
Computing and Informatics, Vol. 36, 2017, 113–139, doi: 10.4149/cai 2017 1 113

SECURING DISTRIBUTED COMPUTER SYSTEMS
USING AN ADVANCED SOPHISTICATED HYBRID
HONEYPOT TECHNOLOGY

Eva Chovancová, Norbert Ádám, Anton Baláž
Emı́lia Pietriková

Department of Computers and Informatics
Technical University of Košice
Park Komenského 6, 042 00 Košice, Slovakia
e-mail: {eva.chovancova, norbert.adam, anton.balaz,

emilia.pietrikova}@tuke.sk

Peter Feciľak, Slavomı́r Šimoňák

Department of Computers and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
e-mail: {peter.fecilak, slavomir.simonak}@tuke.sk

Martin Chovanec

Institute of Computer Technology
Technical University of Košice
B. Němcovej 3, 042 00 Košice, Slovakia
e-mail: martin.chovanec@tuke.sk

Abstract. Computer system security is the fastest developing segment in informa-
tion technology. The conventional approach to system security is mostly aimed at
protecting the system, while current trends are focusing on more aggressive forms
of protection against potential attackers and intruders. One of the forms of protec-
tion is also the application of advanced technology based on the principle of baits –



114 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

honeypots. Honeypots are specialized devices aimed at slowing down or diverting
the attention of attackers from the critical system resources to allow future examina-
tion of the methods and tools used by the attackers. Currently, most honeypots are
being configured and managed statically. This paper deals with the design of a so-
phisticated hybrid honeypot and its properties having in mind enhancing computer
system security. The architecture of a sophisticated hybrid honeypot is represented
by a single device capable of adapting to a constantly changing environment by using
active and passive scanning techniques, which mitigate the disadvantages of low-
interaction and high-interaction honeypots. The low-interaction honeypot serves as
a proxy for multiple IP addresses and filters out traffic beyond concern, while the
high-interaction honeypot provides an optimum level of interaction. The proposed
architecture employing the prototype of a hybrid honeypot featuring autonomous
operation should represent a security mechanism minimizing the disadvantages of
intrusion detection systems and can be used as a solution to increase the security
of a distributed computer system rapidly, both autonomously and in real-time.

Keywords: Honeypot, hybrid honeypot, virtual honeypots, malicious code, secu-
rity of computer systems

Mathematics Subject Classification 2010: 68-U99

1 INTRODUCTION

Today, due to the rapid development of the Internet and the advancements in web
technologies, people can search for various information sources easily and simply;
however, the information management is getting still more complicated. Neverthe-
less, if we do not implement the measures of providing computer systems with at
least a basic level of security, adequate to the fast paced development of the Internet,
attackers might gain control over the system using malicious code or existing vulner-
abilities and programming errors in the system. As a result of the potential threats
there is an ever-increasing demand to improve information security and intrusion
detection in computer systems.

The beginnings of intrusion detection led also to complications. Currently, there
is still a gap between the theoretical and the practical side of intrusion detection.
This situation resulted in all kinds of experiments related to the subject products
for research and development in this problem domain. There have been attempts to
define terms and develop adequate solutions cooperating with other security system
elements or with the control infrastructure. The requirement to achieve a global
solution to the problems with the preferred solution/approach (regardless of the
validity of the statement) means another important milestone.

“Traditional/recommended” computer system security is based on employing
the three basic pillars of protection: An anti-virus program, a firewall and an in-



Securing Distributed CSs Using Hybrid Honeypot 115

trusion detection system (IDS). However, the last two systems have two disadvan-
tages [16]:

• As soon as the attackers know that the firewall has an enabled security exception
or one of its ports is open towards an external service, they can get access to
the internal resources of the system through this service and perform another
attack inside.

• An intrusion detection system cannot provide sufficient additional information
to detect malicious attacks, nor can it mitigate the losses caused by such attacks.

If we could – right at the first attack – immediately identify a previously unknown
vulnerability and a possible attack of the device in the system, analyze the unknown
attack and forward the results of similar warnings to security specialists then chances
of issuing warnings and implementing system security measures, finding the analyzed
attack patterns along with the possible risks, methods and tools would multiply –
thus we could prevent potential attacks and other damages. In this way we could
successfully mitigate and decrease the risk of information security in advance.

The traditional approach to system security is aimed at the protection of the
system, while current trends are focusing on more aggressive forms of protection
to tackle the potential attackers and intruders more strongly. Such form is also an
intrusion prevention system using baits, commonly referred to as honeypots.

This paper deals with problems related to the security of distributed computer
systems ensured by intrusion detection systems with the addition of honeypot and
the architecture of a sophisticated, autonomously functioning hybrid honeypot that
is capable to adapt to environment changes in real-time, without the necessity of
human intervention.

2 HONEYPOTS

The honeypots are still new and constantly evolving. Honeypots may be used in
various aspects of system security, such as prevention, discovery and data acquisition.
What makes honeypots unique is their general nature not their specificity – they
do not solve any specific security problem. On the contrary: a honeypot is highly
flexible and applicable in various domains such as: intrusion detection, slow-down of
the attacker or forensic analysis of the network. All of these depend on the placement
of the honeypot and on the targeted goals. Some honeypots may prevent attacks,
others might be used to detect them, while next ones may be used to collect research
information. As Lance Spitzner, the well-known expert on honeypots said [4, 17]:

“A honeypot is a security resource who’s value lies in being probed, attacked
or compromised.”

Honeypots may be used in open or private networks. In both cases they gather
information related to the behavior of the attacker or perform other specific tasks.
Since they use unused IP addresses of the system, it is highly probable that the



116 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

incoming data flow represents an irregular connection, thus – compared to an IDS –
the probability of identifying the irregular connection is higher. Information security
specialists may then use data mining techniques to analyze the motivation and
purposes of the attack sporting unknown patterns – by analyzing the content of the
network packets. They may use the results to identify methods and tools used in
the attack, as well as the motivation of the attacker. The goal of honeypots is to
acquire information about system data threats to prevent future infiltrations of the
computer system data [4, 10].

