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Abstract. In this paper, we propose a three-parametric convolution kernel which
is based on the one-parameter Keys kernel. The first part of the paper describes
the structure of the three-parameter convolution kernel. Then, a certain analytical
expression for finding the position of the maximum of the reconstructed function is
given. The second part presents an algorithm for estimating the fundamental fre-
quency of the speech signal processing in the frequency domain using Picking Picks
methods and parametric cubic convolution. Furthermore, the results of experi-
ments give the estimated fundamental frequency of speech and sinusoidal signals
in order to select the optimal values of the parameters of the proposed convo-
lution kernel. The results of the fundamental frequency estimation according to
the mean square error are given by tables and graphics. Consequently, it is used
as a basis for a comparative analysis. The analysis derived the optimal parame-
ters of the kernel and the window function that generates the least MSE. Results
showed a higher efficiency in comparison to two or three-parameter convolution
kernel.
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Keywords: Frequency estimation, interpolation, signal processing, speech analysis,
speech processing

Mathematics Subject Classification 2010: 65D05

1 INTRODUCTION

The estimation of the speech fundamental frequency f0 has received an immense
interest from different speech research areas, such as speech segregation, speech
synthesis, speech coding, speech and speaker recognition, and speech articulation
training for the deaf [1–3]. In many multimedia applications, it is necessary to
process audio records in order to improve the quality and intelligibility of speech.
A typical example is the quality improvement of the speech signal by reducing
dissonant frequencies [4–6]. Accordingly, it is possible to classify:

1. The emotional state of humans (sadness, anger, joy, . . . ) [7],

2. the evaluation of health status, and

3. the hypoxia (manifested as a decrease in the concentration of oxygen in the
blood due to incidents during a flight, working in mines, tunnels, etc.) [8].

A number of algorithms for determining the fundamental frequency have been
developed. Their processing is performed in the time-domain (TD) and frequency-
domain (FD) methods [9–14]. In TD methods, one or more speech features (the
fundamental harmonic, a quasi-periodic time structure, an alternation of high and
low amplitudes, and points of discontinuities in the speech waveform) are identi-
fied first, and then pitch markers or epochs are obtained in a pitch synchronous
manner. In FD methods, a short-time frame or block of speech samples is trans-
formed into spectral or frequency-domain in order to enhance the periodicity infor-
mation contained in the speech. These methods determine an average pitch from
several contiguous periods in the analysis frame. The performance of TD meth-
ods compared to FD methods depends more on the shape of the time waveform of
speech [15]. The autocorrelation function (ACF) [16] and the average magnitude dif-
ference function (AMDF) [17] have been commonly employed for pitch estimation.
In [9], an estimator named YIN has been proposed, where a series of modifica-
tions (a difference function formulation, normalization and parabolic interpolation)
has been introduced to decrease the error rates in pitch estimation from a clean
speech [18].

The widespread method for determination of the fundamental frequency is based
on Picking Peaks of the amplitude characteristic in a specific frequency range. This
method is used for analyzing the signal values in the spectrum at frequencies on
which Discrete Fourier Transform (DFT) is calculated. Usually, the real value of
the fundamental frequency is not there on the frequencies where DFT is calculated.
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In contrast, it lays between the two spectrum samples. That causes the frequency
estimation error that lies in the interval [−fs/2N Hz, fs/2N Hz], where fs is the
sampling frequency, and N is the DFT window size. One way of reducing the er-
ror is determination of the interpolation function and estimation of the spectrum
characteristics in the interval between two samples. This procedure gives the re-
construction of the spectrum on the base of DFT. The spectrum parameters are
then determined by analytic procedures (differentiation, integration, extreme val-
ues, etc.).

