding which element should be generated into the
model, which way and in what form. For the second type of marks the following
notation is defined:

[∼] StereotypeName :: Meta-attributeName :: value;

An element from the pattern model is generated into the model only if the specified
meta-attribute of the specified stereotype has the specified value. These marks can
be joined via “;”, while the symbol “∼” expresses negation. If an element has no

68 P. Lacko, P. Kajsa, P. Návrat

mark, it is always generated into the model. A sample section of the pattern model
of the Observer pattern is exposed in Figure 7.

Figure 7. Sample section of Observer pattern model by which the model transformations
are driven.

The first action performed by the tool after the transformation started is the
comparison of the first type marks in the pattern model to the marks in the appli-
cation model. Based on the first type marks comparison the tool is capable to do
mapping between the marked models, and consequently to recognize which parts
of the structure of the design pattern instance are in the model of the developing
application and which are not. For example, in Figure 4 we have shown the ap-
plication of the Observer pattern by applying two stereotypes <<Observes>> on
the directed association. The tool can from this way marked association recognize
that the pattern roles Concrete Observer and Concrete Subject of this two Observer
pattern instances are already present in the model, and also which elements (in this
case classes) in the application model represent these pattern roles.

Decisions which variant of the pattern and which elements from the pattern
model need to be generated into the application model are based on the comparison
of the second type marks in the pattern model with the values of meta-attributes of
stereotypes. These values are set up by the developer in the second step – the spec-
ification of the pattern instance (for example see Figure 4). After decision-making
and selection of the desired pattern form, the final transformation is performed
from the pattern suggestion level to the lower level of abstraction. The results of
the transformation are correctly specialized and concrete instances of the patterns
are in the desired form (for example see Figure 5).

Driving the model transformations by pattern models allows us to adjust results
of transformations by modifying the pattern models which drive the transforma-
tions. Marks in the models ensure that the tool is always capable of creating correct
mappings between the model of application and the model which drives the transfor-

Design Pattern Instances within Model Driven Development 69

mation, and consequently decide which element should be generated into the model
and in what form. This way it is possible to model any custom structure and achieve
support for its application into the model.

The transformation to source code is realized on the basis of the source code
templates. Each pattern participant has own source code template. The transfor-
mation takes source code template with name identical to the stereotype name of
the participant and it generates template’s content into a specified destination. For
model elements without any stereotype the common code template is used which
generates only signatures of the class, fields and methods with empty body.

Implementation

The presented support and transformations were implemented and verified in the
form of the IBM Rational Software Modeler transformation plug-in. The first type
of transformation of the model of the highest level of abstraction to the model of the
lower level of abstraction was implemented by M2M, UML2 and EMF frameworks.
These frameworks are subprojects of the top-level Eclipse Modeling Project and
they provide ideal infrastructure for model-to-model transformations.

The second type of transformation of the model with a lower level of abstraction
(PSM) to source code was implemented by frameworks JET, UML2 and EMF. JET
is also part of the Eclipse Modeling Project in M2T (Model to Text) area. It provides
infrastructure for source code generation based on code templates.

4.4 Continual Support of Design Patterns at Source Code Level

The annotations of patterns generated into the source code by designed transfor-
mation to the source code (see Figure 6 in Section 4.3.) highlight the visibility of
pattern instances and therefore make identification of pattern participants in the
source code easier. In consequence, the support of the pattern detection, instanti-
ation and evolution in the source code can be achieved in a very suitable form of
a source code context assistant. Thanks to annotations, the support mechanism will
be able to identify the pattern participants already implemented, and subsequently
it will be able to offer an option to generate any missing pattern participant or
to perform possible pattern evolution in the given context, etc. This idea brings
significant improvement of the pattern support at the source code level.

4.4.1 Support of Design Pattern Instantiation and Evolution

The support of the pattern instantiation and evolution is realized in form of the
source code context assistant with the consequent source code generation. The
result of the source code generation depends on the expression of by developer
typed annotation and its location in the source code. The method is described in
the following steps.

70 P. Lacko, P. Kajsa, P. Návrat

1. In the first step, the developer begins with writing of the proposed pattern an-
notation (see Figure 2 in the Section 4.2.2) in the desired location in the code.
When the developer writes @DesignPattern(patternName =, the context as-
sistant offers the set of names of supported patterns. The developer, for example,
chooses PatternNames.Observer.

