
Computing and Informatics, Vol. 36, 2017, 423–448, doi: 10.4149/cai 2017 2 423

PARALLEL FAST ISOGEOMETRIC SOLVERS
FOR EXPLICIT DYNAMICS

Maciej Woźniak, Marcin Loś, Maciej Paszyński

AGH University of Science and Technoloy, Krakow, Poland
e-mail: {macwozni, los, paszynsk}@agh.edu.pl

Lisandro Dalcin

King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
e-mail: dalcinl@gmail.com

Victor Manuel Calo

Applied Geology, Western Australian School of Mines
Faculty of Science and Engineering, Curtin University
Perth, WA, Australia 6845
&
Mineral Resources
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
Kensington, WA, Australia 6152
e-mail: vmcalo@gmail.com

Abstract. This paper presents a parallel implementation of the fast isogeometric
solvers for explicit dynamics for solving non-stationary time-dependent problems.
The algorithm is described in pseudo-code. We present theoretical estimates of the
computational and communication complexities for a single time step of the paral-
lel algorithm. The computational complexity is O

(
p6 N

c tcomp

)
and communication

complexity is O
(

N
c2/3

tcomm

)
where p denotes the polynomial order of B-spline basis

with Cp−1 global continuity, N denotes the number of elements and c is number of
processors forming a cube, tcomp refers to the execution time of a single operation,

424 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

and tcomm refers to the time of sending a single datum. We compare theoretical
estimates with numerical experiments performed on the LONESTAR Linux cluster
from Texas Advanced Computing Center, using 1 000 processors. We apply the
method to solve nonlinear flows in highly heterogeneous porous media.

Keywords: Isogeometric finite element method, alternating direction solver, fast
parallel solver, non-stationary problems, nonlinear flows in highly-heterogeneous
porous media

Mathematics Subject Classification 2010: 65F05, 68W10, 65M60

1 INTRODUCTION

We describe a parallel solution algorithm to solve the isogeometric finite elements
L2 projection problem. The algorithm parallelizes the sequential method originally
proposed by [25]. This algorithm results in a direct solver for separable geometries
while it is a fast iterative solver for other configuration.

This class of solvers has been used to derive preconditioners for Helmholtz equa-
tions [26]. The goal of the methodology is to develop fast solvers to address the extra
cost incurred per degree of freedom for higher-continuity discretizations [13, 14, 15].
We estimate the computational and communication costs of this parallel implemen-
tation. We estimate the costs of all stages of the algorithm, including the gather and
scatter of data into faces of a 3D cube of processors, the local solution of several 1D
problems with multiple right-hand sides over a face of the cube of processors, as well
as the reordering of data for processing in other directions. We compare the theoret-
ical estimates of the computational and communication complexities with numerical
experiments performed at the LONESTAR Linux cluster from the Texas Advanced
Computing Center using 1 000 processors, for the problem size of 5123 elements
as well as for 1 0243 elements. We obtained good agreement between the theoreti-
cal estimates and experimental results. We show that using the solver we can solve
5123 = 134 217 728 unknowns within 20 seconds and 1 0243 = 1 073 741 824 = O(109)
unknowns within 3 minutes by using 1 000 processors from the LONESTAR Linux
cluster. Next, we apply our alternating direction solver to solve a challenging non-
stationary example problem of nonlinear flows in highly heterogeneous porous media
[2]. The non-stationary problem is solved with a forward Euler scheme as a sequence
of isogeometric L2 projection problems. Thus, the alternating direction solver is ap-
plied at every time step of the time-dependent problem simulation. Finally, we
verify the numerical results obtained for the non-stationary problem by analyzing
the relative error between simulations performed with different time steps, as well
as by monitoring the energy of the solution.

Parallel Fast Isogeometric Solvers for Explicit Dynamics 425

2 STATE OF THE ART

Classical higher order finite element methods (FEM) using hierarchical basis func-
tions [19, 20] maintain only C0-continuity between elements. In isogeometric ana-
lysis (IGA) B-splines are used as basis functions, and Ck global continuity can be
built [16]. The higher continuity obtained at element interfaces allows IGA to attain
optimal convergence rates for high polynomial orders of approximation, while using
fewer degrees of freedom [3]. Higher-continuous IGA methods have allowed to ob-
tain the solution of higher-order partial differential equations (PDE) with elegance.
Example applications are shear deformable shell theory [7], phase field models for
topology optimization [17, 18], phase separation simulations with possible appli-
cation to cancer growth simulations, by using either Cahn-Hilliard [28] or Navier-
Stokes-Korteweg [29], Swift-Hohenberg [42] and Navier-Stokes-Cahn-Hilliard [28]
higher order models. The IGA methods have also many applications in simula-
tions of non-linear problems of engineering interest, such as wind turbine aerody-
namics [31], incompressible hyper-elasticity [22], turbulent flow simulations [11],
transport of drugs in cardiovascular applications [30] or to blood flow simulations
itself [5, 9].

Nevertheless, the price to pay for the usage of higher order IGA methods is the
higher computational cost of IGA solvers, since solution time per degree of freedom
augments as the continuity is increased [10, 15]. This is true for all implementation
of multi-frontal solver algorithms [24, 23], including MUMPS solver [35], modern
implementations for adaptive and higher order methods [27] or graph-grammar based
approach [39, 40, 41, 38].

The computational cost of the sequential IGA direct solver with Cp−1 global
continuity of the solution is O(N1.5p3) for the 2D case, and O(N2p3) for the 3D
case [10, 15]. Here N refers to global number of degrees of freedom and p refers to
the order of B-spline Cp−1 global continuity basis functions, tcomp refers to the execu-
tion time of a single operation, and tcomm refers to the time of sending a single data.
In case of distributed memory Linux cluster parallel machines, this computational
cost can be reduced down to O(Np2tcomp) for the 2D case, and O(N4/3p2tcomm)
for the 3D case [47]. Similarly, in the case of shared memory GPU machines this
computational cost can be reduced down to O(Np2) for the 2D case, and for the
3D case GPU machines often run out of memory [46]. In this paper we focus on 3D
isogeometric finite element L2 projection problems solved exactly by means of direct
solver algorithms. Thus, the computational cost of the state-of-the-art direct solver
applied to 3D IGA L2 projection problem when using Linux cluster parallel machine
is O(N4/3p2tcomp) and the communication cost is of the same order O

(
N4/3p2tcomm

)
.