The calculation of the interpolation function by using Parametric Cubic Con-
volution (PCC) was represented in [19, 20]. The special case of PCC interpolation
applied in computer graphics was called Catmull-Rom interpolation [21,22]. In [23]
gives detailed analysis of the fundamental frequency estimation and shows the ad-
vantage of PCC interpolation. The application of PCC interpolation for determining
the fundamental frequency in specific conditions is presented in [24]. The efficiency
of the algorithm for evaluating the fundamental frequency is determined by the
simulation. As a quality measure of the algorithm, the mean square error (MSE)
has been used. The best results were shown by the algorithm with the implemented
Blackman window. The analysis of the algorithm efficiency where the signal-to-noise
relation (SNR) is changeable according to the presence of the important harmon-
ics in the fundamental function is shown in [25]. It confirmed the efficiency of
the algorithm with the Blackman window. In [26] an analysis of PCC interpola-
tion algorithm efficiency is made for the case where Greville two-parametric cubic
convolution kernel (G2P) was implemented. The window was determined and the
kernel parameters (α, β) were calculated where the minimal MSE was generated
(in relation to Caltmull-Rom kernel the error was smaller for 58.1 %). The results
of the fundamental frequency estimation of the speech signal modeled by SYMPES
method (Systematic Procedure to Model Speech Signals via Predefined Envelope
and Signature Sequences) [27] are shown in [28]. Furthermore, the results of the
fundamental frequency estimation for the speech signal coded by G.3.721 method
are shown in [29]. The aforementioned papers showed that the accuracy of estimated
fundamental frequency using PCC interpolation depends on: a) window functions
and b) the interpolation kernel.

PCC interpolation is based on the parameter interpolation kernel. It is possi-
ble to minimize the estimation error of the fundamental frequency by the proper
selection of the kernel parameter. The first kernel is proposed by Keys [19]. It is
commonly referred as a Keys one-parametric (1P) kernel [20]. Detailed analysis of
the Keys 1P kernel effect on the accuracy to the estimated fundamental frequency
F0 is given in [23]. It is shown that determination of the optimal parameter and
minimization of the estimation error MSE is possible. To reduce the numerical com-
plexity and increase the speed, the new formula for direct calculation of the position
of the maximum in the spectrum of speech signal without the use of convolution is
given [23]. In [21], the two-parameter (2P) convolution kernel called Greville 2P is
proposed. It results in greater accuracy of the f0 estimation compared to estimates
with respect to Keys 1P kernel [31].
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Perceiving the presented results of the study the following question is of the
interest: Is it possible to increase the accuracy of the estimates using the kernel with
a larger number of parameters without increasing the numerical complexity compared
to 1P and 2P kernel? For this purpose, the authors constructed the 2P and 3P kernel
based on Keys 1P kernel. Then, they conducted a comprehensive investigation in
order to determine the optimum parameters and window functions.

The following part of the paper deals with:

1. The construction of three-parameter convolution kernel which is based on the
one-parameter Keys kernel [19]. In addition, the analytical expression is deter-
mined by estimating the position of the reconstructed function maximum.

2. The algorithm for estimating the fundamental frequency of speech signal based
on the application of Picking Picks algorithm in the spectral domain and para-
metric cubic convolution.

3. The results of experiments conducted in order to choose the optimal parame-
ters of the kernel and analyze the efficiency of the proposed three-parameter
compared to one and two-Keys kernel. The analysis is performed for a stan-
dard window functions. In the experiment, the fundamental frequency of the
following signals is determined: i) mathematically generated Sine signal [23],
and ii) real Speech signals recorded in a real environment [29]. The results were
compared to the results previously published in [30].

4. The results of the fundamental frequency for three-parameter convolution kernel
in terms of superposed Additive White Gaussian Noise (AWGN) are presented.

The organization of paper is as follows. Section 2 shows the three-parameter
PCC kernel. Section 3 denounces algorithm that estimates the fundamental fre-
quency of the speech signal. Section 4 presents the experimental results. Section 5
presents a comparative analysis. Section 6 makes conclusions.

2 KEYS 3P-PCC KERNEL

The three-parameter cubic convolution (3P-PCC) Keys kernel r(f) is defined as the
composition of the third degree polynomials for the parts of the interval [−4,−3),
[−3,−2), [−2,−1), [−1,−0], [0, 1], (1, 2], (2, 3], (3, 4]:

r(f) =


a3|f |3 + a2|f |2 + a1|f |+ a0, 0 ≤ |f | ≤ 1,
b3|f |3 + b2|f |2 + b1|f |+ b0, 1 < |f | ≤ 2,
c3|f |3 + c2|f |2 + c1|f |+ c0, 2 < |f | ≤ 3,
d3|f |3 + d2|f |2 + d1|f |+ d0, 3 < |f | ≤ 4,
0, |f | > 4.