2.1 State-of-the-Art

Honeypots are closely monitored network baits. They are available in various shapes
and sizes, serving various purposes. They may be installed in a computer network
having a firewall both in front of and behind the firewall, even in demilitarized
zones – these are the most popular locations among the attackers trying to gain
access to the system – this is where one can collect the most information about the
attackers. A honeypot may be some fictitious database records, a low-interaction
network device or a high-interaction workstation running a real operating system
and providing real services [12].

Honeypots may serve many purposes. The most important functions of a honey-
pot are the following [17]:

• To divert the attention of the attackers from devices having a higher value in
the system to ensure that the main information resources remain unexposed to
threats.

• To identify new, previously unknown vulnerabilities and risks of operating sys-
tems, development environments and programs.

• To issue timely warnings about new attack types and the use of unknown tactics
and trends.

• To allow a more detailed analysis of the attackers’ activities during and after
interacting with the honeypot.

• To provide information on new attacks and new techniques captured new viruses
or worms for later analysis.

The benefit of honeypots [6, 15] lies mainly in their detection capabilities. Due to
their simplicity, honeypots are capable of overcoming the disadvantages of intrusion
detection systems – they minimize the amount of false alarms generated. There
are some situations in which intrusion detection systems are incapable of detecting
attacks: the attack is too short, the corresponding security rule results into many
false alarms or it detects an overload in the system and therefore it discards packets.
False alarms occur when the intrusion detection system is not set up correctly and it
generates too many warnings during normal network operation. These warnings are
then either ignored or their execution rules are soon modified, therefore resulting



Securing Distributed CSs Using Hybrid Honeypot 117

in leaving a real attack unidentified. A possible solution to this issue is to use
honeypots, since they do not influence system operation. Any interaction with the
honeypot is almost surely unauthorized – i.e., no false alarms are generated and there
are no large volume datasets to be analyzed. As soon as an intrusion is detected,
the honeypot may switch to off-line mode and an analysis may be performed. This
is difficult (if not impossible) in real systems [6, 15].

2.2 Honeyd

Honeyd is not exactly a honeypot, but rather a honeypot software tool allowing the
creation and amendment of a requested solution. Honeyd is an open-source tool,
thus probably the most potent, freely accessible low-interaction honeypot capable
of creating hundreds of virtual hosts1 and simulating large network structures. The
created virtual honeypots are then executed on the Honeyd server using a free IP
address. It may be also implemented on a single device connected to the network
using ARP spoofing. Host computers may be configured to execute any kind of
service; they may be additionally personalized to mimic the execution of various
operating systems and network services. One may modify the latency, loss rate and
bandwidth of the network within the computing system [11, 14].

The most significant advantage of Honeyd is that it is not passive in the incoming
and outgoing honeypot traffic. It creates traffic, which it sends through its configured
subsystems. It provides a mechanism to identify and assess the level of threat.
Honeyd emulates a device at an unused IP address and provides a “facade” the
attacker may attack. Honeyd can emulate more than 400 operating systems at
both the level of applications and IP-level. After receiving a signal or identifying
a connection to the non-existent system, Honeyd suspects the connection which is
an attack. After the identification of this kind of traffic it records the target IP
address. Subsequently, it starts the emulation of the services for the port, where
the connection to the system was identified. After the start of the emulated service,
it starts the interaction with the attacker recording all of his activities. Service
emulation ends immediately after the attacker terminates the connection. Normally,
honeypots created by the Honeyd server are capable of identifying and recording any
activity on any UDP or TCP port and also some ICMP activities. The IP stack
itself is emulated in user land and the packets are delivered to the ICMP, TCP or
UDP service programs. TCP and UDP service programs are components emulating
the ICMP stack [5, 7].

In general, service programs transfer packets to the respective emulated services
using scripts. The services emulated by Honeyd honeypots used for the interaction
with the attackers include Telnet, FTP, HTTP, POP3 and SMTP servers. In case
of viruses, backdoors are emulated. For example, in case of packets targeted at port
80 these are routed to a script emulating a Web server. Scripts might be external
programs or proxies to real services. The personalization component is the one
responsible for the correct setting of the emulated IP address behavior. The whole
architecture is displayed in Figure 1.



118 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

Figure 1. A simplified view of the Honeyd architecture [11]

In Honeyd, the virtual honeypots are configured using a template created by the
configuration file, defining properties of the honeypot, including the operating sys-
tem, ports where the system listens and the behavior of the emulated services [5, 7].

2.3 Honeynet

This honeypot type represents a network architecture containing one or more honey-
pots. Specifically, it is a high interaction honeypot designed with the goal to acquire
the most data about the threats and to provide a real operating system, applications
and services for the attacker to interact with [13]. With virtual solutions it is
possible to implement various operating systems on a single physical device, while
these will appear to the attacker as separate, independent devices; however, as far
as topology and physical location is concerned, these are going to be at the same
place. This flexible solution allows the interaction between the attacker and the
system acting as a lure without letting the attacker harm the computers located
beyond the Honeynet [1, 3].

2.4 Honeypot Advantages

Honeypots have several significant advantages compared to the most popular secu-
rity mechanisms [4, 17]:

Fidelity – recording data interacting with the attacker, since honeypots monitor
only traffic coming directly from them. Honeypot datasets may be small; never-
theless, they may contain high-value information.

Discovery of new tools and tactics – honeypots capture anything interacting
with them, such as previously unknown tools and tactics of the attackers.



Securing Distributed CSs Using Hybrid Honeypot 119

Minimal resources – since they capture malicious activity only in direct interac-
tion, they need only minimal resources to operate correctly. Thus, one may use
even decommissioned or low-end devices.

Simplicity – honeypots are very simple and flexible. They do not require com-
plicated algorithms or costly administration to work properly in distributed
computer systems.

All these benefits show how honeypots increase system security and how they
can increase the overall security of distributed computer systems.

2.5 Honeypot Disadvantages

Honeypots have also some disadvantages and risks. Even though these are not
numerous, they prevent honeypots from completely substituting the current security
mechanisms [4, 17]:

Limited view – a honeypot may identify and monitor the activities of an attacker
only if the attacker communicates with the honeypot directly. Attacks to other
parts of the system are not recorded if the honeypot is subject to the attack.