Moreover, in those estimates as presented in [46, 47] it is assumed that we have in-
finite number of available processors. In this paper we propose the new parallel
alternating direction solver algorithm for the isogeometric finite element L2 projec-
tion problem designed for Linux cluster parallel machine, delivering O

(
p6 N

c
tcomp

)
computational complexity and O

(
N
c2/3

tcomm

)
communication complexity, assuming

we have c available processors, forming a hypercube. In other words our solver al-

426 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

lows for significant reduction of the computational cost of the direct solver solution
of isogeometric L2 projection problem.

The L2 projection problem can be utilized for solution of the non-stationary
problems in the following way. For a general time parabolic problem, where we
seek a solution u of the time-dependent ∂u

∂t
second-order partial differential equation

with differential operator A, under the forcing f over the domain Ω within time
interval [0, T]:

∂u

∂t
− Au = f over Ω× [0, T],

u (x, 0) = u0 (x) over Ω (1)

we apply the forward Euler scheme ∂u
∂t
≈ ut+1−ut

∆t
in time and a variational formula-

tion in space to obtain:

(ut+1, v)L2 = (ut + ∆t (Aut + f) , v)L2 ∀v ∈ V (2)

where V is a suitable Sobolev space. The solution for each new time step is obtained
by isogeometric L2 projection, using the discretization with Cp−1 global continuity
B-splines basis functions, delivered by the isogeometric solver. Thus, the alternat-
ing direction solver is used as an explicit solver for the solution of non-stationary
problems. In particular we focus on the numerical solution of nonlinear flows in
highly-heterogeneous porous media [2].

The structure of the paper is the following. We first formulate the parallel al-
ternating direction algorithm on the 3D cube of processors in Section 2. Next, in
Section 3 we present the detailed analysis of the computational and communica-
tion complexity of the parallel algorithm. Section 4 is devoted to the experimental
verification of the derived computational and communication complexities. Sec-
tion 5 discusses application of the alternating directions solver for the solution of
non-stationary problem of nonlinear flows in highly-heterogeneous porous media [2].
Section 6 presents the analysis on the correctness of the numerical results, and finally
Section 7 presents conclusions and future work.

3 PARALLEL ISOGEOMETRIC L2 PROJECTION ALGORITHM

The sequential version of the alternating direction solver is described in [25]. In this
paper we propose a parallel version of the algorithm, targeting distributed memory
Linux cluster parallel machines.

The parallel version of the isogeometric L2 projection algorithm generates data
distributed in an uniform way over a 3D cube of processors, as depicted in Figure 1.
There are three steps of the algorithm where the data are gathered into OY Z, OXZ
and OXY faces, respectively. The local 1D bended problems are solved there, using
the LAPACK library. The data are scattered into a cube of processors, to proceed
with the next step. The algorithm can be summarized as shown in Figure 1.

Parallel Fast Isogeometric Solvers for Explicit Dynamics 427

0. Integration

1a. Gather within every row of processors into OY Z face

1b. Solve NyNz 1D problems with multiple right hand sides

1c. Scatter results onto cube of processors

1d. Reorder right hand sides

2a. Gather within every row of processors into OXZ face

2b. Solve NxNz 1D problem with multiple right hand sides

2c. Scatter results onto cube of processors

2d. Reorder right hand sides

3a. Gather in every row of processors into OXY face

3b. Solve NxNy 1D problem with multiple right hand sides

3c. Scatter results onto cube of processors

3d. Reorder right hand sides

Figure 1. Gathering and scattering data into three faces of the 3D cube of processors

4 COMPLEXITY ANALYSIS

4.1 Integration over One Element

Every element is approximated by a set of polynomials in each direction where p is
the order and there are p+1 B-splines over the element. We denote px as the degree
in x direction and py and pz as degrees in other directions.

The integration of the right hand side requires using Gauss quadrature with
(px + 1)(py + 1)(pz + 1) points. The integral over each element is:

(px+1)(py+1)(pz+1)∑
m=1

wmB
i
x(xm)Bj

y(ym)Bk
z (zm)f(xm, ym, zm) dx dy dz (3)

where wm denotes the Gaussia quadrature weights, Bi
x, B

j
y, B

k
z denote the B-spline

basis functions in x, y, and z directions, respectively, computed at xm, ym, zm Gaus-

428 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

sian quadrature points, and we have i = 1, . . . , px + 1, j = 1, . . . , py + 1 and k =
1, . . . , pz + 1 entries to compute. Assume that for d = 1, . . . , (px + 1)(py + 1)(pz + 1)
counting value at given point for given element and function f costs Φf ((px+1)2(py+
1)2(pz + 1)2) arithmetic operations where Φf is the function depending on f .

The formula for Φf depends on the form of f . If f is given by a prescribed for-
mula, then cost of computing a value of f is constant and Φf is constant. Otherwise
when f is given by a combination of B-splines

f =

px+1∑
o=1

py+1∑
q=1

pz+1∑
r=1

Bo
xB

q
yB

r
zfoqr (4)

then
Φf (xm) = (px + 1)(py + 1)(pz + 1) (5)

and total cost will be
(px + 1)3(py + 1)3(pz + 1)3. (6)

In the following part of the paper we assume that f is prescribed by a given formula,
and so the cost of computation a value of f at a given point is constant.

4.2 Integration over All Elements

We have a mesh of Nx × Ny × Nz elements (where Nx, Ny, Nz denotes the number
of elements in the x, y and z direction, respectively). The integration algorithm
generates a local matrix over all NxNyNz element. It involves a loop with respect
to local B-spline basis functios, and there are (px + 1)(py + 1)(pz + 1) local basis
functions. It also involves a loop with respect to Gaussian integration points, and
there are again (px + 1)(py + 1)(pz + 1) points.

The total cost of integration will be

(px + 1)2(py + 1)2(pz + 1)2NxNyNzΦ
f . (7)

We can do every integration with zero communication cost. When we have cuboid
of cxcycz cores it can be done in:

(px + 1)2(py + 1)2(pz + 1)2NxNyNzΦ
f

cxcycz
(8)

with computational complexity of

O

(
p2
xp

2
yp

2
zNxNyNz

cxcycz

)
. (9)

There are some sum factorization techniques for speeding up the integrations,
like the one proposed in [8] for hierarchical basis functions. Another method applies
again for 3D hierarchical basis functions and they may reduce the computational cost

Parallel Fast Isogeometric Solvers for Explicit Dynamics 429

from O(p9) down to O(p5) [20]. However, we are not aware of the sum-factorization
technique for B-splines.