(1)

Let suppose that the interpolation kernel is continuous and differentiable. The
kernel must satisfy the criteria r(0) = 1 and r(k) = 0 when k is any nonzero integer.
Then:
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r(0) = 1 ⇒ a0 = 1,

r(1) = 0 ⇒ a3 + a2 + a1 + a0 = 0,

r(2) = 0 ⇒ 8b3 + 4b2 + 2b1 + b0 = 0, (2)

r(3) = 0 ⇒ 27c3 + 9c2 + 3c1 + c0 = 0,

r(4) = 0 ⇒ 64d3 + 16d2 + 4d1 + d0 = 0.

From the condition of continuity and differentiability follows that:

lim
f→1−

r(f) = lim
f→1+

r(f)⇒ a3 + a2 + a1 + a0 = b3 + b2 + b1 + b0, (3)

lim
f→2−

r(f) = lim
f→2+

r(f)⇒ 8b3 + 4b2 + 2b1 + b0 = 8c3 + 4c2 + 2c1 + c0, (4)

lim
f→3−

r(f) = lim
f→3+

r(f)⇒ 27c3 + 9c2 + 3c1 + c0 = 27d3 + 9d2 + 3d1 + d0, (5)

r′(0) = 0⇒ a1 = 0, (6)

lim
f→1−

r′(f) = lim
f→1+

r′(f)⇒ 3a3 + 2a2 + a1 = 3b3 + 2b2 + b1, (7)

lim
f→2−

r′(f) = lim
f→2+

r′(f)⇒ 12b3 + 4b2 + b1 = 12c3 + 4c2 + c1, (8)

lim
f→3−

r′(f) = lim
f→3+

r′(f)⇒ 27c3 + 6c2 + c1 = 27d3 + 6d2 + d1, (9)

r′(4) = 0⇒ 48d3 + 8d2 + d1 = 0. (10)

The system of Equations (2)–(10) has 13 equations and 16 unknowns. Therefore,
the three variables may be arbitrary chosen (b3 = α, c3 = β, d3 = γ). The solutions
of this system of equations are:

a1 = 0; a2 = −α + β − γ − 3; a3 = α− β + γ + 2, (11)

b0 = −4α + 2β − 2γ; b1 = 8α− 3β + 3γ; b2 = −5α + β − γ; b3 = α, (12)

c0 = −18β + 6γ; c1 = 21β − 5γ; c2 = −8β + γ; c3 = β, (13)

d0 = −48γ; d1 = 40γ; d2 = −11γ; d3 = γ, (14)

where α, β and γ are arbitrary real numbers. Substituting the solution (11)–(14)
into (1) gives the final form of the 3P-PCC Keys kernel:
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r(f) =



(α− β+ γ + 2)|f |3+ (−α + β − γ − 3)|f |2+ 1, 0 ≤ |f | ≤ 1,

α|f |3+(−5α + β − γ)|f |2+ (8α− 3β+ 3γ)|f |,
+ (−4α + 2β − 2γ), 1 < |f | ≤ 2,

β|f |3 + (−8β + γ)|f |2 + (21β − 5γ)|f |,
+ (−18β + 6γ), 2 < |f | ≤ 3,

0, |f | > 3.

(15)

3 ALGORITHM FOR THE ESTIMATION
OF THE FUNDAMENTAL FREQUENCY

The algorithm for the estimation of the fundamental frequency (ALGORITHM 1)
is based on the algorithm from [23]. This algorithm is realized as follows:

ALGORITHM 1:
Input: Speech signal x ∈ RN where N is a number of speech samples.
Output: The estimated fundamental frequency fe.
Step 1 : Window w ∈ RN has been applied to modifying signal x. Step 2 : Spectrum
X is calculated by using DFT:

X = DFT (x). (16)

The spectrum X is calculated in discrete points k = 0, . . . , N − 1, where N is the
length of DFT.
Step 3 : The maximum of the real spectrum that is between kth and (k + 1)th samples
is determined using the picking peak algorithm. The values X(k) and X(k + 1) are
the highest in the specified domain.
Step 4 : The maximum of the spectrum is calculated by PCC interpolation. The
reconstructed function is:

Xr(f) =

k+L
2∑

i=k+1−L
2

pir(f − i), k ≤ f ≤ k + 1, (17)

where pi = Xr(i), r(f) is the kernel of interpolation, and L is the number of samples
that participate in the interpolation.
Step 5 : By differentiation Xr(f) and zero adjustment, the position of the maximum
is determined. It presents the estimated fundamental frequency fe.

