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capability of computational clusters. An investigation is performed using a specific
scenario of computing clusters with realistic parameters. Numerical results show
that a trade-off between the performance and the energy efficiency can be controlled
by the proposed algorithms.
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1 INTRODUCTION

Computational clusters of heterogeneous distributed resources can be easily es-
tablished based on high speed networks and powerful CPUs [1, 2, 3]. In such
environments job scheduling is a challenging issue because various factors (qual-
ity of service, performance, energy consumption, etc.) could be taken into ac-
count [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

To take a full advantage of computational systems, heterogeneity and large-
scale sharing of resources can be exploited. Tang et al. [15] proposed a hierarchical
reliability-driven scheduling scheme that can consider both global and local applica-
tion reliability in computational grids. The aim [15] is to meet the reliability require-
ment of applications with the provisioning of quality of service. Kumar et al. [17]
presented a dynamic load balancing algorithm based on a resource type policy to
distribute works among resources. The author stated that tasks are allocated to
available processors with the fair amount of time with their dynamic load balancing
algorithm, while the makespan and the execution cost are reduced as well. Zikos and
Karatza [12] studied three policies: SQEE (Shortest Queue with Energy Efficiency
priority), SQHP (Shortest Queue with High Performance priority), and PBP-SQ
(Performance-Based Probabilistic – Shortest Queue). It was shown [12] that SQEE
is the most energy efficient at the price of a low performance and SQHP outperforms
SQEE and PBP-SQ in the term of quality of service but comes with the highest en-
ergy consumption. Do et al. [16] showed that buffering schemes (separate queue,
class queue, and common queue) play an important role regarding the waiting time
and the response time experienced by jobs. They demonstrated that the common
queue scheme outperforms the considered scheduling algorithms without an impact
on the energy consumption of systems.

It is observed that previous works do not consider the variation of load offered to
clusters, which motivates our study in this paper. Namely, we propose two dynamic
scheduling algorithms that take into account real-time load variations. Numerical
results show that a trade-off between the performance and the energy efficiency can
be achieved by the proposed algorithms.
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The rest of paper is organized as follows. New scheduling algorithms are in-
troduced in Section 2. The numerical results are presented in Section 3. Finally,
Section 4 concludes the paper.

2 SYSTEM DESCRIPTION AND PROPOSED
SCHEDULING ALGORITHMS

2.1 Notations and Assumptions

We consider a heterogeneous computational cluster illustrated in Figure 1. The
cluster has a common queue to store waiting jobs when all servers are busy. We
assume that the cluster is built from K server types (server classes), indexed from 1
to K. Let M(i) be the number of servers of type i used in the cluster. In the cluster,
physical servers are indexed by pair (i, j), (i = 1 . . . , K; j = 1, . . . ,M(i)).

Let S denote the set of server types. According to the SPECpower ssj2008

benchmark of the Standard Performance Evaluation Corporation (SPEC) [18], server
type s, s ∈ S, is characterized with the following parameters:

• Cs, the number of operations finished during the measurement interval divided
by the length of the measurement interval,

• the average active power Pac,s, and

• the power consumption of a server in the idle state Pid,s.

Thus, Cs/Pac,s is the performance to power ratio of class s, and characterizes the
energy efficiency of a physical server of class s.

Following [16], the two ranking functions, rp(s) and re(s), can be formulated as
follows:

rp(s) =
Cs

maxi∈S Ci
, s ∈ S, (1)

re(s) =

Cs

Pac,s

maxi∈S
Ci

Pac,i

s ∈ S. (2)

Using function (1) and function (2), server classes are ranked in lists called a per-
formance based list (Sp) and an energy consumption based list (Se), respectively.
Note that in the ranking lists, server classes are arranged in the decreasing order
of priority. In addition, in the list Sp, if there are two server types with the same
ssj ops value, the server type with a higher average active power gets a higher
index.

Furthermore, it is assumed that incoming jobs

• have service demand unknown to the local scheduler,

• are atomic jobs, which cannot be divided into smaller tasks,
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Figure 1. A common queue based cluster

• can be executed by any server,

• are served according to the First Come First Served (FCFS) service policy, and

• require a non-preemptible service.

2.2 Scheduling Algorithms

Let l and n be the number of incoming jobs and the number of completed jobs at
the current time t. Let λ, µ and u denote system arrival rate, service rate, and load
up to time t, respectively. These quantities are determined based on the historical
data of the operation of the system until time t. The load is defined as the ratio
between the arrival rate and the total service rate

u =
λ

µ
. (3)

Furthermore, we also measure a quasi-instantaneous load during durations of
length TW (i.e., the time axis is divided to durations of length TW ) as follows.
In a current window w, let a(w) be the number of arrivals. Then, the quasi-
instantaneous arrival rate λ(w) and the quasi-instantaneous load u(w) can be cal-
culated as

λ(w) =
a(w)

TW
and u(w) =

λ(w)

µ
. (4)
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Let stl be the time that takes to process job l. The average service time ST (n) after
the completion of n jobs is calculated as follows:

ST (n) =
1

n

n∑
l=1

stl.