2. Next the developer continues with writing of the annotation and writes
instanceAlias. So the annotation looks as follows: @DesignPattern(

patternName = PatternNames.Observer, instanceAlias =. Now the con-
text assistant searches all the existing instances of the pattern with the given
name i.e. PatternNames.Observer and it offers the developer the set of aliases of
all existing instances of Observer pattern in the project. Because of the suitable
annotation structure this search is very straightforward.

Consequently, the developer chooses an instanceAlias from the offered set
or writes a new, unique alias. When the developer writes a new, unique instance
alias, the support mechanism deduces that the developer desires a creation of a new
pattern instance. Otherwise, when the developer chooses one of the offered existing
instance aliases, the support mechanism deduces that the developer desires evolution
of the pattern instance identified by the chosen instance alias and the pattern name.
According to the developer’s choice pattern instantiation or evolution follows.

Design Pattern Instantiation

When in the second step the developer wrote a new, unique instance alias, the instan-
tiation of the pattern with the typed name is performed (in our case instantiation
of Observer). The method continues with the following steps.

3. The support mechanism loads feature model of the pattern. It selects all manda-
tory features at the first level (i.e. classes) and generates them into the source
code.

4. If one of the mandatory features has more possible variants, the developer is
asked for selection of its variant via dialogue during the instance generation.

Illustration of the feature model of Observer pattern is shown in Figure 8.
The first mandatory class is generated at the position of the entered annotation

in the current file, therefore in case of the pattern instantiation the developer should
write the annotation in a new empty file. Other mandatory classes are generated
into new automatically created empty files in the current package of the project. Of
course, an element is always generated with all its mandatory sub-elements.

Design Pattern Evolution

When in the second step the developer selects alias from offered set of all exist-
ing instance aliases of the pattern with the typed name (see step 2), the support

Design Pattern Instances within Model Driven Development 71

Figure 8. Illustration of feature model of Observer. Mandatory features are filled with
gray color.

mechanism deduces that the developer wants to perform the evolution of the pat-
tern instance with the selected instance alias. The support continues with following
steps.

3. The support mechanism creates a feature model configuration of the pattern
instance identified by the selected alias. Thanks to the annotations, the recog-
nition of the pattern instance participants present in the source code is quite
easy.

4. The support mechanism loads the feature model of the pattern.

5. The created feature model configuration of the pattern instance is compared
with the loaded feature model of the pattern. In consequence, the options of
possible evolution of the pattern instance are detected (see Figure 9).

6. The support mechanism offers the detected set of possible options of instance
evolution in the form of the context assistant (see Figure 10). So the developer
may choose the desired pattern instance evolution.

It is important to remark that only the roots of possible instance evolution sub-
trees are offered to the developer, because generation of child elements (e.g. methods)
has no sense as long as the parent element (e.g. class) does not exist in the source
code. The selected element with all its mandatory sub-elements is generated at the
position of the entered annotation in the current file. So the method supposes at
least basic knowledge of patterns. If an element has more possible variants within
the scope of given instance, the developer is asked to select one of the variants via the
dialogue during the element generation. Within the scope of the pattern evolution
also the detection of missing mandatory features is supported (for example see Figure
9, the update method of Observer instance is missing). This way the basic check of
the pattern instance validity is achieved.

72 P. Lacko, P. Kajsa, P. Návrat

Figure 9. A comparison of the feature model configuration of an existing Observer in-
stance with the feature model of Observer pattern (existing participants – features are
filled with gray color). The possible options of pattern instance evolution are illustrated
by arrows.