The quality of the algorithm for the fundamental frequency estimation can be
also expressed by MSE:

MSE = (f0 − fe)2, (18)
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where f0 is true fundamental frequency and fe is estimated fundamental frequency.
It is possible to adjust the parameter for reductions estimation error by applying
the parametric interpolation of the convolution kernels.

3.1 Interpolation Kernels

The definitions of the interpolation kernels, which are tested in this paper, are:

3.1.1 1P-PCC Keys Kernel

Keys interpolation kernel is given as [19,20]:

r(f) =


(α + 2)|f |3 − (−α + 3)|f |2 + 1, 0 ≤ |f | ≤ 1,

α|f |3 − 5α|f |2 + 8α|f | − 4α, 1 ≤ |f | ≤ 2,

0, |f | > 2.

(19)

The maximum of the reconstructed function Xr(f) (see Equation (17)) is found
by differentiating in spectrum domain and equalizing the first derivative with zero.
For L = 4 from (17) the position of the maximum is:

fmax =

{
k − c

2b
, a=0,

k + −b±
√
b2−ac
a

, a 6= 0,
(20)

where k is the position of the maximum component in the spectrum, whereas:

a = 2(αpk−1 + (α + 2)pk − (α + 2)pk+1 − αpk+2),

b = −2αpk−1 − (α + 3)pk − (2α + 3)pk+1 − αpk+2, (21)

c = −αpk−1 − αpk+1.

3.1.2 2P-PCC Keys Kernell

We designed the 2P-PCC Keys kernel as:

r(f) =


(α− β + 2)|f |3 + (−α + β − 3)|f |2 + 1, 0 ≤ |f | ≤ 1,

α|f |3 + (−5α + β)|f |2 + (8α− 3β)|f |+ (−4α + 2β), 1 < |f | ≤ 2,

β|f |3 − 8β|f |2 + 21β|f | − 18β, 2 < |f | ≤ 3,

0, |f | > 3.

(22)
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The position of maximum is determined by Equation (17) and Equation (20) for
L = 6, where the following is valid:

a = 3(βpk−2+ αpk−1+ (α− β− 2)pk

−(α− β − 2)pk+1 − αpk+2 − βpk+3),

b = −4βpk−2− (4α− 2β)pk−1− (2α− 2β+ 6)pk (23)

+(4α− 4β+ 6)pk+1+ (2α + 2β)pk+2 + 2βpk+3,

c = βpk−2 + (α− β)pk−1 − (α− β)pk+1 − βpk+2.

3.1.3 3P-PCC Keys Kernel

The 3P-PCC Keys kernel is given in Equation (15). The position of maximum is
determined by Equation (17) and Equation (20) for L = 8, where the following is
valid:

a = 3(γpk−3+ βpk−2+ αpk−1+ (α− β+ γ − 2)pk

−(α− β+ γ − 2)pk+1− αpk+2− βpk+3)− γpk+4),

b = −4γpk−3 + (−4β + 2γ)pk−2 + (−4α + 2β − 2γ)pk−1

+(−2α + 2β − 2γ − 6)pk − (α− β + γ − 2)pk+1 (24)

+(2α + 2β − 2γ)pk+2 + (2β + 2γ)pk+3 + 2γpk+4),

c = γpk−3 + (−γ + β)pk−2 + (α− β + γ)pk−1

−(α− β + γ)pk+1 − (β − γ)pk+2 − γpk+3.

In the Equations (19)–(21), (23) and (24) there are α, β and γ parameters. The
optimal values of these parameters will be determined by the minimal value of MSE,
for 1P-PCC (Equation (19)), 2P-PCC (Equation (22)) and 3P-PCC (Equation (15))
Keys kernel.