Let mk(n) be the number of completed jobs and θk(n) denote the sum of total
service times of jobs at server class k until n jobs are completed. The weighted mean
service time is defined as follows:

mean ST (n) =

∑K
k=1M(k)× θk(n)

mk(n)∑K
k=1M(k)

. (5)

Our proposed algorithms are illustrated in Algorithm 1 and 2.

• Algorithm 1 evaluates the quasi-instantaneous load in each time window and
compares with the average load. The idea is to apply the EE policy when the
quasi-instantaneous load is lower than the average load and to choose the HP
policy when the quasi-instantaneous load is higher than the average load.

• Algorithm 2 calculates average service time of n executed jobs (ST (n)) during
run-time of system and compares with the overall mean service time per job from
different resource classes (mean ST (n)). The aim is to apply the EE policy if
the real-time mean service time is smaller, or switch to the HP policy if it is
longer than the weighted average service time. The second proposal is called an
Average Service Time (AVR-ST) algorithm.

Algorithm 1 Real Load algorithm

CALCULATE overall load u at the arrival of a new job,
CALCULATE quasi-instantaneous load of the current time window w, u(w)
if u(w) ≤ u then

CHOOSE EE policy
else

CHOOSE HP policy
end if
GOTO Algorithm 3

It is worth noticing that we initiate simulation run with EE policy until passing
warm-up time of one thousand first jobs. Then the measures are used for policy
determination.

2.3 Performance and Energy Metrics

To examine the impacts of our proposals, we use the same performance metrics as
in [16]. Let wtl be the waiting time of job l and rtl be the system response time
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Algorithm 2 Average Service Time algorithm

CALCULATE real-time average service time of historical jobs ST (n) upon the
arrival of a job
CALCULATE the overall mean service time mean ST (n)
if ST (n) ≤ mean ST (n) then

CHOOSE EE policy
else

CHOOSE HP policy
end if
GOTO Algorithm 3

Algorithm 3 Schedule

for (i, j) in server list do . server list with priority order
if server (i, j) is FREE then

free server ← (i, j)
GOTO ALLOCATE

end if
end for
ALLOCATE:
if found free server then

ROUTE job to free server
else

RETAIN job in Common Queue
end if

to job l, then rtl = wtl + stl. Mean waiting time WT (n) and mean response time
RT (n) after completion of n jobs are calculated as follows:

WT (n) =
1

n

n∑
l=1

wtl

and

RT (n) =
1

n

n∑
l=1

rtl.

The long-term averages of service times, waiting times, and response times are
respectively defined as:

ST = lim
n→∞

ST (n),

WT = lim
n→∞

WT (n),

RT = lim
n→∞

RT (n).
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Let αi,j(t) and ιi,j(t) denote the sum of active times and the sum of idle time periods
of server (i, j) until time t when n jobs are executed, respectively. If the cluster starts
the operation from time instant 0, then t = αi,j(t) + ιi,j(t).

The idle power and the active power consumption of server (i, j) are denoted
by Pid,i and Pac,i, respectively. Server (i, j) consumes energy Pac,i when it processes
jobs. However, even in the idle state if the server is not switched off, it still consumes
energy Pid,i. Let AAE(t) denote the mean energy consumption per job until t when
n jobs are completed with the assumption of switching off idle servers and AOE(t)
denote the mean energy consumption per job until t in a case where servers stay in
the idle state when not serving jobs.

The long-term average energy consumptions per job (AAE and AOE) are de-
fined as

AAE = lim
n→∞

AAE(t), (6)

AOE = lim
n→∞

AOE(t). (7)

All presented parameters are summarized and listed in Table 1.

K number of server classes
M(i) number of servers in class i

µ service rate of system up to time t
λ system arrival rate up to time t
u average system load up to time t

u(w) measured load in time window w
λ(w) measured arrival rate in w

mean ST (n) mean service time per job divided among resource classes
ST (n) measured average service time per job of n historical jobs

ST the long-term average service time
WT the long-term average waiting time
RT the long-term average response time

AAE average energy consumption per job with switching-off
AOE average energy consumption per job with no switching-off

Table 1. Notations

3 NUMERICAL RESULTS

We built a simulation software which incorporates the cluster model presented in
Section 2. We use the statistical module of the Telecommunication Networks Group,
Politecnico di Torino1 to collect simulation data and to perform the analysis of
simulation runs. Note that the confident level of 99 % of simulation runs is applied

1 http://www.telematica.polito.it/oldsite/class/statistics.ps.gz, Access
September 19, 2014.

http://www.telematica.polito.it/oldsite/class/statistics.ps.gz
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with the use of the statistical module. In most of cases, the accuracy (i.e. the ratio
of the half-width of the confidence interval and the mean of collected observations)
of all performance metrics is 0.005 at most.