Discovery and fingerprinting – a honeypot has certain expected features and
behavior, which allows the attacker to discover its real identity [8]. A simple
error, such as typographical mistake in the emulated service may be a sign of
interacting with a honeypot.

Risk of takeover – if the attacker gains control over a honeypot, he may abuse it
in an attack aimed at the devices within or beyond the system. Such a controlled
honeypot may be used to store and distribute illegal data.

3 THE PROPOSED SOPHISTICATED HYBRID HONEYPOT

There are many complications to be taken into account when deploying a honeypot
in a system. After all installation and configuration procedures are completed, there
must be someone to maintain the honeypot deployed into the production environ-
ment. The speed of development and changes do not affect only the honeypot, but
also the system it is deployed in. The system is a venue of constant changes, such
as adding new and removing old hardware or various improvements. The software
components of the systems are also subject to constant change – software is subject
to constant amendments and development. All existing honeypots must adapt to
these changes. The traditional/manual way of updating and modifying honeypots
– aimed at increasing system security – costs time, money and is prone to errors.

The main problems are configuration and maintenance focused on the function-
ality and efficiency of honeypots. A further disadvantage of using honeypots is their
low flexibility in reacting to changes made to the system and representing the risk of
being discovered or – eventually – abused. The most significant disadvantage of the



120 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

majority of security technology/techniques, including honeypots, is the necessity of
their configuration. All technology – from encryption keys to firewall rules – need
a human expert to analyze a problem and come to, configure and implement a so-
lution. Nevertheless, work does not end with implementation of the more complex
technology. After deploying it, a honeypot requires every-day tedious maintenance.
Even the slightest configuration error may tell the attacker about the presence of
a honeypot – an experienced attacker may use this knowledge for his own bene-
fit. Honeypot configuration problems include specifications of the operating system
type, how many and which UDP and TCP ports should remain open, what network
services to emulate, which IP addresses to monitor, how to behave in the interaction
with the attacker – when to reply and when to be passive [8, 9].

3.1 Architecture

The honeypot is deployed as an independent device, physically connected to the
computer system network. After deployment honeypot monitors and learns to know
the system it is deployed in. It also analyses network traffic, determines the number
of systems in use, the operating system types, the started and provided services,
and identifies the subjects communicating with the specific system with and how
often they communicate with the system. This information serves for mapping
and collecting information about the network. As soon as the honeypot collects all
required information, it may start with deploying virtual honeypots created for the
purpose of mirroring the whole system.

Honeypots capable of mimicking the appearance and the behavior of the pro-
duction environment seamlessly integrate in their environment. That makes their
identification or discovery much more difficult for the attackers. However, infor-
mation acquisition does not end at this point, on the contrary: it is a continuous
process performed by monitoring the whole network system. This approach increases
the flexibility, since any change is identified in real-time and implemented by the
virtual honeypots deployed in the system as soon as possible. The proposed sophis-
ticated honeypot reduces the configuration and administration workload necessary
in a constantly changing and evolving environment.

3.2 Hybrid Honeypot

A honeypot is created and configured to make it an easy target for attackers. It may
be used in various security scenarios as a detection device, a protection mechanism
or a reaction mechanism. Moreover, it may be situated in a system to consume
the system resources of the attackers or to divert their attention from important
targets, i.e. to slow them down. Slowing the attackers down is one of the most
popular honeypot functions, since the attacker “loses time” with the honeypot,
instead of attacking systems and servers. A hybrid honeypot is a combination of
two honeypots (Figure 2) with different interaction levels [12].



Securing Distributed CSs Using Hybrid Honeypot 121

Figure 2. The principle of the hybrid honeypot

The first and most critical part of a sophisticated honeypot is the way it can ob-
tain information about the network. After obtaining information, the sophisticated
honeypot will smartly map and promptly react to the environment.

One possibility is by an active probing to determine the used systems, their type
and used service. Active scanning and data collecting leads to still increasing load,
so this method does not constitute the best approach. Honeypot is deployed as
a standalone device that is physically connected to the network. Honeypot follows-
up, learns and analyzes the network and based on this information determines the
number of systems used, OS type, provided services and topology.

When honeypot collects all the necessary information, it can begin to place
virtual honeypots that are designed to mirror the system. Gaining information does
not end, but is continuing, so the entire network system is monitored. This approach
is more flexible, because any change is identified in real time.

The proposed architecture of a sophisticated hybrid honeypot consists of four
main modules (Figure 3). The external modules are Low-interaction honeypot and
HoneyWall gateway. The first module called Low-interaction honeypot is aimed at
identification of the scope of relevant data concerning the technology and topology
used in the production network, where the honeypots are to be dynamically de-
ployed. The first module focuses on finding data about the technology and topology
used in a production network for deploying Honeypot in a dynamic way. This mod-
ule also contains network scanning component, network scanning parser and system
database which contains all configurations for specific operation systems or devices
which can be placed in network.



122 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

Figure 3. The logical structure of the proposed architecture

This module is aimed at covering a large IP address space and filtering irrelevant
network operation out - it can divert traffic meeting the specified criteria to the
high-interaction honeypot. The second module Server management is internal and
is responsible for management. The third module HoneyWall gateway serves to
prevent an attacker to jump from one device to another network device. The last
module is a high-interaction honeypot, providing mimicking a real system to the
attackers.



Securing Distributed CSs Using Hybrid Honeypot 123

Low and high-interaction honeypot modules can be placed on the same device.
It is not recommend to do that from the security point of view. Placing both
honeypots on the same instance/device can lead to obtain system sensitive data
located on high-interaction honeypot. Purpose of hybrid honeypot is to mitigate the
majority of automated attack and lower the payload of high-interaction honeypot.
Once the low-interaction honeypot evaluates attack as “made by human” (not by
bot or other automated type of attacks) it will automatically forward this attack to
high-interaction honeypot to gather data about the attacker. This behavior is also
called as proxy mode.