The optimal parameters for 1P-PCC Keys kernel is given as:

αopt = arg min
α

(MSE), (25)

for 2P-PCC Keys kernel is given as:

(αopt, βopt) = arg min
α,β

(MSE), (26)

and for 3P-PCC Keys kernel is given as:

(αopt, βopt, γopt) = arg min
α,β,γ

(MSE). (27)
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The detailed analysis in [22-28] showed that the minimal value of MSE depends
on the application of window by which signal processing x(n) is carried out in
time domain. MSE will be defined for: a) Hamming, b) Hanning, c) Blackman,
d) rectangular, e) Kaiser, and f) triangular window.

3.2 Interpolation Kernels Parameters

The algorithm for determination of interpolation kernel parameters α, β and γ is
realized as follows:

ALGORITHM 2:
Input: Speech signal x ∈ RN where N is a number of speech samples. Fundamental
frequency f0.
Output: Kernel parameters α, β and γ.
Step 1 : Window w ∈ RN has been applied to modify signal x.
Step 2 : Spectrum X is determined by the application of DFT.
Step 3 : Reconstruction of the continual function Xr that represents spectrum X is
performed by the application of PCC interpolation.
Step 4 : MSE(f0, fe) is calculated for various values of parameters αopt, βopt and
γopt depending on the implemented window.
Step 5 : αopt, βopt and γopt are determined for which the minimal value of MSE is
obtained.

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Experiment

An experiment was carried out in order to determine the optimal value of param-
eters 1P-PCC, 2P-PCC, and 3P-PCC Keys kernels for a) Hamming, b) Hanning,
c) Blackman, d) rectangular, e) Kaiser, and f) triangular window. For this purpose
we use the algorithm described in Section 3. In the second part of the experiment,
the effectiveness of the fundamental frequency estimation is analyzed, when the
AVGM is superposed. For various values of SNR, the MSE is determined in accor-
dance to the fundamental frequency estimation. All aforementioned determines the
performance of the algorithm.

4.1.1 Test Signals

In the experiment, the test signals are given as

1. simulation Sine test signal, and

2. real Speech test signal.
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Sine test signal is defined in [22]:

s(t) =
K∑
i=1

M∑
g=0

ai sin

(
2πi

(
f0 + g

f0
KM

)
t+ θi

)
, (28)

where f0 is fundamental frequency, θi and ai are phase and amplitude of the ith har-
monic, respectively, K is the number of harmonics, and M is the number of points
between the two samples in spectrum where PCC interpolation is being made. The
real Speech test signal is obtained by recording of a speaker in the real acoustic
ambient [30].

4.1.2 Testing Parameters

In the simulation process f0 and θi are random variables with uniform distribution
in the range [G2(97.99 Hz), G5(783.99 Hz)] and [0, 2π] with Sine and real Speech
test signals. Signal frequency of sampling is fs = 8 kHz, and the length of window
is N = 256, which assures the analysis of subsequences with the length of 32 ms.
Furthermore, the results will relate to f0 = (125–140.625) Hz (frequencies between
the 8th and 9th DFT components). Number of frequencies in the specified range, for
which the estimation is done, is M = 100. The sine test signal is with K = 10 har-
monics. All further analyses will relate to: a) Hamming, b) Hanning, c) Blackman,
d) rectangular, e) Kaiser, and f) triangular window.

4.2 Experimental Results

4.2.1 1P-PCC Keys Kernel

Applying the algorithm for the parameters determination of Keys 1P-PCC interpola-
tion kernel some diagrams MSE(α) are drawn (Figure 1 Sine test signal and Figure 2
Speeach test signal), the minimum value MSE is determined (MSEK 1P SIN min Sine
test signal, MSEK 1P SP min Speech test signal), and on the base of it, the optimum
value of Keys 1P-PCC kernel αopt is determined for: a) Hamming, b) Hann, c) Black-
man, d) Kaiser, and e) triangular window functions. Values of the MSE and αopt are
presented in Table 1 (MSEK 1P SIN min Sine test signal) and Table 2 (MSEK 1P SP min

Speech test signal).
According to the results presented in Table 1 and Table 2, it is obvious that:

1. In Sine test signal, the greatest precision is given by the Blackman window
(MSEK 1P SIN min = 4.3616 · 10−4). The minimum precision is obtained by the
rectangular window in (MSEK 1P SIN min = 0.1805).