Figure 10. Example of detected set of possible options of instance evolution offered to the
developer in the form of context assistant

4.4.2 Realization

Each element of the pattern feature model (except the elements marked as #pat-
tern or #variant, see Figure 8 or 9) has its own code template attached. Each code
template of an element includes subsequent templates of all related mandatory sub-
elements of the element in accord with the feature model of the pattern. Therefore
an element is always generated with all its mandatory sub-elements. For example,
Subject template includes observers, attach, detach and notifyObservers

templates. Example of Subject template is illustrated in Figure 11.
If an element has more possible variants, the template of such element contains

the source code for all variants distinguished by annotations (for example, see Fi-
gure 12). The following notation has been introduced for the variant attribute of
proposed annotations from the Section 4.2.2, Figure 2:

[∼] Attribute name = value[;]

If the attribute value selected by the developer in GUI dialogue corresponds with
the introduced notation, the variant of an element is generated from the template.
Dependency on more than one value or attribute can be attached via “;”, while
the symbol “∼” expresses negation (it is based on the analogical principles as pre-
sented notation for marks by model transformations in Section 4.3.1.). So when the

Design Pattern Instances within Model Driven Development 73

Figure 11. Example of Subject template. The template includes subsequent templates of
sub-elements of Subject in accord to the feature model of Observer pattern.

element – feature has more than one possible variant, the developer’s selection is
compared with annotations in the template and in consequence, the desired variant
of element – feature is generated.

As it can be noticed, in Figure 11, the names of new generated classes, methods
and fields are created as roleName+InstanceAlias. The developer may rename
the elements later, of course. However, when a body of a method is generated in
the scope of an instance evolution, the introduced name convention is not sufficient
enough. The bodies of generated methods should be tied to an existing implemen-
tation of the instance and therefore the particular names of existing elements should
be found out (for example, see observerClassName retrieving in Figure 12). Be-
cause of the annotations of existing pattern participants this is a straightforward
task.

Moreover, the whole method is based on the following defined name conven-
tions. The names of feature models are identical to the PatternNames used in
the source code annotations and the feature names are identical to the RoleNames

used in the source code annotations as well. The templates are named as follows:
PatternName-RoleNameTemplate. As a consequence, the support mechanism is able
to automatically deduce from the annotations typed by the developer in the source
code which feature model and which templates should be loaded and generated.
This way the flexibility of the method is achieved and improved, since the addition
of a new feature model and new templates is sufficient enough to extend the support
for a new pattern. An extension of PatternNames and RoleNames about the new
pattern name and roles is also necessary.

Implementation

Implementation of the method is based on the Eclipse platform. The templates are
implemented in JET framework. The JET framework is a part of Eclipse Modeling

74 P. Lacko, P. Kajsa, P. Návrat

Figure 12. Example of notifyObservers template which contains two different variants
distinguished by annotations (notice difference of variant attributes of annotations)

Project in M2T (Model to Text) area and it provides very good infrastructure for
the source code generation based on code templates.

The feature models of patterns are implemented as UML class diagrams analog-
ically as it has been introduced in [20] (see the section Feature Modeling Profile for
UML), but for the method purposes we rather use the class diagram instead of the
component diagram.

As mentioned earlier, Java does not support the annotation of one code unit
(i.e. method, class, etc.) by more than one annotation with the identical name
and so the current implementation is limited in case when one fragment – unit of
the code represents more roles in more patterns (for example, in case of pattern
composition). This problem can be resolved by enclosing the next DesignPattern

annotations in comments. Similarly, the implementation can be simply adjusted also
for other platforms, even if they do not support source code annotations, because
the annotations may be enclosed in comments as well.

5 EVALUATION

The following subsections contain the evaluation of the presented method in form
of case studies.

5.1 Detailed Case Study of Observer Pattern Application

This section provides detailed illustration of the method and the tool usage and
functionality in example based way on case study of observer pattern application.

Design Pattern Instances within Model Driven Development 75

Figure 13 shows an example of initial form of UML model before application of
patterns.

Figure 13. Example of starting UML model before the application of patterns

The model represents an example of starting point of the model and we want to
apply, for example, Observer pattern into this model now. In order to apply a desired
pattern (in our case e.g. Observer) we suggest the instance occurrences via particular
semantics marks – stereotypes (in our case e.g. stereotype <<Observes >>). The
suggestion of pattern instance occurrence via stereotype application is illustrated in
Figure 14.

Notice that we perform the suggestion of pattern instance occurrence on existing
model elements directly in the context and so in a consequence, the pattern instance
will be integrated in the application model and context and thus any manual special-
ization of pattern instance is necessary. The resulting model after pattern instances
suggestion is shown in Figure 15.