3.2.1 Acquiring Information About the Deployment System

The first and most critical part of achieving the adaptive feature of the sophis-
ticated hybrid honeypot is to select the appropriate data acquisition techniques in
conjunction with the deployment system. The information acquisition module of the
sophisticated hybrid honeypot – deciding which methods to choose in the selected
architecture – uses both possible techniques: active and passive.

If the deployment system consisted only of routed networks, using the passive
technique was inadequate, since the acquired fingerprint may not get beyond the
specific routed network until the router is reconfigured. Should the deployment
system consist of servers, workstations and other peripheral devices interconnected
by routers operating on the second level of the OSI model, the so-called connection
layer, using the active technique would result in a less adequate data acquisition
approach (compared to the passive technique). To provide the highest possible
precision rate in fingerprinting the remote device, the applied hybrid solution uses
active fingerprinting combined with the passive technique.

The scanning process used during the initial deployment of the sophisticated
hybrid honeypot initializes a ping scan of the Nmap tool – the active technique – to
locate all devices and temporarily store their IP address in a list. The created list
serves as an aid during scanning ports and/or operating systems within the specific
group of IP addresses. The output is saved as an XML file, which is then analyzed
after each scanning. After the scanning is finished, the analyzed object is initialized
and executed in the thread extracting information from the XML file used to create
the system profile; the information is then saved to the database.

3.2.2 Continuous Data Acquisition

After the initial deployment of the sophisticated hybrid honeypot and termination of
the initial scanning process, the continuous data acquisition process of the Honeyd
server serves as an aid during deployment the virtual honeypots. Its algorithm is
depicted in Figure 4. The applied algorithm uses a combination of various search
tools and techniques.

Passive fingerprinting captures network packets to identify network activities,
analyze them and determine the IP address, operating system and services for the



124 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

Figure 4. The data acquisition process used for the deployment of virtual honeypots

creation and deployment of virtual honeypots. This technique serves for the con-
tinuous acquisition of data ultimately needed to emulate and/or simulate devices in
the deployment system without additionally increasing network traffic. Snort [2] is
a data acquisition tool and an intrusion prevention system. To reach the highest ef-
ficiency in capturing the packets, Snort is placed near the gateway of the production
system. After detecting match with any record in the knowledge-based database,
IDS Snort can also raise an alarm.



Securing Distributed CSs Using Hybrid Honeypot 125

As part of the continuous data acquisition process both active and passive tech-
niques are used to update the initial configuration file created by the algorithm.
During passive scanning, the p0f and Snort tools are being used to extract the oper-
ating system signatures, the state of ports and other information. After extracting
signatures, the proposed system compares the data with the database of signatures
of the known operating systems. Subsequently, the data are handed over to the net-
work scanning passers and stored in the system database to create and/or update
the configuration file. Since passive scanning captures only the interaction of the
host, ports and services, it provides limited information. Therefore, the execution
of active scanning is preset for a predefined timeframe – usually at times of lower
loads and for a small IP address group; this minimizes the possibility of filling up
bandwidth. To acquire new information, active scanning is running on all IP ad-
dresses in the specified timeframe. If a firewall is detected in the computer network,
the proposed sophisticated honeypot initializes active scanning using Nmap. If any
changes are identified in the deployment system during passive scanning, such as
a new IP address of a device, the preset active scanning is automatically executed.
If a firewall is present, Nmap is executed. If the identified change is new – either
from the aspect of topology or technology – the sophisticated honeypot inserts all
information about the deployment system into a MySQL database. Otherwise it
updates the existing information modified compared to the previous state.

After fully scanning the production network of the deployment system using pas-
sive and active techniques, the proposed sophisticated hybrid honeypot can estimate
the amount, type and kinds of services of the counterfeit systems (honeypots) rel-
atively precisely, with the goal to create an appropriate configuration file to deploy
the virtual honeypots in the deployment system.

3.2.3 Placing and Deploying Honeypots

The traditional solution to the problem of implementing honeypots in a system
requires the physical placement of a new device to each monitored IP address. In
addition to this, distributing physical honeypots takes also a significant time and
incures labor cost. A simpler, more autonomous solution is to implement virtual
honeypots instead of physical ones – these allow monitoring of sufficient amounts of
unused IP addresses. The virtual honeypots monitor an IP address space identical
to the system itself. All virtual honeypots were created, deployed and managed by
a single physical device – the proposed sophisticated hybrid honeypot.

The basic idea behind the sophisticated hybrid honeypot is using free IP ad-
dresses. The main problem is how to distribute IP addresses among the existing
operating systems and simultaneously mitigate the possibility of discovering the
host stations in the network in case of an attack. We have selected the following
approach to maintain a constant operating system distribution even after adding
a virtual honeypot to the system and the exclusion of physical honeypots:

Let us define DD as the total number of deployed devices in the deployment
honeypots, NDoi as the number of production devices running a specific operating



126 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

system (the ith operating system in the list) and let NFIP represent the number of
free IP addresses available for the virtual honeypots. Then the number of virtual
honeypots created by the Honeyd tool (NVHoi), emulating the ith operating system
is as follows:

NVHoi =
(

NFIP

DD

)
∗NDoi ∗ (1− PFIP). (1)

PFIP is the percentage of free, unused IP addresses – these are available for
other uses. Therefore, to the attacker it seems that the system expands the number
of hosts running OSi according to the value of NVHoi.

3.3 Security Elements

The implementation of additional security elements of the sophisticated hybrid
honeypot directly increases its security when facing experienced attackers and min-
imizes the direct risk the proposed honeypot faces.

The verification module implemented in the hybrid honeypot diverts the out-
bound DNS queries during the interaction with the attacker – for logging purposes –
to the Snort tool, while it allows outbound connections only to the attacker. If the
sophisticated hybrid honeypot does not capture any operation from the attacker
in the high-interaction honeypot during the predefined timeframe of two minutes,
identical measures will be taken – the honeypot starts the stability scan and reverts
the configuration to its initial state.