2. In Speech test signal, the greatest precision is given by the triangular window
(MSEK 1P SP min = 0.0271). The lowest accuracy is obtained by rectangular
windows (MSEK 1P SP min = 0.6087).
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3. The estimated accuracy of the Sine (Blackman window) in relation to Speech
(triangular window) is larger MSEK 1P SP min/MSEK 1P SIN min = 0.0271/4.3616 ·
10−4 = 62.3331 times.
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Figure 1. MSEK 1P SIN min(α) for Keys kernel for Sine test signal

Window αopt MSEK 1P SIN min

Hamming −1.0100 0.0097
Hann −0.8800 6.3836 · 10−4

Blackman −0.8000 4.3616 · 10−4

rectangular −2.6400 0.1805
Kaiser −1.1300 0.0058
triangular −1.0300 0.0015

Table 1. Minimum MSE and αopt for Sine test signal

4.2.2 2P-PCC Keys Kernel

By applying the algorithm to the 2P PCC Keys interpolation kernel, the optimal val-
ues αopt and βopt are determined for: a) Hamming, b) Hann, c) Blackman, d) Kaiser,
and e) triangular window functions. The optimal values of the parameters and the
minimum MSE values are shown in Table 3 (MSEK 2P SIN min Sine test signal) and
Table 4 (MSEK 2P SP min Speech test signal). In both cases, the minimum value
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Figure 2. MSEK 1P SP min(α) for Keys 1P-PCC kernel for Speech test signal

Window αopt MSEK 1P SP min

Hamming −0.9900 0.0309
Hann −0.8800 0.0347
Blackman −0.8000 0.0357
rectangular −2.2700 0.6087
Kaiser −1.1100 0.0275
triangular −1.0200 0.0271

Table 2. Minimum MSE and αopt for Speech test signal

of MSE is obtained for the cases of triangular windows. Charts for MSE(α, β) are
shown in Figure 3 a) (Sine test signal) and Figure 4 a) (Speech test signal). Minimum
positions of the MSE(αopt, βopt) in (α, β) plane (point M) are shown in Figure 3 b)
(Sine test signal) and Figure 4 b) (Speech test signal).

Window αopt βopt MSEK 2P SIN min

Hamming 2.5500 4.6000 0.0013
Hann −1.4500 −0.8000 3.0273 · 10−4

Blackman −0.7200 0.1800 1.8042 · 10−4

rectangular −1.8000 0.9600 0.1514
Kaiser −1.0200 0.1200 0.0053
triangular −0.1000 1.1000 7.8770 · 10−5

Table 3. Minimum MSE, αopt and βopt for Sine test signal
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Figure 3. Sine Test Signal with the application of triangular window; a) MSE(α, β) for
the application of 2P-PCC Keys interpolation, b) positions of min (MSE(αopt, βopt)) in
plane (α, β) for 2P-PCC Keys interpolation (point M)
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Figure 4. Speech Test Signal with the application of triangular window; a) MSE(α, β) for
the application of 2P-PCC Keys interpolation, b) positions of min (MSE(αopt, βopt)) in
plane (α, β) for 2P-PCC Keys interpolation (point M)

Window αopt βopt MSEK 2P SP min

Hamming −2 −1.3000 0.0284
Hann −1.3000 −0.6000 0.0302
Blackman −0.7000 0.2000 0.0357
rectangular 0.1000 2.9000 0.2884
Kaiser −0.5500 0.6500 0.0257
triangular 0 1.2000 0.0255

Table 4. Minimum MSE, αopt and βopt for Speech test signal
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1. In the Sine test signal, the greatest precision are in the triangular window
(MSEK 2P SIN min = 7.8770 · 10−5). The minimum precision is given by the rect-
angular window (MSEK 2P SIN min = 0.1514).

2. In Speech test signal, the greatest precision is given by the triangular window
(MSEK 2P SP min = 0.0255). The lowest accuracy is in the rectangular windows
(MSEK 2P SP min = 0.2884).