Now the tool knows what design pattern and where we want to apply it. Based
on comparison of this model with the pattern model by which the transforma-
tions are driven the tool recognizes also that the association between classes
TextualDisplay and AccountData corresponds with association between
ConcreteObserver and ConcreteSubject from the pattern model. The recogni-
tion is made based on the first type of marks – stereotypes comparison in these
models (see Figure 16) and in this way the tool makes mapping between these mod-
els.

Because the match of marks occurs on the association, the transformation recog-
nizes that also source and destination elements of associations (in our case
ConcreteObserver and ConcreteSubject) must be in the model of developing ap-
plication already. In consequence, the transformation recognizes which elements of
pattern model are in the model of application and which are not. Because the pat-
tern model covers all pattern variants and possible modifications, the tool needs to

76 P. Lacko, P. Kajsa, P. Návrat

Figure 14. Application of stereotype <<Observer>> on the selected association

know which variant or pattern modifications we want to generate. In other words,
the tool needs to know which from all identified missing pattern elements from pat-
tern model and in what way it should generate into the model of application. So we
choose the variant and modifications of pattern instances via setting up values of
particular stereotype meta-attributes in the next step of pattern instantiation (see

Figure 15. The resulting model after pattern instances suggestion

Design Pattern Instances within Model Driven Development 77

Figure 16. Creation of mapping between model of developing application and pattern
model by which the transformation is driven

Figure 17). It is important to note that the meta-attributes of stereotypes have
their default values set. Therefore this step is realized only if the developer wants
to generate other than default variant of the pattern. The possible variants and ad-
justments of the pattern are defined in UML profile via enumerations or elements’
primitive type specification such as Boolean, integer and so on.

We specify which variant or modification of the pattern we want and so we create
specifications of suggested pattern instances via setting stereotypes meta-attributes
values. Consequently, the pattern instances are suggested and specified. When
the transformation is executing, the tool processes all identified missing pattern
participants from pattern model and it checks the second type of marks – keywords
on these missing elements. Section 4.3.1 describes how was it done in details. For
the second type of mark the following notation is defined (note that these marks
can be joined via “;”, while the symbol “∼” expresses negation):

[∼] ?StereotypeName :: Meta-attributeName :: value;

A missing element from the pattern model is generated into the model, only if
the specified meta-attribute of the specified stereotype has the specified value. Ele-
ments from pattern model, of which at least one second type mark does not match
with the pattern instance specification, are ignored by the tool and so only elements
with all positive matches of marks or without any mark are generated into the model.
For example, when the ConcreteSubject element is identified as missing element, it

78 P. Lacko, P. Kajsa, P. Návrat

Figure 17. Specification of pattern instances via setting up of values of stereotype meta-
attributes

is always generated into the application model, because it does not have any second
type mark. On the other hand, the methods getState and setState are gener-
ated, only if the developer set value of meta-attribute encapsulateSubjectState

of stereotype Observes on true, because these methods are marked with following
second type mark (see Figure 18, ConcreteSubject class of Observer pattern model):
<<Observes :: encapsulateSubjectState :: true>>.

Figure 18. ConcreteSubject element from Observer pattern model

When suggestions and specifications of pattern instances are completed, the
transformation can be launched simply from context menu of the application model.
The resulting model of transformation is shown in Figure 19.

The following sample specification of pattern instances has been set in the second
step of pattern instantiation (see Figure 17).

1. <<Observes>> AccountData TextualDispaly:

• modelOfNotification = sending – the interface of Observers which takes
reference to the SubjectState class as notification parameter has been gen-
erated.

Design Pattern Instances within Model Driven Development 79

Figure 19. The resulting model of transformation of model from Figure 17

• managerType = noManager – no manager has been generated

• encapsulateSubjectState = true – the state of class ConcreteSubject

has been encapsulated

2. <<Observes>> AccountData GraphicsDisplay:

• the same as previous instance AccountData TextualDisplay.

3. <<Observes>> AccountData TableView:

• modelOfNotification = callBack – the interface of Observers which takes
reference to Subject class as notification parameter has been generated.

• managerType = noManager – no manager has been generated

• encapsulateSubjectState = false – this instance of Observer pattern does
not use any encapsulated SubjectState, but the Subject reference instead.