To prevent a single attacker taking control of the high-interaction honeypot
during a long time, the sophisticated hybrid honeypot contains an additional timer
measuring the attack relation length. The preset value is 10 minutes. After the
configured period, the attacker shall be routed to the low-interaction honeypot,
while a scanning process is launched at the high-interaction honeypot to identify
break-ins and revert it to its initial state.

4 EXPERIMENTAL PROOF

During the selection of the environment appropriate for the implementation and sim-
ulation, we took the availability of the environment and the expected specific events,
eventually occurring during the implementation of the proposed architecture into ac-
count. During the selection process itself, we focused also on the possibility of an
experimental proof of the proposed solution. Since we had to deal with a heteroge-
neous distributed computing system, we had to select an adequate environment –
we have selected the following two:

• ANTIK Telecom, s. r. o. – functionality tests of the hybrid honeypot prototype
(gross estimate: 50 000 active users).

• The network of the student hostels Jedĺıkova 9 and Jedĺıkova 5 of the Technical
University in Košice (the TUKE13 heterogeneous network) – functionality tests
of the hybrid honeypot prototype (approximately 2 000 active users).



Securing Distributed CSs Using Hybrid Honeypot 127

• The topology proving the autonomous operation of the proposed sophisticated
hybrid honeypot by simulating an evolving computer system – operating system
variations, provided services and port configurations. The topology has been
created at the Computer Architecture and Security Laboratory, Department of
Computers and Informatics, Faculty of Electrical Engineering and Informatics,
Technical University of Košice, Slovakia.

Hypothesis 1. The implemented architecture of the hybrid honeypot is capable of
capturing more files containing malicious code than VirusTotal tool, consisting of
42 types of detection and heuristic techniques at the time of writing this paper.

Experiment 1. To expose the architecture of the hybrid honeypot to any malicious
code or attacker and to test it we have deployed the prototype for a period of
three weeks into a real environment of two heterogeneous networks – the network
of ANTIK Telecom and TUKE student hostel network. Both computer networks
contained a firewall – this allowed all inbound and outbound traffic. However,
in the TUKE computer network, traffic coming from beyond the internal network
TUKE was filtered by the university Internet service provider, which blocked some
inbound connections containing malware. Nevertheless, some connections generated
from beyond the TUKE network reached the deployed hybrid honeypot: during the
specified test period we have registered a total of 1,762,289 TCP connections and
710 670 UDP connections. The details are stated in Table 1.

TUKE student hostel network ANTIK Telecom

Protocol TCP UDP TCP UDP

Week 1 371 486 132 172 211 578 100 710
Week 2 365 635 136 253 223 349 103 357
Week 3 358 456 137 092 231 785 101 086

Total 1 095 577 405 517 666 712 305 153

Table 1. Connections recorded by the hybrid honeypot, aggregated by protocol

From Table 1 it is evident that TCP is the most popular Internet protocol
(TCP/IP protocol) used by the attackers. This only underlines the fact that com-
pared to other protocols, most services and applications use primarily the TCP
protocol. The UDP protocol also had a significant impact on the overall measure-
ments conducted during the experimental proof.

In the ANTIK Telecom network, the high-interaction honeypot was exposed to
7 683 connections in 2 358 relations during the test period. We have captured and
extracted 1 861 malicious files or files containing malicious code (also with the help
of the Dionaea tool) from these connections. 589 files of these have been verified
using VirusTotal.

Malware captured most often at the low-interaction honeypot was the Win32.-
All-aple.e14 worm. Similarly, some identical infections where registered also at the
high-interaction honeypot: these represented 13 % of the total unique records and



128 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

52 % of all captured malware detected by VirusTotal. We have captured multiple
variants of the Win32.Allaple worm attempting to connect to the default gateway
operating at port 445 – most probably it was an attempt of self-propagation in
a local network and contacting unknown web servers.

Figure 5 shows the details of unique detection records, as reported by VirusTotal,
both from the low-interaction and high-interaction honeypots. We have also eval-
uated the number of infections attempting to create a connection to an IP address
different from the IP address of the attacker.

Figure 5. Unique records detected by the hybrid honeypot and the VirusTotal tool

The results depicted in Figure 6 show a relation15, which ended in an attempt
of the high-interaction honeypot to create an outbound connection16 – it contained
more captured files containing malware than 98 % of the files captured by VirusTotal.
On the other hand, most relations – not attempting to create a final outbound
connection – led to no modification of the file system. Moreover, VirusTotal verified
only 26 % of the extracted files during these relations. Based on the above we may
claim that an attempt to create an outbound connection is a better indicator of
a successful abuse and/or infiltration. However, such a claim does not say much, if
it is the only indicator examined.

The log file records showed significant amounts of initiated Telnet and SSH
activities. The duration of these was very short – only a few seconds – in case of
the virtual low-interaction honeypots – this indicates that these activities might be
probing or have the effect of worms.

Hypothesis 2. Before attacking a potential target, the attacker scans the environ-
ment he is preparing to attack (to find the weaknesses and vulnerabilities). Subse-
quently, he attacks one of the eventually found weaknesses.

Experiment 2. In this section we describe the results of analyzing data captured
by the honeypot in accordance with the warnings issued by the intrusion detection
system during one week long operation in the TUKE student hostel computer net-
work. To detect an issue IDS warnings we have selected and used the Snort tool.
During the experiment aimed at the analysis we have first counted the total number



Securing Distributed CSs Using Hybrid Honeypot 129

Figure 6. Statistics of the hybrid honeypot and VirusTotal in the heterogeneous TUKE
student hostel network

of relations captured by the Snort IDS – we have recorded a total of 75 368 attack
attempts. Snort has issued warnings in 815 relations of all these connections. 75.7 %
of all attacks where denial of service (DoS) attacks during the specified period. The
average relation count detected by Snort per day was 116.