3.1 The Parameters of a Computational Cluster

We consider a cluster that is built from three different types of Commercial Off-
The-Shelf (COTS) servers, of which parameters are reported according to the spec-
ification SPECpower ssj2008 of SPEC [18]. Assume that considered computational
cluster consists of twenty-four servers entirely, (K = 3, M(i) = 8, i = 1, 2, 3).
Chosen server types and their parameters are presented in Table 2.

Server Type Cs Pac,∗ (W) Cs/Pac,∗ Pid,∗ (W)

Acer AW2000h-Aw170h F2
(Intel Xeon E5-2670) [19]

6 419 253 1 700 3 776 364

Acer AW2000h-AW170h F2
(Intel Xeon E5-2660) [20]

5 286 503 1 275 4 146 331

PowerEdge R820
(Intel Xeon E5-4650L) [21]

2 790 966 457 6 102 108

Table 2. Server specifications

The values of ranking functions are reported in Table 3.

Server Type Ranking Based Ranking Based
on Performance on Energy Efficiency

Intel Xeon E5-2670 rp(1) = 1.0 re(1) ≈ 0.64

Intel Xeon E5-2660 rp(2) ≈ 0.82 re(2) ≈ 0.66

Intel Xeon E5-4650L rp(3) ≈ 0.43 re(3) = 1.0

Table 3. Ranking function

Each job requires a computing capacity equivalent to 6419253 (ssj ops) in aver-
age, which means the average execution time of jobs is one second if jobs are routed
to a server with Intel Xeon E5-2670 processor. The service rate of Intel Xeon E5-
2670 is 1/s, the service rate of Intel Xeon E5-2660 is 0.82/s and the service rate of
Xeon E5-4650L is 0.43/s (if a job is executed by the corresponding CPU).

Our investigation is carried out with load U equal to 50 %, 60 %, 70 %, 80 % and
90 % (i.e., the mean inter-arrival time of jobs is 0.1111 s, 0.0926 s, 0.0794 s, 0.0694 s
and 0.0617 s, respectively).

3.2 Job Balance

Figures 2–5 show the assignment ratio of jobs into three classes of servers (according
to three processor types: E5-2670, E5-2660, and E5-4650L) when the cluster is
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operated with the EE policy, the HP policy, the real load (RL) – and the average
service time (AVR-ST) – algorithms, respectively.

When the EE policy and the HP policy are utilized, the ratio of jobs distributed
into three classes is far different at the medium loads, but gets more equalized at
high loads.
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Figure 2. Job distribution vs. system load (EE policy)
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Figure 3. Job distribution vs. system load (HP policy)

When the EE policy is applied, the significant number of jobs are assigned to
the lower performance classes at medium loads (see Figure 2). The class of E5-
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Figure 4. Job distribution vs. system load (RL)
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Figure 5. Job distribution vs. system load (AVR-ST)

2660 processors executes ≈ 50 %, the E5-4650L processor class executes ≈ 36 % of
jobs, but only around 14 % of jobs are assigned to the class of E5-2670 processors
at U = 50 %. At higher loads more jobs are served by the E5-2670 class due to
lower-performance classes are occupied.

On the contrary, when the HP policy is utilized, more jobs are executed by
servers of type E5-2670 because of their high performance capacity. The ratio of
jobs scheduled into this server class is far higher than that at class of the lowest –
performance processors (E5-4650L).
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When the RL algorithm is applied, job distribution remains unchanged in regard
to the system load. Specifically, about 43 % of jobs are executed by E5-2760, 38 % by
E5-2660, and 19 % by E5-4650L, see Figure 4. The AVR-ST algorithm also yields
a better job distribution at 50 % of the system load, but the similar behavior at
higher loads, in comparison to the EE policy. Furthermore, jobs are more evenly
distributed into server classes by the new algorithms than by the EE and the HP
policy.

3.3 Quality of Service Parameters

The mean service time, the mean waiting time and the mean response time per
job are plotted in Figures 6–8, respectively. It can be seen from Figure 6 that the
increase in the system load comes with the decrease in the mean service time when
the EE policy is applied and the increase when the HP policy is used, while the
mean service time is nearly unchanged when the RL algorithm is applied. Figure 7
plots the mean waiting time regarding to the system load. As expected, the mean
waiting time is most favorable when the HP policy is applied, but the difference
becomes negligible for high loads.