The transformation explicitly marks also all identified and generated participants of
pattern instances and in the consequence, it makes the participants clearly visible.
Moreover, in the next step of instantiation the developer can repeat the previous
instantiation process from the second step and can specify implementation details
of pattern instances directly without necessity of further stereotype application (see
Figure 20). This step is optional again, because the default implementations details
are set and so the developer can launch the transformation to source code immedi-
ately. The snippet of resulting source code of transformation of model from Figure
20 to Java source code is shown in Figure 21.

The transformation to the source code generates two separate packages
(generated and developed). The first is the base package which is always over-

80 P. Lacko, P. Kajsa, P. Návrat

Figure 20. Specification of implementation details of pattern instances

written by subsequent source code generation. The second is the development pack-
age which is generated only by the initial transformation. Here the developer can
write and add a specific implementation without the threat of overwriting. Fur-
ther, two different methods of observers notification have been generated for each
group of Observers in accord to their specification (in our case TextualDisplay

and GraphicsDisplay as first group with SSObserver interface and TableView as
second group with SObserver interface, see Figure 21). The transformation uses
also the chosen data types (see Figure 20) in the source code generation and each
participant of pattern instances is annotated with presented annotation for design
patterns from Section 4.2.2.

After all, suggested and specified pattern instances from the highest level of
abstraction have been transformed to the lowest level of the abstraction – the source
code. The developer can utilize the created models and perform the next iteration
of the development.

5.2 Experiment Results

The verification of the quantity and quality of the generated source code has been
made by specifying an experimental task of creating an instance of Observer design
pattern with four-watching objects (Concrete Observer) and an observed object
(Concrete Subject). The time necessary to perform the task with the use of proposed
method and tools, and without their use was measured. The amount of source code
lines generated and written was measured too. Results are summarized in Table 2.

Design Pattern Instances within Model Driven Development 81

Figure 21. The snippet of resulting source code of transformation of model from Figure 20
to Java source code

Time needed
using proposed

tool

Time needed
without using

tool

Work speedup
t2/t1

Code lines
generated

Code lines
typed in

Percentage of
typed in code
lines to whole
source code

< 20 min > 50 min > 2.5 239 29 11 %

Table 2. Average results for the task of creating an instance of Observer design pattern
with four-watching objects and an observed object

6 CONCLUSION AND FUTURE WORK

In this paper we presented the approach to design patterns instantiation support
based on principles of model driven development. Semantics of patterns, which is
introduced into the models via UML profile and into the source code via annotations,
supports specialization process of patterns, because it is allowed to suggest and
to specify the pattern instances participants directly on the context elements via
application of specific semantic marks on them. Subsequent model transformations
support and automate the concretization process of design patterns, because they

82 P. Lacko, P. Kajsa, P. Návrat

generate the rest of missing structure of suggested and specified pattern instances
in a desired form and directly in context. Consequently, both of the processes (i.e.
concretization and specialization process) of pattern instantiation are supported by
the presented approach.

The transformations are driven by pattern instances suggestion and specification
and by the pattern models as well. Transformations designed this way have several
capabilities. First, they provide a possibility to choose an appropriate variant of
the pattern by instance specification by setting up tagged values of the stereotypes.
Second, they enable modeling of a custom pattern or structure by modification of
the pattern model by which the transformation is driven, and in this way to achieve
its generation into the model. The developer can model any custom structure, or
even create a new one. As a result, the method is not oriented to the GoF design
pattern support only, but it can also support other custom model structures which
are often created in models mechanically.

The approach splits the details of a concrete design pattern instantiation into
three levels of abstraction, and thus developers do not have to take care about
concrete details of the pattern structure in the model of the highest abstraction
level. Further, each generated pattern participant is annotated in accord to the
described definition of source code annotations as result of the transformation to
the source code.

The semantics of the patterns introduced into the source code by proposed anno-
tations expands the visibility of pattern instances and it makes identifying of pattern
participants in the source code easier. The clear visibility of pattern instances in
the source code opens new opportunities to the support of various aspects of pat-
terns as has been presented in Section 4.4. Furthermore, the introduced source code
annotations enable also a correct reverse transformations of the source code to the
model with the pattern detection and highlighting. Moreover, the available feature
models of patterns also enable the possibility of live validation of pattern instances
and detection of their defects in the source code.