3. The estimation accuracy of the Sine (triangular window) relative to Speech
(triangular window) is larger MSEK 2P SP min/MSEK 2P SIN min = 0.0255/7.8770 ·
10−5 = 323.727 times.

4.2.3 3P-PCC Keys Kernel

By applying the algorithm in order to determine the parameters of 3P-PCC inter-
polation Keys kernel, the optimal values αopt, βopt and γopt are obtained for a) Ham-
ming, b) Hann, c) Blackman, d) rectangular, e) Kaiser, and f) triangular window
functions. The optimal values of the parameters and the minimum MSE values are
shown in Table 5 (MSEK 3P SIN min, Sine test signal) and Table 6 (MSEK 3P SP min,
Speech test signal).

Window αopt βopt γopt MSEK 3P SIN min

Hamming 2.5800 4.7400 0.1000 0.0013
Hann −1.9500 −1.6000 −0.0900 9.1211 · 10−5

Blackman −0.6200 0.2800 −0.1000 8.2038 · 10−5

rectangular −1.4500 1 −0.3400 0.1485
Kaiser −0.7000 0.1000 −0.3900 0.0039
triangular −0.0800 1.4200 0.2900 3.0849 · 10−5

Table 5. Minimum MSE, αopt, βopt and γopt for Sine test signal

Window αopt βopt γopt MSEK 3P SP min

Hamming −1.7000 −4.7000 −3.8000 0.0119
Hann −2.3000 −2.5000 −0.5000 0.0202
Blackman −2.3000 0.2000 3.2000 0.0182
rectangular −0.2000 4.6000 2 0.1329
Kaiser 0.9000 −0.8000 −3.1000 0.0035
triangular 1.6000 1.7000 −1.4000 0.0212

Table 6. Minimum MSE, αopt, βopt and γopt for Speech test signal

1. In the Sine test signal, the greatest precision in given by the triangular window
(MSEK 3P SIN min = 3.0849 · 10−5). The minimum precision is obtained by the
rectangular window (MSEK 3P SIN min = 0.1485).
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2. In Speech test signal, the greatest precision is given by the triangular window
(MSEK 3P SP min = 0.0035). The lowest accuracy is obtained the rectangular
windows (MSEK 3P SP min = 0.1329).

3. The estimated accuracy of the Sine (triangular window) relative to Speech (trian-
gular window) is larger MSEK 3P SP min/MSEK 3P SIN min = 0.0035/3.0849·10−5 =
113.455 times.

4.2.4 3P-PCC Keys Kernel for AWGN Speech

To the Sine and Speech test signal the Additive white Gaussian noise AWGN for
SNR = 0-50 dB is superimposed. In order to estimate the fundamental frequency,
3P-PCC Keys kernel with optimal parameters αopt, βopt and γopt is used (Table 5
and Table 6). MSE values are shown for Sine test signal (Table 7, Figure 5) and
Speech test signal (Table 8, Figure 6).
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Figure 5. MSE according to the SNR of a window function for a test Sine signal

The analysis of the MSE shows that decreasing SNR leads to decreasing MSE.
From the theoretical point of view, it is the expected result. In extremely ad-
verse conditions (SNR = 0 dB), the minimum MSE is obtained by Kaiser (αopt =
−0.7, βopt = 0.1 and γopt = 0.39, Sine test signal) and Hamming window (αopt =
−1.7, βopt = −4.7 and γopt = −3.8, Speech test signal).
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Window
SNR [dB]

0 10 20 30 40 50

Hamming 2.1195 0.3763 0.0416 0.0035 0.002 0.001

Hann 6.4151 0.5508 0.0499 0.0045 5.8770e−004 1.7148e−004

Blackman 1.5472 0.1790 0.0191 0.0020 3.0010e−004 1.1152e−004

rectangular 14.8808 2.9171 0.6077 0.2444 0.1641 0.1358

Kaiser 1.2260 0.1169 0.0080 0.0021 0.0030 0.0036

triangular 1.3318 0.1334 0.0112 9.7357e−004 7.9743e−005 1.9322e−005

Table 7. MSE according to of SNR for Sine test signal for αopt, βopt and βopt
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Figure 6. MSE according to the SNR for Speech test signal

Window
SNR [dB]