By analyzing the hybrid honeypot (its low-interaction part) we have found
that each attack was preceded by an environment scan. After the attacker re-
ceived the data related to the target, he used them to perform an intrusion into
the system. After the scanning process, the attacker is capable of identifying
all vulnerabilities and open ports he may use for an eventual attack. Employing
a high-interaction honeypot has multiple advantages compared to a low-interaction
honeypot. First of all, the attacker may find out relatively quickly that the services
provided by the low interaction honeypot are emulated. The services offered by
the high interaction honeypot are not emulated at all, what prevents the attacker
from using remote fingerprint acquisition. Since the high-interaction honeypot is
fully virtualised, the risk of an error or mistake in the emulation and/or simula-
tion is in fact equal to nil. In spite of this, the identity of the honeypot may be
discovered as soon as the attacker is routed to a virtualised high interaction honey-
pot.

The measurement results may be affected by timed attacks, used by the at-
tackers to scan the environment – these may try to measure the system memory
load caused by the execution of the hybrid honeypot. However, the oscillation of
the system memory load is not a unique fingerprint of the monitoring environment,



130 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

since executing multiple hosts may lead to similar symptoms. During the three-week
experimental proof of the hybrid honeypot we met managed to capture and analyze
3 126 malware samples, while 68 % of these were not captured by antivirus software.
This served as a proof of Hypothesis 1. It also proved Hypothesis 2, when the mea-
surements performed in Experiment 2 showed that a scanning process preceded each
attack in the vast majority of cases – this was to perform the discovery of existing
weaknesses of the system, with the goal to use them during the implementation of
the attack.

5 PROOF OF AUTONOMOUS OPERATION

We have separated the experimental proof of the autonomous operation of the so-
phisticated hybrid honeypot – simulating weaknesses and vulnerabilities of a specific
device in the computer network – into two experiments. In the first experiment we
tried to prove the acquisition of data concerning the deployment system, neces-
sary to create the configuration file for the honeypot and ensure continuity in case
of any changes in the deployment system. As the heterogeneous test network we
have selected the TUKE student hostel computer network. The second experiment
was aimed at proving the autonomous operation itself and the creation of virtual
honeypots using a Honeyd server in the simulation environment of the Computer
Architecture and Security Laboratory, Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Slovakia.

Experiment 3. (System data acquisition in a heterogeneous network.) After de-
ploying the Honeyd server in the deployment system and after the initial scanning
of the devices present in the system, the server started producing information on
the IP addresses and the operating systems in use. Figure 7 shows the distribution
of unused IP addresses and IP addresses allocated to active devices.

Figure 7. Distribution of IP addresses in a heterogeneous network

From the figure it is evident that the computer network should be able to cope
with numerous virtual honeypots and it should most probably be able to divert



Securing Distributed CSs Using Hybrid Honeypot 131

malicious operation from the active devices of the system to the created virtual
honeypots.

Figure 8 shows the distribution of the detected operating systems – this proves
that the TUKE student hostel computer network is a heterogeneous environment,
mainly due to the number of operating systems in use. Therefore, the employed vir-
tual honeypots should mirror the aforementioned operating systems at rates identical
to those detected in the deployment system.

Figure 8. Distribution of specific operating systems within the heterogeneous network

As it is evident from Figure 8, devices running Windows server operating sys-
tems – 12 pcs – do not represent even 1 % of the deployment system, which (natu-
rally) need not strictly correspond to other deployment systems.

During the three-month experiment, the prototype of the sophisticated hybrid
honeypot specified not only data identifying the distribution of IP addresses and
the counts of the respective operating systems, but also the distribution of packets
passing through the deployed virtual honeypots, aggregated by the specified ba-
sic protocols – TCP, UDP and ICMP. After examining the chart in Figure 9 one
may conclude that the traffic passing through the deployed low-interaction hon-
eypots reflected the respective device type of the deployment system, which they
mirrored. E.g., the most attractive honeypot was the one bearing ID 17, which em-
ulated the DNS, while honeypots bearing the IDs 7, 15 and 25 emulated an HTTP
server.



132 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

Figure 9. Duration of the attackers’ interaction during the specified period in seconds

These charts show that the data collection algorithm was designed and imple-
mented correctly, since the prototype of the sophisticated hybrid honeypot recorded
any and all changes in the deployment system.

Experiment 4. (Proof of autonomous operation in the topology of the Computer
Architecture and Security Laboratory). After verifying the data acquisition con-
cerning the deployment system and the partial proof of autonomous operation in
Experiment 3, we performed an experiment in the environment consisting of 12 com-
puters and a central server (being the Honeyd server), with the topology illustrated
in Figure 10.

The proposed environment simulated various changes in the operating system
versions running, the various service configurations and ports. For example, the
ports open at the machine running Windows Server 2008 Enterprise 64-bit SP2



Securing Distributed CSs Using Hybrid Honeypot 133

Figure 10. The topology of the network at the Computer Architecture and Security Lab-
oratory, TUKE

included: HTTP (80), DNS (53), Telnet (23), FTP (21), SSH (22), etc. The other
ports have been reset. To create the low-interaction honeypots we used the Honeyd
tool, whereas for the high-interaction honeypots we used VMware software. During
the experiment lasting one week we used various operating systems, as specified in
Table 2. Our goal was to prove the autonomous operation of the proposed solution.

ID Operating System

1 Ubuntu Server 10.04.4 LTD
2 Ubuntu 11.10 i386
3 Ubuntu 12.04.1 LTS 64-bit
4 Fedora 17 (Beefy Miracle)
5 Windows 7 Enterprise x64 SP1
6 Windows 7 Enterprise x86 SP1
7 Windows 8.1
8 Windows Server 2008 Enterprise 64-bit SP2
9 Windows XP Professional x64 SP3

10 Windows XP Professional x86 SP3
11 Sun Solaris 10
12 FreeBSD 9.1 RC3 i386
13 IMB OS/2 Warp 4.52
14 Windows Phone 7.x (experimentally)

Table 2. The operating systems used in the experimental proof of autonomous operation

During the one-week-long experiment we successfully proved the following fea-
tures: system data acquisition, configuration file generation and creation of virtual



134 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

honeypots based on system changes in real-time; all of this even in spite of the tough
simulations performed in the laboratory environment. During the experiment, we
gradually added and removed operating systems. Similarly, their services and port
configurations were gradually reconfigured to new values, while the reaction of the
Honeyd server – from the implemented changes in the deployment system up to the
update or creation/removal of the virtual honeypot – depended on the process of
acquiring data about the deployment system, the efficiency of which directly de-
pended on the network traffic in the system at the time. The average reaction time
of the Honeyd server experienced with the specific, most popular operating systems
is depicted in Figure 11.