4.3 Solve

In each step of the algorithm we LU factorize a banded matrix resulting from one
dimensional B-spline basis function of order p. This is done at a face of the 3D
cuboid of processors. Let N be the number of elements in one direction. Then, the
banded matrix MN of size N with 2p + 1 diagonal blocks can be LU factorized in
O(p2N) steps.

When solving problem in the x direction we have to LU factorize matrix MNx

of size Nx with 2px + 1 diagonal blocks and we have Ny

cy
× Nz

cz
right hand sides, each

one of size Nx. The communication cost is zero, since we have cy × cz CPUs solving
sequentially at the same time. Solving in x direction over each of these processors
results in a computational complexity

O

(
Nxp

2
x

Ny

cy

Nz

cz

)
. (10)

The solution complexity over y and z directions can be estimated in analogous way
as

O

(
Nyp

2
y

Nx

cx

Nz

cz

)
(11)

and

O

(
Nzp

2
z

Nx

cx

Ny

cy

)
, (12)

this results in computational complexity

O

((
p2
xcx + p2

ycy + p2
zcz
)

(NxNyNz)

cxcycz

)
. (13)

4.4 Gathering Data

While collecting data in the x direction we need to collect information from cxcycz−
cycz CPUs into cycz CPUs. Each processor has Nx

cx

Ny

cy
Nz

cz
data. We apply a torus com-

munication structure available on a linux cluster. This implies linear communication
complexity in each row of processors in each direction and gives us communication
complexity of:

O

(
Nx

Ny

cy

Nz

cz

)
. (14)

Additionally, the gathering data along y and z directions results in the communica-
tion complexity of:

O

(
Ny

Nx

cx

Nz

cz

)
(15)

430 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

and

O

(
Nz

Nx

cx

Ny

cy

)
. (16)

Summing, the total communication complexity of gathering data is equal to

O

(
(cx + cy + cz)NxNyNz

cxcycz

)
. (17)

4.5 Reorder Data

After processing data in the x-direction we need to perform the reorder of data over
each CPU before processing data along y direction. Similar reordering applies after
processing data in the y-direction and before processing data in the z-direction. The
computational complexity of each of the two reorders, executed over each processor
is equal to

O
(
NxNyNz

cxcycz

)
. (18)

4.6 Scattering Data

Scatter is just an inverse of the gather, and its communication complexity is the
same as the cost of the gather operation

O
(

(cx + cy + cz)(NxNyNz)

cxcycz

)
. (19)

4.7 Total Complexity

From the discussion above, we conclude that we can construct isogeometric projec-
tion solver with the total cost(

p2
xp

2
yp

2
zNxNyNz

cxcycz

)
tcomp +

((
p2
xcx + p2

ycy + p2
zcz
)

(NxNyNz)

cxcycz

)
tcomp

+

(
NxNyNzpxpypz

cxcycz

)
tcomp +

(
(cx + cy + cz)NxNyNz

cxcycz

)
tcomm

(20)

for arbitrary polynomial orders px, py, pz, dimension sizes Nx, Ny, Nz and processors
numbers cx, cy, cz, where tcomp is the cost of processing a single FLOAT, and tcomm

is the cost of communicating a single byte.

Assuming

Nx = Ny = Nz = N1/3, px = py = pz = p, cx = cy = cz = c1/3 (21)

Parallel Fast Isogeometric Solvers for Explicit Dynamics 431

we have the following cost(
p6N

c
+

p2N

c2/3
+

p3N

c

)
tcomp +

(
N

c2/3

)
tcomm (22)

which implies the computational complexity

O

(
p6N

c

)
(23)

and communication complexity

O

(
N

c2/3

)
. (24)

5 EXPERIMENTAL VERIFICATION

The model has been verified by comparing with numerical experiments performed
on the LONESTAR Linux cluster, with N = 512 or N = 1 024 degrees of freedom
in each direction, with p = 3. The comparison of the total execution time is given
in Figures 2 and 3. We can draw the following conclusions from these figures. There
is good agreement between the theoretical estimates and numerical experiments
for both 5123 and 1 0243 cases with cubic polynomials. Good scalability of the
solver is maintained up to 1 000 of processors. We can solve 134 217 728 unknowns
resulting from 3D cube of 5123 elements with cubic B-splines within 20 seconds
using 1 000 processors. We can also solve 1 073 741 824 unknowns resulting from
3D cube of 1 0243 elements with cubic B-splines within 3 minutes by using 1 000
processors.

Figures 4 and 5 present the comparison of the experimental and theoretical
integration times. We can draw the following conclusions from these figures. Again,
there is a good match between the theoretical estimates and experimental results
for the integration execution time. The integration time dominates the solution
time significantly. In other words, the generation of the projection data takes much
more time than actually the isogeometric L2 projections using alternating direction
solver itself, and it means that our solver algorithm performs very well (usually the
solution takes much more time than integration). In order to speedup the solver,
we may need to look for some new fast integration algorithms designed for B-spline
basis functions.

Figures 6 and 7 present the comparison of the experimental and theoretical
solution times. We measure three solution phases, corresponding to steps 1b, 2b
and 3b of the general algorithm. We can draw the following conclusions from these
figures. Again, there is a good match between the theoretical estimates and exper-
imental results for the solution times. The solution time takes around 1 percent of
the total solver time. In our solver we utilize multiple 1D sequential block diagonal
multi-frontal solvers with many right hand sides working on the faces of the cube of

432 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

20

100

1000

2300

2 10

T
im

e
[s

]

c3

20

100

1000

2300

2 10

T
im

e
[s

]

c3

theoretical total

experimental total

Figure 2. Comparison of total experimental and theoretical execution time for N = 512
for p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

100

1000

5500

3 10 12

T
im

e
[s

]

c3

100

1000

5500

3 10 12

T
im

e
[s

]

c3

theoretical total

experimental total

Figure 3. Comparison of total experimental and theoretical execution time for N = 1 024
for p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

Parallel Fast Isogeometric Solvers for Explicit Dynamics 433

10

100

1000

3000

2 10

T
im

e
[s

]

c3

10

100

1000

3000

2 10

T
im

e
[s

]

c3

theoretical integration

experimental integration

Figure 4. Comparison of experimental and theoretical integration time for N = 512 for
p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

70

100

1000

6000

3 10 12

T
im

e
[s

]

c3

70

100

1000

6000

3 10 12

T
im

e
[s

]

c3

theoretical integration

experimental integration

Figure 5. Comparison of total experimental and estimated integration time for N = 1 024
for p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

434 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

3D processors. Possible improvement of the algorithm would be to utilize parallel
block-diagonal solvers working within rows of processors (10 processors per solver
in 1 000 processors case).