Because manual annotation of the source code by developers is very lengthy and
senseless, this approach provides useful way how to eliminate the manual annotation
of the source code. The reduction of manual annotation is based on the idea of design
information propagation and expansion from models of higher abstraction level into
the source code. Although it does not deal with the problem of existing or legacy
software systems, it provides very useful way how to propagate and expand design
information and prevent the problem of pattern instances invisibility in source code
toward the future. Besides, it does not have to be used only for patterns, but it can
be simply adjusted also for other architectural or design decisions as well.

Nowadays, the approach does not give any guide on what patterns are suitable
to apply. In our opinion, this guide is relatively hard to automate by the tool,
because the knowledge of what patterns are suitable to apply requires really detailed
understanding of the problem context and therefore, this knowledge is available
especially to the developers or designers involved in the design process. But this is
also a challenge to the future.

Design Pattern Instances within Model Driven Development 83

Acknowledgments

This publication is the partial result of the Research & Development Operational
Programme for the project Research of methods for acquisition, analysis and per-
sonalized conveying of information and knowledge, ITMS 26240220039, co-funded
by the ERDF and was partially supported by the grant No. VEGA 1/0752/14.

REFERENCES

[1] Alexander, Ch.—Ishikawa, S.—Silverstein, M.—Jacobson, M.—Fiks-
dahl-King, I.—Angel, S.: A Pattern Language: Towns, Buildings, Construction
(Center for Environmental Structure). Oxford University Press, 1977.

[2] Berkane, M. L.—Seinturier, L.—Boufaida, M.: Using Variability Modelling
and Design Patterns for Self-Adaptive System Engineering: Application to Smart-
Home. International Journal of Web Engineering and Technology, Vol. 10, 2015, No. 1,
pp. 65–93, doi: 10.1504/ijwet.2015.069359.

[3] Briand, L. C.—Labiche, Y.—Sauve, A.: Guiding the Application of Design Pat-
terns Based on UML Models. 22nd IEEE International Conference on Software Main-
tenance (ICSM ’06), September 2006, pp. 234–243, doi: 10.1109/icsm.2006.30.

[4] Cao, X.—Miao, H.—Chen, Y.: Transformation from Computation Independent
Model to Platform Independent Model with Pattern. Journal of Shanghai University,
Vol. 12, 2009, No. 6, pp. 515–523.

[5] Debnath, N. C.—Garis, A.—Riesco, D.—Montejano, G.: Defining Patterns
Using UML Profiles. IEEE International Conference on Computer Systems and Ap-
plications, March 2006, pp. 1147–1150, doi: 10.1109/aiccsa.2006.205233.

[6] Dong, J.—Sheng, Y.: Visualizing Design Patterns with a UML Profile. Human
Centric Computing Languages and Environments, IEEE, 2003, pp. 123–125, doi:
10.1109/hcc.2003.1260215.

[7] Dong, J.—Sheng, Y.—Zhang, K.: A Model Transformation Approach for De-
sign Pattern Evolutions. 13th Annual IEEE Internet Symposium and Workshop on
Engineering of Computer Based Systems, 2006, pp. 10–92, doi: 10.1109/ecbs.2006.10.

[8] Dong, J.—Sheng, Y.—Sun, Y.—Wong, W. E.: QVT Based Model Transfor-
mation for Design Pattern Evolutions. Proceedings of the 10th IASTED Internet
Conference on Internet and Multimedia Systems and Applications, 2006, pp. 16–22.

[9] Fülleborn, A.—Meffert, K.—Heisel, M.: Problem-Oriented Documentation
of Design Patterns. Fundamental Approaches to Software Engineering (FASE 2009).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5503, 2009,
pp. 294–308, doi: 10.1007/978-3-642-00593-0 20.

[10] Gao, T.—Ma, H.—Yen, I. L.—Khan, L.—Bastani, F.: A Repository for
Component-Based Embedded Software Development. International Journal of Soft-
ware Engineering and Knowledge Engineering, Vol. 16, 2006, No. 4, pp. 523–552.