Figure 11. The mean reaction time following a change to the selected OS in the deploy-
ment system

Adding and/or creating a new device was detected in a short time, since this
meant the registration of a new source IP address, which triggered active scanning.
When updating the devices in the topology we simulated changes only in the port
and service configuration. Removal of devices could not be exactly proven, since
detection by passive data acquisition is not possible – it is impossible to determine
whether a device is not present in the system or just not in use.

Based on the measurements of the sophisticated hybrid honeypot, Experiment 3
proves that the proposed algorithm of system data acquisition works correctly and
reliably. Subsequently, in Experiment 4 we verified autonomous operation, which



Securing Distributed CSs Using Hybrid Honeypot 135

showed that the prototype of the proposed solution managed to collect, remove or
update honeypots in the deployment system in real-time, even in laboratory condi-
tions created at the Computer Architecture and Security Laboratory, Department
of Computers and Informatics, Faculty of Electrical Engineering and Informatics,
Technical University of Košice, Slovakia.

6 CONCLUSION

The proposed detection system using a sophisticated hybrid honeypot consists of
three main parts: the HoneyWall, a Honeyd server creating virtual honeypots and
the Honeynet (A network of physical honeypots). The prototype itself may be
considered proactive, while the capability of the system to divert intrusive traffic,
write the data to log files and issue warnings makes it a reactive system, similarly
to IDS systems.

The advantages of the proposed architecture are the following:

Minimal volume of false alarms: the generation rate of false alarms is suspected
to the minimal, since honeypots do not contain real-world valuable data, there-
fore anybody entering into interaction with them poses a potential risk.

Scalability: the system may be enhanced at any time by creating additional virtual
honeypots, and – under specific conditions – even physical honeypots; this di-
rectly contributes to an increase in the level of security, mitigates the probability
of an attack to real devices containing sensitive data.

Adaptability: as to adaptability, scanning algorithms allow the proposed proto-
type to adapt to the overall configuration of virtual honeypots; this makes them
capable of reflecting any change in the deployment system in real-time. A signifi-
cant advantage of this solution is that no external help, training or requalification
is necessary in abnormal network conditions.

Diminished system load: to decrease the load most efficiently, traffic is diverted
to the high-interaction honeypots from the low-interaction honeypots only after
meeting the defined conditions, what prevents automated attacks; the honeypots
may reroute traffic only if they have the same operating system, provide the same
services and have identical port configurations.

Platform independence: it is also evident that the proposed prototype does not
strictly require the use of a specific platform or tool.

Diverting dangerous traffic from real systems: one of the basic features of
the proposed architecture is its capability to divert dangerous traffic away from
real devices in the system of deployment and therefore from the sensitive data
they may contain. The level of protection is directly proportional to the available
amount of free IP addresses necessary for the deployment of virtual honeypots.
The increase in the level of security is exponential depending, on the number
of free IP addresses, which may be very effective in reducing the number of
malicious attacks led against the production system.



136 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

Timely intrusion detection: other systems are capable of detecting intrusions
only after the corruption of one or more hosts. Since attackers are always on
the run, the proposed architecture is aimed at attracting them and creating an
illusion of interaction with a real device.

The proposed architecture of a sophisticated hybrid honeypot may be considered
to be the fastest system capable of identification identifying intruders; however, only
after they started interacting with these intruders. Therefore it may be considered
a real system, applicable for detection of intrusions in real-time.

Acknowledgments

This paper is the output of the research supported by grant APPV-0008-10 enti-
tled “Modeling, simulation and implementation of high-throughput network security
tool architectures using GPGPU support”. This article is a follow-up of the research
conducted in the domain of distributed computers and information system security,
conducted at the Computer Architecture and Security Laboratory, Department of
Computers and Informatics, Faculty of Electrical Engineering and Informatics, Tech-
nical University of Košice, Slovakia.

This publication is also the result of the Project implementation: University
Science Park TECHNICOM for Innovation Applications Supported by Knowledge
Technology, ITMS: 26220220182, supported by the Research & Development Op-
erational Programme funded by the ERDF. We support research activities in Slo-
vakia/This project is being co-financed by the European Union.

REFERENCES

[1] Honeynet Research Alliance: Project Honeynet Website (2003), http://old.

Honeynet.org/alliance/.

[2] Snort Official Documentation (12 2013), http://www.snort.org/docs.

[3] Abhishek, M.—Debabrat, B.—Kanchan, V.—Debasish, J.: Honeypot in Net-
work Security: A Survey. Proceedings of the 2011 International Conference on Com-
munication, Computing and Security, February 12–14, 2011, pp. 600–605.

[4] Akkaya, D.—Thalgott, F.: Honeypots in Network Security: How to Monitor
and Keep Track of the Newest Cyber-Attacks by Trapping Hackers. LAP Lambert
Academic Publishing, Germany, 2012.

[5] Baumann, R.: A Low Involvement Honeypot in Action. http://security.

rbaumann.net/download/Honeyd.pdf.

[6] Baumann, R.—Plattner, C.: Honeypots (White Paper). Technical Report, Swiss
Federal Institute of Technology, Zürich, February 2002.

[7] Chandran, R.—Pakala, S.: Simulating Network with Honeyd. Technical Paper.
December 2003.

http://old.Honeynet.org/alliance/
http://old.Honeynet.org/alliance/
http://www.snort.org/docs
http://security.rbaumann.net/download/Honeyd.pdf
http://security.rbaumann.net/download/Honeyd.pdf


Securing Distributed CSs Using Hybrid Honeypot 137

[8] Fanfara, P.—Chovanec, M.: Influence of Sophisticated Hybrid Honeypot on Effi-
ciency of Intrusion Detection System Architecture in Distributed Computer Systems.
Acta Informatica Pragensia, Vol. 2, 2013, No. 1, pp. 39–56 (in Slovak).