0.05

0.1

1

2

2 10

T
im

e
[s

]

c3

0.05

0.1

1

2

2 10

T
im

e
[s

]

c3

0.05

0.1

1

2

2 10

T
im

e
[s

]

c3

0.05

0.1

1

2

2 10

T
im

e
[s

]

c3

theoretical solve

experimental solve 1

experimental solve 2

experimental solve 3

Figure 6. Comparison of experimental and theoretical solution times for N = 512 for
p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

Figures 8 and 9 present the comparison of the experimental and theoretical
gather times. We measure three gathering phases, corresponding to steps 1a, 2a
and 3a of the general algorithm. We can draw the following conclusions from
these figures. There is a good match between the theoretical and experimental
gather times for second and third gather. However, the first gather takes actu-
ally less time then predicted by the model. Our second and third gather times
include the data reorder phase, while the first gather is just the communication
itself.

Figures 10 and 11 present the comparison of the experimental and theoretical
scatter times. We measure three scattering phases, corresponding to steps 1c, 2c
and 3c of the general algorithm. We can draw the following conclusions from these
figures. There is a good match between the theoretical and experimental scatter
times for all the phases. The experimental scatters are becoming little slower when
we increase the number of processors, however the difference is very small, less than
0.1 second.

Parallel Fast Isogeometric Solvers for Explicit Dynamics 435

0.25

1

10

3 10 12

T
im

e
[s

]

c3

0.25

1

10

3 10 12

T
im

e
[s

]

c3

0.25

1

10

3 10 12

T
im

e
[s

]

c3

0.25

1

10

3 10 12

T
im

e
[s

]

c3

theoretical solve

experimental solve 1

experimental solve 2

experimental solve 3

Figure 7. Comparison of total experimental and estimated solution times for N = 1 024
for p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

0.03

0.1

1

10

30

2 10

T
im

e
[s

]

c3

0.03

0.1

1

10

30

2 10

T
im

e
[s

]

c3

0.03

0.1

1

10

30

2 10

T
im

e
[s

]

c3

0.03

0.1

1

10

30

2 10

T
im

e
[s

]

c3

0.03

0.1

1

10

30

2 10

T
im

e
[s

]

c3

theoretical gather 1

theoretical gather 2,3

experimental gather 1

experimental gather 2

experimental gather 3

Figure 8. Comparison of experimental and theoretical gather times for N = 512 for p = 3
for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

436 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

0.15

1

10

70

3 10 12

T
im

e
[s

]

c3

0.15

1

10

70

3 10 12

T
im

e
[s

]

c3

0.15

1

10

70

3 10 12

T
im

e
[s

]

c3

0.15

1

10

70

3 10 12

T
im

e
[s

]

c3

0.15

1

10

70

3 10 12

T
im

e
[s

]

c3

theoretical gather 1

theoretical gather 2,3

experimental gather 1

experimental gather 2

experimental gather 3

Figure 9. Comparison of total experimental and estimated gather times for N = 1 024 for
p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

0.03

0.1

1

2 10

T
im

e
[s

]

c3

0.03

0.1

1

2 10

T
im

e
[s

]

c3

0.03

0.1

1

2 10

T
im

e
[s

]

c3

0.03

0.1

1

2 10

T
im

e
[s

]

c3

theoretical scatter

experimental scatter 1

experimental scatter 2
experimental scatter 3

Figure 10. Comparison of experimental and theoretical scatter times for N = 512 for
p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

Parallel Fast Isogeometric Solvers for Explicit Dynamics 437

0.2

1

5

3 10 12

T
im

e
[s

]

c3

0.2

1

5

3 10 12

T
im

e
[s

]

c3

0.2

1

5

3 10 12

T
im

e
[s

]

c3

0.2

1

5

3 10 12

T
im

e
[s

]

c3

model scatter

experimental scatter 1

experimental scatter 2

experimental scatter 3

Figure 11. Comparison of total experimental and estimated scatter times for N = 1 024
for p = 3 for different number of processors c3 = 23, . . . , 103 = 8, . . . , 1 000

6 NUMERICAL RESULTS

6.1 Problem Formulation

In this section we present the application of the parallel isogeometric L2 projection
solver for the simulation of the problem of nonlinear flows in highly-heterogeneous
porous media [2]. The problem is formulated in dimensionless units. The governing
equation in the strong form is given by

∂u

∂t
−∇ ·

(
Kq (x) e10u(x)∇u

)
= h (x) (25)

where Kq (x) is a material data function, as depicted in Figure 12, and h (x) =
1 + sin (2Πx1) sin (2Πx2) sin (2Πx3).

The strong form is transformed into a weak one by taking the L2 scalar product
with test functions v ∈ H1 (Ω), and the Euler integration scheme is utilized with
respect to time

(ut+1, v)L2 =
(
ut + Dt∇ ·

(
Kqe

10ut∇ut

)
+ h, v

)
L2 . (26)

We solve the problem over the cube Ω = [0, 1]3 domain. We utilize the isogeometric
L2 projection solver to execute the Euler scheme for the above problem. The time
step size has been selected as 10−5. The initial value is a ball with radius 0.05 and

438 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

Figure 12. Initial distribution of the material data function Kq (x)

maximum value 0.02 is presented in Figure 13. The snapshots from the numeri-
cal simulation from time steps 20, 100, 200, 300, 500 and 1 000 are presented in
Figures 14–18, respectively.