Figure 8 shows that the proposed algorithms result in a balance between features
of the EE and the HP policy.
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Figure 6. Mean service time vs. system load
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Figure 7. Mean waiting time vs. system load
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Figure 8. Mean response time vs. system load
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Figure 9. Relative reduction in response time vs. system load

In Figure 9, a relative reduction in the system response time is plotted when the
RL algorithm or the HP policy is applied instead of the EE policy. We should note
that there is no significant difference in the response time achieved by the EE policy
and the AVR-ST algorithm. The results show that compared to the EE policy,
the HP policy gives a reduction in percentage of 31.6 % to 5.74 %, while the RL
algorithm achieves a reduction range from 15.24 % to 2.8 % when the system load
increases from 50 % to 90 %.

3.4 Energy Consumption

The mean system energy consumption for serving one job, if idle servers are switched
off or not switched off, are presented in Figures 10 and 11, respectively. It is worth
emphasizing that when processors are idle, without switching them off, they still
consume energy, but less due to the dynamic power management technique.

It is shown that with the increase in the system load, energy consumption is
gradually increased under the EE policy or the AVR-ST, and decreased under the
HP policy. It retains the same consumption when the RL algorithm is applied. The
energy is saved most by the EE policy, medium by the new algorithms and least by
the HP policy.

We plot the relative increase in the energy consumption when the HP policy or
the RL algorithm are used instead of the EE policy in Figure 12. It is observed that
the RL algorithm has a lower energy consumption than the HP policy.
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Figure 10. Energy consumption (switch-off) vs. system load
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Figure 11. Energy consumption (no switch-off) vs. system load
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Figure 12. Relative increase in energy consumption vs. system load

3.5 Impacts of DVFS

We investigate the impact of DVFS technique that lowers the processing performance
and the voltage of CPU, alongside with switching idle servers off, so that every
processor handles jobs with the capacity of 70 % workload. The approximate values
of the throughput and the average active power of processors after applying DVFS
are showed in Table 4.

Server Type Cs Pac,∗ (W)

Intel Xeon E5-2670 4 517 449 1 169

Intel Xeon E5-2660 3 706 521 881

Intel Xeon E5-4650L 1 961 157 317

Table 4. Server specifications at 70 % workload

Figures 13 and 14 plot the system energy consumption and the response time
where the system utilization is kept in the range of 50 % to 90 % (relatively to the
reduced processing capacity). Compared to the system behaviors when processors
run at full workload (see Figures 8 and 10), with DVFS, the system decreases around
30 % in performance, while it achieves only about 2 % of saving energy, regardless
to algorithms studied.

In Figures 15 and 16, we show the relative degradation in the response time and
the relative energy saving when DVFS is applied for λ = 9.0, and 10.8.

These results demonstrate that DVFS saves insignificant amount of energy re-
garding to HP policy and RL algorithm, and even badly affects energy efficiency in
cases of the EE policy and the AVR-ST algorithm, where the efficiency fractions are
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Figure 13. Energy consumption with DVFS applied vs. system load
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Figure 14. Mean response time with DVFS applied vs. system load
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Figure 15. Energy saving ratio vs. λ

negative. Furthermore, it causes a quite dramatic degradation in response times of
the system.
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3.6 Evaluations with Workload Traces as Input Data

In this section, we investigate the performance using the traces of jobs that were
executed in a production environment of a specific company (two traces named INCC
and UPR of one day were collected). From the quantile-quantile plots illustrated in
Figures 17, 18, 19 and 20), it is obvious that the inter-arrival times and the service
times of jobs do not follow an exponential distribution.

Figure 17. Q-Q plot for INCC jobs’ inter-arrival time

In our investigation, we assume that the administration time of jobs takes 10
percent of the execution time of jobs. In Figures 21, 22 and 23, results are plotted
without considering the administration time (labeled ‘Non-AT’) and with adminis-
tration time (labeled ‘AT’). From the results it is observed that the same conclusions
can be made. Our algorithms could achieve a trade-off between the performance ca-
pacity and the energy efficiency of a computational cluster in the presence of realistic
workloads as well. Furthermore, the job administration time has almost negligible
impacts.
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Figure 18. Q-Q plot for INCC jobs’ execution time

Figure 19. Q-Q plot for UPR jobs’ inter-arrival time
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Figure 20. Q-Q plot for UPR jobs’ execution time

4 CONCLUSION

In this paper we have proposed two new scheduling algorithms to combine the
strengths of the HP policy and the EE policy. The numerical results showed
that the new algorithms can be used to find a balance between the performance
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Figure 21. Energy consumption (switch-off) with two input data traces
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Figure 22. Mean waiting time with two input data traces

capacity and the energy consumption of computational cluster of heterogeneous
servers.
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