[9] Fanfara, P.—Dufala, M.—Chovancová, E.: Usage of Proposed Autonomous
Hybrid Honeypot for Distributed Heterogeneous Computer Systems in Education
Process. 11th IEEE International Conference on Emerging eLearning Technologies
and Applications (ICETA 2013), Stary Smokovec, October 24–25, 2013, pp. 383–388,
doi: 10.1109/iceta.2013.6674409.

[10] Fanfara, P.—Dufala, M.—Danková, E.: Security of Distributed Computer
Systems Based on Intrusion Detection System and Advanced Technology of Hybrid
Honeypots. International Conference on Applied Electrical Engineering and Infor-
matics (AEI 2012), Germany, August 26–September 2, 2012, pp. 155–160.

[11] Khosravifar, B.—Bentahar, J.: Honeypot in Network Security: A Survey. Ad-
vanced Information Networking and Applications (AINA 2008), March 25–28, 2008.

[12] Kyaw, K. L.: Hybrid Honeypot System for Network Security. World Academy of
Science, Engineering and Technology, Vol. 2, 2008, No. 12, pp. 232–236.

[13] Marchese, M.—Surlinelli, R.—Zappatore, S.: Monitoring Unauthorized In-
ternet Accesses Through a ‘Honeypot’ System. Communication Systems, Vol. 24,
2011, No. 1, pp. 75–93, doi: 10.1002/dac.1141.

[14] Pekár, A.—Chovancová, E.—Fanfara, P.—Trelová, J.: Issues in the Pas-
sive Approach of Network Traffic Monitoring. IEEE 17th International Conference
on Intelligent Engineering Systems (INES 2013), Costa Rica, June 19–21, 2013,
pp. 327–332.

[15] Sutton Jr., R. E.: How to Build and Use a Honeypot. Section 1. Technical Report.
DTEC 6873, Boston, 2008.

[16] Thuraisingham, B.: Data Mining for Malicious Code Detection and Security Appli-
cations. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT ’09), Vol. 02, September
15–18, 2009, pp. 6–7, doi: 10.1109/WI-IAT.2009.379.

[17] Watson, D.—Riden, J.: The Honeynet Project: Data Collection Tools, Infras-
tructure, Archives and Analysis. Information Security Threats Data Collection and
Sharing (WISTDCS ’08), April 21–22, 2008, doi: 10.1109/wistdcs.2008.11.

Eva Chovancov�a graduated (Ing.) at the Department of Com-
puters and Informatics at the Faculty of Electrical Engineering
and Informatics of the Technical University of Košice in 2009.
She defended her Ph.D. thesis in the field of computers and com-
puter systems in 2012; her thesis title was “Specialized Processor
for Computing Acceleration in the Field of Computer Vision”.
Since 2012 she has been working as Assistant Professor at the
Department of Computers and Informatics. Her scientific re-
search is focused on the multicore computer architectures.

https://doi.org/10.1109/iceta.2013.6674409
https://doi.org/10.1002/dac.1141
https://doi.org/10.1109/WI-IAT.2009.379
https://doi.org/10.1109/wistdcs.2008.11


138 E. Chovancová, N. Ádám, A. Baláž, E. Pietriková, P. Fecǐlak, S. Šimoňák et al.

Norbert �Ad�am graduated (M.Sc.) with distinction at the De-
partment of Computers and Informatics at the Faculty of Elec-
trical Engineering and Informatics of the Technical University
of Košice in 2003. He defended his Ph.D. thesis in the field of
computers and computer systems in 2007; his thesis title was
“Contribution to the Simulation of Feed-Forward Neural Net-
works on Parallel Computer Architectures”. Since 2006, he has
been working as a lecturer at the Department of Computers and
Informatics. Since 2008, he is the Head of the Computer Archi-
tectures and Security Laboratory at the Department of Comput-

ers and Informatics. His scientific research is focused on parallel computers architectures.

Anton Bal�a�z received his Master’s degree in informatics in
2004 from the Faculty of Electrical Engineering and Informatics,
Technical University of Košice. In 2008 he received Ph.D. in the
area of computer security. Since 2007 he is working as Assistant
Professor at the Technical University of Košice.

Emı́lia Pietrikov�a is Assistant Professor at the Department
of Computers and Informatics, Technical University of Košice,
Slovakia. She received her M.Sc. in 2010 and her Ph.D. in 2014
in informatics from Technical University of Košice. In 2010 she
spent one month at the Department of Telematics at Norwe-
gian University of Science and Technology, Norway. In 2011 she
spent one semester at the Department of Computer Architec-
ture at University of Málaga, Spain. The subject of her research
is abstraction and generation in programming languages, and
quality of education.

Peter Feci�lak graduated (M.Sc.) at Department of Comput-
ers and Informatics at Faculty of Electrical Engineering and In-
formatics, Technical University of Košice in 2006. In 2009 he
finished his Ph.D. studies at the same department with the focus
on optimization of computer networks. Currently, he is working
as employee of DCI, FEI, Technical University of Košice. His
current teaching and research interests are computer networks,
network monitoring, quality of services and smart energy sys-
tems.



Securing Distributed CSs Using Hybrid Honeypot 139

Slavomı́r �Simo�n�ak received his M.Sc. degree in computer sci-
ence in 1998 and the Ph.D. degree in computer tools and sys-
tems in 2004, both from the Technical University of Košice, Slo-
vakia. He is currently Assistant Professor at the Department
of Computers and Informatics of the Faculty of Electrical En-
gineering and Informatics of the Technical University of Košice,
Slovakia. His research interests include formal methods integra-
tion and application, communication protocols, algorithms, and
data structures.

Martin Chovanec received his engineering degree in informat-
ics in 2005 from Faculty of Electrical Engineering and Informat-
ics, Technical University of Košice. In 2008 he received his Ph.D.
degree at the Department of Computers and Informatics of the
Faculty of Electrical Engineering and Informatics of the Techni-
cal University of Košice and his scientific research was focused on
network security and encryption algorithms. Currently, he is Di-
rector of the Institute of Computer Technology of the Technical
University of Košice.