Figure 13. Initial state

Figure 14. Solution at time step 20

Parallel Fast Isogeometric Solvers for Explicit Dynamics 439

Figure 15. Solution at time step 100

Figure 16. Solution at time step 200

6.2 Verification

In order to verify the correctness of the numerical results we have performed two
tests. First, while looking for the correct time step size, we have checked the relative
error for time step Dt = 10−4 which happened to be too large, and then for time step

Figure 17. Solution at time step 300

440 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

Figure 18. Solution at time step 500

Figure 19. Solution at time step 1 000

Dt = 10−5 which seems to be a correct one. The experiments for time step Dt = 10−4

are presented in Figure 20. We have executed a sequence of experiments for time
step Dt1 = 10−4, as well as with smaller time steps, Dt1/2 = 10−4/2, Dt1/3 = 10−4/3,
Dt1/4 = 10−4/4, Dt1/5 = 10−4/5, Dt1/4 = 10−6/6 and Dt1/7 = 10−4/7. We have
used the smallest time step Dt1/7 as the reference time step. For each time step of
Dt1 we have performed k time steps of Dt1/k. We have computed the relative error
between the particular solutions from corresponding time steps. The relative errors

are presented in Figure 20, where e1/k = ||uD1/k

t − u
D1/7

t ||L2 . We can see that the
relative error is growing for all the cases, except when we measure the relative error
of the reference solution itself, since it is zero by definition. We conclude that the
time step Dt = 10−4 is too large.

Thus, we repeat the experiment for the smaller time step Dt = 10−5. The
new tests have been performed in the analogously and their results are shown in
Figure 21. We can see now that all the relative errors are small of the order of 10−5

or less and not growing.

Second, we measured the energy (defined as
∫

Ω
|∇u|2) and the L2 norm (defined

as
(∫

Ω
|u|2
)1/2

of the solution u in particular time steps. The L2 norm and energy

Parallel Fast Isogeometric Solvers for Explicit Dynamics 441

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

 0 0.0005 0.001 0.0015 0.002 0.0025

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

 0 0.0005 0.001 0.0015 0.002 0.0025

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

 0 0.0005 0.001 0.0015 0.002 0.0025

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

 0 0.0005 0.001 0.0015 0.002 0.0025

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

 0 0.0005 0.001 0.0015 0.002 0.0025

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

 0 0.0005 0.001 0.0015 0.002 0.0025

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

 0 0.0005 0.001 0.0015 0.002 0.0025

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

1

1/2

1/3

1/4

1/5

1/61/7

Figure 20. Relative errors for the time step Dt = 10−4

are presented in Figure 22. The reason they are linearly and continuously growing
is the fact that right hand side of our problem has form 1+term∈ [−1, 1], and we
are constantly adding the energy to the system.

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

 0 0.0002 0.0004 0.0006 0.0008 0.001

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

1

1/21/31/41/51/61/7

Figure 21. Relative errors for the time step Dt = 10−5

442 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

0

0.005

0.01

0.015

0 0.005 0.01 0.015

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

0

0.005

0.01

0.015

0 0.005 0.01 0.015

M
ea

su
re

d
di

ffe
re

nc
e

fr
om

 b
es

t a
pp

ro
xi

m
at

io
n

t

L2 norm

energy

Figure 22. L2 norm and energy of the solution during the simulation

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present a fast parallel the alternating directions isogeometric L2

projections solver. The parallel alternating direction solver is available through
PetIGA library [12] and PetIGA-MF [42] libraries, and as a standing alone package
[34] for shared-memory environment. The computational complexity of the par-

allel algorithm is of order O
(

p6N
c

)
and the communication complexity is of order

O
(

N
c2/3

)
, where p denotes the order of the B-spline basis with Cp−1 global continuity,

N denotes the number of elements and c the number of processors over the 3D hyper-
cube. We verify the theoretical estimates with numerical experiments performed at
the LONESTAR linux cluster from the Texas Advanced Computing Center. In par-
ticular, we show that we can solve the 3D isogeometric L2 projection problem with
5123 = 134 217 728 unknowns within 20 seconds and 1 0243 = 1 073 741 824 = O(109)
unknowns within 3 minutes by using 1 000 processors. We are not aware of any other
solver delivering such fast solution for 100–1 000 millions of unknowns of in highly-
continuous discretizations.

We apply this parallel alternating direction isogeometric solver to an unsteadz
nonlinear flow problem in highly-heterogeneous porous media. The solver performs
1 000 time steps in order to simulate the flow through the entire domain. We verify
the correctness of the solution by checking the relative error for two simulations with
different time steps as well as by controlling the energy of the solution in particular
time steps.

Parallel Fast Isogeometric Solvers for Explicit Dynamics 443

The future work may involve replacement of c2 sequential solves over a face of the
3D cube by c2 parallel solves executed within rows of a cube of processors, utilizing
the parallel multi-frontal one dimensional isogeometric solver [32]. This however will
not affect the general scalability of the solver, since at this point the integration time
is dominating the entire solution. An alternative way of improvement of the solver
scalability would be to consider some fast integration schemes for B-spline basis
functions. It may also include generalization of the method to non-uniform adapted
grids with T-splines technique [21]. We also consider expression of the alternating
direction algorithm by graph grammar productions and Petri nets, as it has been
done for two and three dimensional finite element method [43, 36, 37, 44].

Acknowledgment

The work was supported by the National Science Centre, Poland grant No. 2012/07/
B/ST6/01229. The visits of Maciej Woźniak, Marcin Loś and Maciej Paszyński to
the King Abdullah University of Science and Technology (KAUST) were supported
by the Center for Numerical Porous Media (NumPor). This publication was also
made possible in part by the CSIRO Professorial Chair in Computational Geoscience
at Curtin University, the National Priorities Research Program grant 7-1482-1-278
from the Qatar National Research Fund (a member of The Qatar Foundation), and
by the European Union’s Horizon 2020 Research and Innovation Program of the
Marie Skodowska-Curie grant agreement No. 644202. The J. Tinsley Oden Faculty
Fellowship Research Program at the Institute for Computational Engineering and
Sciences (ICES) of the University of Texas at Austin has partially supported the
visits of VMC to ICES.

REFERENCES

[1] Akkerman, I.—Bazilevs, Y.—Calo, V. M.—Hughes, T. J. R.—Huls-
hoff, S.: The Role of Continuity in Residual-Based Variational Multiscale Mod-
eling of Turbulence. Computational Mechanics, Vol. 41, 2008, pp. 371–378, doi:
10.1007/s00466-007-0193-7.

[2] Alotaibi, M.—Calo, V. M.—Efendiev, Y.—Galvis, J.—Ghommem, M.:
Global-Local Nonlinear Model Reduction for Flows in Heterogeneous Porous Media.
arXiv:1407.0782 [math.NA].