0 10 20 30 40 50

Hamming 1.2770 0.0251 0.0858 0.0330 0.0139 0.0121

Hann 1.8615 0.4479 0.2384 0.0793 0.0320 0.0231

Blackman 2.0423 0.7303 0.2757 0.1587 0.0363 0.0214

rectangular 8.8040 1.6701 0.7968 0.3002 0.1466 0.1332

Kaiser 2.4989 0.2169 0.0104 0.0035 0.0033 0.0034

triangular 3.2579 0.2907 0.0201 0.0129 0.0179 0.0201

Table 8. MSE according to of SNR for Speech test signal for αopt, βopt and βopt
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5 COMPARATIVE ANALYSIS

The comparative analysis of the estimated fundamental frequency for the Sine test
signal and the real Speech test signal, will be performed on the base of MSE min-
imal values. The minimal value of MSE is determined on the base of the diagram
in Figures 1–2 (1P-PCC) and Figures 3–4 (2P-PCC). It is presented in Table 1
(MSEK 1P SIN min), Table 2 (MSEK 1P SP min), Table 3 (MSEK 2P SIN min), Table 4
(MSEK 2P SP min), Table 5 (MSEK 3P SIN min) and Table 6 (MSEK 3P SP min). MSE
according to of SNR are presented in the Table 7 (MSEK 3P SIN min) and Table 8
(MSEK 3P SP min).

Comparing the values MSEmin from Tables 1-6, it can be concluded that:

1. The optimal choice for Sine test signal is 3P-PCC and triangular window. Com-
pared to the 1P-PCC (Blackman) and 2P-PCC (triangular), 3P-PCC (triangu-
lar) generates 92.928 % and 60.83 % lower MSE value, respectively.

2. The optimal choice for Speech test signal is 3P-PCC and Kaiser window. Com-
pared to the 1P-PCC (triangular) and 2P-PCC (Kaiser), 3P-PCC (Kaiser) gen-
erates 87.084 % and 86.381 % smaller MSE value, respectively.

3. The accuracy of the assessment of speech signals (3P-PCC, Kaiser) in relation
to the Sine signals (3P-PCC, triangular) is MSEK 3P SP min/MSEK 3P SIN min =
0.0035/3.0849 · 10−5 = 113.45 times smaller.

4. The reduction of the SNR MSE is increased. In Sine test signals for SNR = 0 dB
(Kaiser window) the accuracy is lower than the SNR = 50 (triangular window)
1.2260/3.0849 · 10−5 = 39.8 · 103 times. In Speech test signal for SNR = 0 dB
(Hamming window) the accuracy is lower than the SNR = 50 (Kaiser window)
1.277/0.0034 = 375.58 times.

5. In respect to the Greville 2P kernel (Blackman window, αopt = −0.42, βopt =
0.002, MSEmin = 0.000377) Keys 3P-PCC has a 37.7 ·10−5/3.0849 ·10−5 = 12.22
times greater precision [30].

Accordingly, the obtained results recommend the use of PCC algorithm with
3P-PCC kernel with the Kaiser windows in preprocessing stage of the speech signal.
Hence, it is recommended for further processing by algorithms that require a precise
determination of the fundamental frequency (automatic verification of a speaker,
recognition of the speech, etc.).

6 CONCLUSION

This paper describes the design of the three-parameter (3P) convolution kernel. The
kernel is specifically designed for the estimation of the speech signal fundamental
frequency by interpolation. The experiment was carried out with the aim to deter-
mine the optimal convolution kernel parameters in order to minimize the estimation
error. It is implemented on the example of some classical window function. De-
tailed analysis shows the superiority of the 3P-PCC kernel. The optimal choice for
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real speech signal is 3P PCC Keys kernel with the Kaiser window function. By
comparing with 1P-PCC kernel with triangular window, MSE is lower by 87.084 %.
Furthermore, MSE is lower 86.381 % by comparing to the 2P-PCC with a Kaiser
windowed. Direct comparison of MSE for Sine test signal and Speech test signal,
the precision of the fundamental frequency estimation is 113.45 times higher in the
Sine test signals. The aforementioned results show the superiority of 3P-PCC kernel
compared to 1P-PCC and 2P-PCC kernel.
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