[11] Kherraf, S.—Lefebvre, E.—Suryn, W.: Transformation from CIM to PIM
Using Patterns and Archetypes. 19th Australian Conference on Software Engineering
(ASWEC 2008), March 2008, pp. 338–346, doi: 10.1109/aswec.2008.4483222.

https://doi.org/10.1504/ijwet.2015.069359
https://doi.org/10.1109/icsm.2006.30
https://doi.org/10.1109/aiccsa.2006.205233
https://doi.org/10.1109/hcc.2003.1260215
https://doi.org/10.1109/ecbs.2006.10
https://doi.org/10.1007/978-3-642-00593-0_20
https://doi.org/10.1109/aswec.2008.4483222

84 P. Lacko, P. Kajsa, P. Návrat

[12] Kirasić, D.—Basch, D.: Ontology-Based Design Pattern Recognition. Knowledge-
Based Intelligent Information and Engineering Systems (KES 2008). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 5177, 2008, pp. 384–393.

[13] Object Management Group: MDA, MOF, UML Specifications. 2013.

[14] Mapelsden, D.—Hosking, J.—Grundy, J.: Design Pattern Modelling and In-
stantiation Using DPML. Proceedings of the Fortieth Internet Conference on Tools
Pacific: Objects for Internet, Mobile and Embedded Applications (CRPIT ’02), 2002,
pp. 3–11.

[15] Meffert, K.: Supporting Design Patterns with Annotations. 13th Annual IEEE In-
ternet Symposium and Workshop on Engineering of Computer Based Systems (ECBS
2006), 2006, doi: 10.1109/ecbs.2006.67.

[16] Navrat, P.—Bielikova, M.—Smolarova, M.: A Technique for Modelling Design
Patterns. Joint Conference on Knowledge-Based Software Engineering (JCKBSE ’98),
IOS Press, 1998, pp. 89–97.

[17] Ó Cinnéide, M.—Nixon, P.: Automated Software Evolution Towards Design Pat-
terns. Proceedings of the 4th International Workshop on Principles of Software Evo-
lution (IWPSE ’01), New York, NY, USA, 2001, pp. 162–165.

[18] Rasool, G.—Philippow, I.—Mäder, P.: Design Pattern Recovery Based on
Annotations. Advances in Engineering Software, Vol. 41, 2010, No. 4, pp. 519–526,
doi: 10.1016/j.advengsoft.2009.10.014.

[19] Sabo, M.—Poruban, J.: Preserving Design Patterns Using Source Code Annota-
tions. Journal of Computer Science and Control Systems, 2009, pp. 53–56.

[20] Vranic, V.—Snirc, J.: Integrating Feature Modeling Into UML. NODe/GSEM,
2006, pp. 3–15.

[21] Zamazal, O.—Svatek, V.: PatOMat – Versatile Framework for Pattern-Based On-
tology Transformation. Computing and Informatics, Vol. 34, 2015, No. 2, pp. 305–336.

https://doi.org/10.1109/ecbs.2006.67
https://doi.org/10.1016/j.advengsoft.2009.10.014

Design Pattern Instances within Model Driven Development 85

Peter Lacko received his Master’s degree in software engineer-
ing in 2004, and his Ph.D. in artificial intelligence in 2009, both
from the Slovak University of Technology. Currently he is Assis-
tant Professor of informatics at the Slovak University of Technol-
ogy. His research interests involve artificial intelligence, neural
networks, software engineering and parallel and distributed com-
puting. He is a member of ACM and IEEE and its Computer
Society.

Peter Kajsa received his Master’s degree in software engineer-
ing in 2009, and his Ph.D. in software engineering in 2013, both
from the Slovak University of Technology. His main research
interests include design and architecture of software systems,
design and architectural patterns, model driven development,
model driven architecture and other object management group
specifications.

Pavol N�arat received his Eng. (Master’s) degree cum laude
in 1975, and his Ph.D. degree in computing machinery in 1984,
both from the Slovak University of Technology. He is currently
Professor of informatics at the Slovak University of Technology
and serves as the Director of the Institute of Informatics and
Software Engineering. During his career, he was also with other
universities overseas. His research interests include related areas
of software engineering, artificial intelligence, and information
systems. He is a Fellow of the IET and a Senior Member of the
IEEE and its Computer Society. He is also a senior member of

the ACM. He serves in the Technical Committee 12 Artificial Intelligence of IFIP as the
representative of Slovakia.