[3] Bazilevs, Y.—Beirao da Veiga, L.—Cottrell, J. A.—Hughes, T. J. R.—
Sangalli, G.: Isogeometric Analysis: Approximation, Stability and Error Esti-
mates for h-Refined Meshes. Mathematical Methods and Models in Applied Sciences,
Vol. 16, 2006, pp. 1031–1090, doi: 10.1142/s0218202506001455.

[4] Bazilevs, Y.—Calo, V. M.—Cottrell, J. A.—Hughes, T. J. R.—
Reali, A.—Scovazzi, G.: Variational Multiscale Residual-Based Turbulence
Modeling for Large Eddy Simulation of Incompressible Flows. Computer Meth-

https://doi.org/10.1007/s00466-007-0193-7
https://doi.org/10.1142/s0218202506001455

444 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

ods in Applied Mechanics and Engineering, Vol. 197, 2007, pp. 173–201, doi:
10.1016/j.cma.2007.07.016.

[5] Bazilevs, Y.—Calo, V. M.—Zhang, Y.—Hughes, T. J. R.: Isogeometric Fluid-
Structure Interaction Analysis with Applications to Arterial Blood Flow. Computa-
tional Mechanics, Vol. 38, 2006, No. 4, pp. 310–322, doi: 10.1007/s00466-006-0084-3.

[6] Benson, D. J.—Bazilevs, Y.—De Luycker, E.—Hsu, M. C.—Scott, M.—
Hughes, T. J. R.—Belytschko, T.: A Generalized Element Formulation for
Arbitrary Basis Functions: From Isogeometric Analysis to XFEM. International
Journal for Numerical Methods in Engineering, Vol. 83, 2010, pp. 765–785, doi:
10.1002/nme.2864.

[7] Benson, D. J.—Bazilevs, Y.—Hsu, M.-C.—Hughes, T. J. R.: A Large-
Deformation, Rotation-Free Isogeometric Shell. Computer Methods in Ap-
plied Mechanics and Engineering, Vol. 200, 2011, pp. 1367–1378, doi:
10.1016/j.cma.2010.12.003.

[8] Beuchler, S.—Pillwein, V.—Zaglmayr, S.: Fast Summation Techniques for
Sparse Shape Functions in Tetrahedral hp-FEM. Domain Decomposition Methods in
Science and Engineering. Lecture Notes in Computational Science and Engineering,
Vol. 91, 2013, pp. 511–518, doi: 10.1007/978-3-642-35275-1 60.

[9] Calo, V. M.—Brasher, N.—Bazilevs, Y.—Hughes, T. J. R.: Multiphysics
Model for Blood Flow and Drug Transport with Application to Patient-Specific Coro-
nary Artery Flow. Computational Mechanics, Vol. 43, 2008, No. 1, pp. 161–177, doi:
10.1007/s00466-008-0321-z.

[10] Calo, V. M.—Collier, N. O.—Pardo, D.—Paszyński, M.: Computational
Complexity and Memory Usage for Multi-Frontal Direct Solvers Used in p Finite
Element Analysis. Procedia Computer Science, Vol. 4, 2011, pp. 1854–1861, doi:
10.1016/j.procs.2011.04.201.

[11] Chang, K.—Hughes, T. J. R.—Calo, V. M.: Isogeometric Variational Multiscale
Large-Eddy Simulation of Fully-Developed Turbulent Flow over a Wavy Wall. Com-
puters and Fluids, Vol. 68, 2012, pp. 94–104, doi: 10.1016/j.compfluid.2012.06.009.

[12] Dalcin, L.—Collier, N.—Vignal, P.—Côrtes, A. M. A.—Calo, V. M.:
PetIGA: A Framework for High-Performance Isogeometric Analysis. Computer Meth-
ods in Applied Mechanics and Engineering, Vol. 308, 2016, pp. 151–181.

[13] Collier, N.—Dalcin, L.—Calo, V. M.: On the Computational Efficiency of Iso-
geometric Methods for Smooth Elliptic Problems Using Direct Solvers. International
Journal for Numerical Methods in Engineering, Vol. 100, 2014, No. 8, pp. 620–632.

[14] Collier, N.—Dalcin, L.—Pardo, D.—Calo, V. M.: The Cost of Continuity:
Performance of Iterative Solvers on Isogeometric Finite Elements. SIAM Journal on
Scientific Computing, Vol. 35, 2013, No. 2, pp. A767–A784.

[15] Collier, N. O.—Pardo, D.—Paszyński, M.—Dalćın—Calo, V. M.: The
Cost of Continuity: A Study of the Performance of Isogeometric Finite Elements
Using Direct Solvers. Computer Methods in Applied Mechanics and Engineering,
Vols. 213–216, 2012, pp. 353–361, doi: 10.1016/j.cma.2011.11.002.

[16] Cottrel, J. A.—Hughes, T. J. R.—Bazilevs, Y.: Isogeometric Analysis: To-
ward Integration of CAD and FEA. Wiley, 2009.

https://doi.org/10.1016/j.cma.2007.07.016
https://doi.org/10.1007/s00466-006-0084-3
https://doi.org/10.1002/nme.2864
https://doi.org/10.1016/j.cma.2010.12.003
https://doi.org/10.1007/978-3-642-35275-1_60
https://doi.org/10.1007/s00466-008-0321-z
https://doi.org/10.1016/j.procs.2011.04.201
https://doi.org/10.1016/j.compfluid.2012.06.009
https://doi.org/10.1016/j.cma.2011.11.002

Parallel Fast Isogeometric Solvers for Explicit Dynamics 445

[17] Dedè, L.—Hughes, T. J. R.—Lipton, S.—Calo, V. M.: Structural Topology
Optimization with Isogeometric Analysis in a Phase Field Approach. 16th US National
Congress of Theoretical and Applied Mechanics (USNCTAM 2010), 2010.

[18] Dedè, L.—Borden, M. J.—Hughes, T. J. R.: Isogeometric Analysis for Topology
Optimization with a Phase Field Model. ICES REPORT 11-29, The Institute for
Computational Engineering and Sciences, The University of Texas at Austin, 2011.

[19] Demkowicz, L.: Computing with hp-Adaptive Finite Element Method. Vol. I. One
and Two Dimensional Elliptic and Maxwell Problems. Chapmann & Hall/CRC Ap-
plied Mathematics & Nonlinear Science, 2006, doi: 10.1201/9781420011685.

[20] Demkowicz, L.—Kurtz, J.—Pardo, D.—Paszyński, M., Rachowicz, W.—
Zdunek, A.: Computing with hp-Adaptive Finite Element Method. Vol. II. Fron-
tiers: Three Dimensional Elliptic and Maxwell Problems. Chapmann & Hall/CRC
Applied Mathematics & Nonlinear Science, 2007.

[21] Dorfel, M. R.—Juttler, B.—Simeon, B.: Adaptive Isogeometric Analysis by
Local h-Refinement with T-Splines. Computer Methods in Applied Mechanics and
Engineering, Vol. 199, 2010, No. 5–8, pp. 264–275.

[22] Duddu, R.—Lavier, L.—Hughes, T. J. R.—Calo, V. M.: A Finite Strain Eule-
rian Formulation for Compressible and Nearly Incompressible Hyper-Elasticity Using
High-Order NURBS Elements. International Journal of Numerical Methods in Engi-
neering, Vol. 89, 2012, No. 6, pp. 762–785.

[23] Duff, I. S.—Reid, J. K.: The Multifrontal Solution of Indefinite Sparse Symmet-
ric Linear Systems. ACM Transactions on Mathematical Software, Vol. 9, 1983,
pp. 302–325, doi: 10.1145/356044.356047.

[24] Duff, I. S.—Reid, J. K.: The Multifrontal Solution of Unsymmetric Sets of Lin-
ear Systems. SIAM Journal on Scientific and Statistical Computing, Vol. 5, 1984,
pp. 633–641, doi: 10.1137/0905045.

[25] Gao, L.—Calo, V. M.: Fast Isogeometric Solvers for Explicit Dynamics. Com-
puter Methods in Applied Mechanics and Engineering, Vol. 274, 2014, pp. 19–41,
doi: 10.1016/j.cma.2014.01.023.

[26] Gao, L.—Calo, V. M.: Preconditioners Based on the Alternating-Direction-
Implicit Algorithm for the 2D Steady-State Diffusion Equation with Orthotropic
Heterogeneous Coefficients. Journal of Computational and Applied Mathematics,
Vol. 273, 2015, pp. 274–295.

[27] Geng, P.—Oden, T. J.—van de Geijn, R. A.: A Parallel Multifrontal Algorithm
and Its Implementation. Computer Methods in Applied Mechanics and Engineering,
Vol. 149, 2006, pp. 289–301, doi: 10.1016/S0045-7825(97)00052-2.

[28] Gómez, H.—Calo, V. M.—Bazilevs, Y.—Hughes, T. J. R.: Isogeometric Ana-
lysis of the Cahn-Hilliard Phase-Field Model. Computer Methods in Applied Mechan-
ics and Engineering, Vol. 197, 2008, pp. 4333–4352, doi: 10.1016/j.cma.2008.05.003.

[29] Gómez, H.—Hughes, T. J. R.—Nogueira, X.—Calo, V. M.: Isogeometric
Analysis of the Isothermal Navier-Stokes-Korteweg Equations. Computer Meth-
ods in Applied Mechanics and Engineering, Vol. 199, 2010, pp. 1828–1840, doi:
10.1016/j.cma.2010.02.010.

https://doi.org/10.1201/9781420011685
https://doi.org/10.1145/356044.356047
https://doi.org/10.1137/0905045
https://doi.org/10.1016/j.cma.2014.01.023
https://doi.org/10.1016/S0045-7825(97)00052-2
https://doi.org/10.1016/j.cma.2008.05.003
https://doi.org/10.1016/j.cma.2010.02.010

446 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

[30] Hossain, S.—Hossainy, S. F. A.—Bazilevs, Y.—Calo, V. M.—
Hughes, T. J. R.: Mathematical Modeling of Coupled Drug and Drug-Encapsulated
Nanoparticle Transport in Patient-Specific Coronary Artery Walls. Computational
Mechanics, Vol. 49, 2012, No. 2, pp. 213–242, doi: 10.1007/s00466-011-0633-2.

[31] Hsu, M.-C.—Akkerman, I.—Bazilevs, Y.: High-Performance Computing of
Wind Turbine Aerodynamics Using Isogeometric Analysis. Computers and Fluids,
Vol. 49, 2011, No. 1, pp. 93–100.

[32] Kuźnik, K.—Paszyński, M.—Calo, V.: Grammar Based Multi-Frontal Solver for
Isogeometric Analysis in 1D. Computer Science, Vol. 14, 2013, No. 4, pp. 589–613.

[33] LONESTAR Linux Cluster User Guide, https://www.tacc.utexas.edu/

user-services/user-guides/lonestar-user-guide, Texas Advanced Com-
puting Center, 2014.

[34] Loś, M.—Woźniak, M.—Paszyński, M.—Lenharth, A.—Amber Hassaan,
M.—Pingali, K.: IGA-ADS: Isogeometric Analysis FEM Using ADS Solver. Com-
puter Physics Communications, Vol. 217, 2017, pp. 99–116.

[35] MUlti-Frontal Massivelly Parallel Sparse Direct Solver, http://graal.ens-lyon.

fr/MUMPS/.

[36] Paszyńska, A.—Grabska, E.—Paszyński, M.: A Graph Grammar Model of
the hp Adaptive Three Dimensional Finite Element Method. Part I. Fundamenta
Informaticae, Vol. 114, 2012, pp. 149–182.

[37] Paszyńska, A.—Grabska, E.—Paszyński, M.: A Graph Grammar Model of
the hp Adaptive Three Dimensional Finite Element Method. Part II. Fundamenta
Informaticae, Vol. 114, 2012, pp. 183–201.

[38] Paszyński, M.—Jurczyk, T.—Pardo, D.: Multi-Frontal Solver for Simula-
tions of Linear Elasticity Coupled with Acoustics. Computer Science, Vol. 12, 2013,
pp. 85–102.

[39] Paszyński, M.—Pardo, D.—Torres-Verdin, C.—Demkowicz, L.—
Calo, V. M.: A Parallel Direct Solver for Self-Adaptive hp Finite Element
Method. Journal of Parallel and Distributed Computing, Vol. 70, 2010, pp. 270–281,
doi: 10.1016/j.jpdc.2009.09.007.

[40] Paszyński, M.—Pardo, D.—Paszyńska, A.: Parallel Multi-Frontal Solver for
p Adaptive Finite Element Modeling of Multi-Physics Computational Problems. Jour-
nal of Computational Science, Vol. 1, 2010, pp. 48–54, doi: 10.1016/j.jocs.2010.03.002.

[41] Paszyński, M.—Schaefer, R.: Graph Grammar Driven Partial Differential Equa-
tions Solver. Concurrency and Computations: Practice and Experience Vol. 22, 2010,
No. 9, pp. 1063–1097.

[42] Sarmiento, A. F.—Côrtes, A. M. A.—Garcia, D. A.—Dalcin, L.—
Collier, N.—Calo, V. M.: PetIGA-MF: A Multi-Field High-Performance
Toolbox for Structure-Preserving B-Splines Spaces. Journal of Computational
Science, Vol. 18, 2017, pp. 117–131.

[43] Strug, B.—Paszyńska, A.—Paszyński, M.—Grabska, E.: Using the System
of Graph Grammar in Finite Element Method. International Journal of Applied Math-
ematics and Computer Science, Vol. 23, 2014, No. 4, pp. 1140–1151.

https://doi.org/10.1007/s00466-011-0633-2
https://www.tacc.utexas.edu/user-services/user-guides/lonestar-user-guide
https://www.tacc.utexas.edu/user-services/user-guides/lonestar-user-guide
http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/
https://doi.org/10.1016/j.jpdc.2009.09.007
https://doi.org/10.1016/j.jocs.2010.03.002

Parallel Fast Isogeometric Solvers for Explicit Dynamics 447

[44] Szymczak, A.—Paszyński, M.—Pardo, D.—Paszyńska, A.: Petri Nets Mod-
eling Dead-End Refinement Problems in 3D Anisotropic hp-Adaptive Finite Element
Method. Computing and Informatics, Vol. 34, 2015, No. 2, pp. 425–457.

[45] Verhoosel, C. V.—Scott, M. A.—Hughes, T. J. R.—de Borst, R.: An
Isogeometric Analysis Approach to Gradient Damage Models. International Jour-
nal for Numerical Methods in Engineering, Vol. 86, 2011, pp. 115–134, doi:
10.1002/nme.3150.

[46] Woźniak, M.—Kuźnik, K.—Paszyński, M.—Calo, V. M.—Pardo, D.: Com-
putational Cost Estimates for Parallel Shared Memory Isogeometric Multi-Frontal
Solvers. Computers and Mathematics with Applications, Vol. 67, 2014, No. 10,
pp. 1864–1883, doi: 10.1016/j.camwa.2014.03.017.

[47] Woźniak, M.—Kuźnik, K.—Paszynski, M.—Pardo, D.—Calo, V. M.: Com-
putational Cost of Isogeometric Multi-Frontal Solvers on Distributed Memory Parallel
Machines. Computer Methods in Applied Mechanics and Engineering, Vol. 284, 2015,
pp. 971–987, doi: 10.1016/j.cma.2014.11.020.

Maciej Wo�zniak is a fourth year Ph.D. student of computer
science in AGH University of Science and Technology, Kraków,
Poland. He received his M.Sc. degree in computer science in
2013. Since 2012 he is a member of Prof. Maciej Paszyński re-
search group, working primarily on fast parallel direct solvers for
isogeometric finite element methods targeting different parallel
architectures.

Marcin Lo�s is a second year Ph.D. student of computer science
in AGH University of Science and Technology, Kraków, Poland.
He received his M.Sc. degree in computer science in 2015. Since
2015 he is a member of Prof. Maciej Paszyński research group,
working primarily on different simulations using isogeometric fi-
nite element methods.

https://doi.org/10.1002/nme.3150
https://doi.org/10.1016/j.camwa.2014.03.017
https://doi.org/10.1016/j.cma.2014.11.020

448 M. Woźniak, M. Loś, M. Paszyński, L. Dalcin, V. M. Calo

Maciej Paszy�nski received his Ph.D. (2003) in mathematics
with applications to computer science from the Jagiellonian Uni-
versity, Kraków, Poland and habilitation (2010) in computer
science from the AGH University of Science and Technology,
Kraków, Poland. His research interests include parallel direct
solvers for isogeometric finite element method and computa-
tional science. He was a frequent visiting professor at The Uni-
versity of Texas at Austin, the King Abdullah University of Sci-
ence and Technology and the University of The Basque Country.
He holds a position as an affiliated professor of the Department

of Computer Science at AGH University of Science and Technology of Kraków, Poland.

Lisandro Dalcin received his Ph.D. in engineering from Uni-
versidad Nacional del Litoral (Santa Fe, Argentina) in 2008. His
first degree is in electromechanical engineering from Universidad
Tecnológica Nacional (Concepción del Uruguay, Argentina). In
2010, he joined the National Council for Scientific and Techno-
logical Research of Argentina (Consejo Nacional de Investiga-
ciones Cientificas y Tecnológicas) as Assistant Researcher. He
is the author of mpi4py and petsc4py/slepc4py – a set of bind-
ings for the MPI standard and PETSc/SLEPc libraries targeting
parallel distributed computing with the high-level scripting lan-

guage Python. He is a semi-regular contributor to the Cython project and also contributes
to the development of the PETSc library. He won the R & D 100 Award in 2009 as part
of the PETSc team. Since 2013 he is a postdoctoral fellow at King Abdullah University
of Science and Technology in Thuwal, Saudi Arabia. His research interests include scien-
tific computing in distributed memory architectures, medium to large scale finite element
simulation software development and programming tools mixing Python and C/C++ and
Fortran.

Victor Manuel Calo is Professor in the Department of Ap-
plied Geology of the Western Australian School of Mines in the
Faculty of Science and Engineering at Curtin University. He is
a highly cited researcher who is actively involved in disseminat-
ing knowledge: he has authored over 150 peer-reviewed publica-
tions. Also, in the last two years, he has given more than 25 in-
vited presentations and keynotes at conferences and seminars,
and organized 15 mini-symposia at international conferences.
He holds a professional engineering degree in civil engineering
from the University of Buenos Aires. He received his M.Sc. in

geomechanics and Ph.D. in civil and environmental engineering from Stanford University.
His research interests include modeling and simulation of geomechanics, fluid dynamics,
flow in porous media, phase separation, fluid-structure interaction, solid mechanics, and
high-performance computing.

