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1 INTRODUCTION

The evolution of computing technology is progressing hand in hand with the evolu-
tion of other natural, technical or economic sciences. Adequate powerful computing
technology enables high precision analysis of process models, that more precisely de-
scribe the physical or social nature of things. Parallel computing or calculations per-
formed on graphical processing units (GPU) facilitate solutions for computationally
demanding tasks. Currently, due to these facts software based numerical simulations
and modelling are enormously developing. On the one hand computing technology
enables us to simulate models which are closer and closer to the objective reality of
the simulated process, but on the other hand, users are increasingly tempted to use
a “brute force” approach when simulating a complex process or a complex object.
Brute force is most pronounced in increasing number of cores, memory capacity or
computing power. In most cases attention is not paid to optimizing the model itself
(number of segments, mirroring, repeating parts of model, etc.) or to optimizing
the chosen numerical methods. This leads to constantly increasing requirements on
computing hardware.

In this manuscript we present a specific numerical method – the method of
moments and its optimization. In Section 2 the basic principles of MoM and the
generation of a numerical model based on analytical description of a selected electro-
magnetic process are described. MoM is applied for computing simple conducting
structures – dipole antenna. Section 3 deals with a model simulation consisting
of various numbers of elements. This section also analyses the hardware and time
requirements of the selected model. Section 4 describes the proposed modification
of numerical method with a goal of minimizing computing time while keeping the
number of segments unchanged. The numerical results are summarized in Section 5.
Section 6 concludes the manuscript.

2 METHOD OF MOMENTS

This section describes the principles of MoM which will be used to analyze the
electromagnetic (EM) field generated by a conductive structure in a free space. The
presented analysis is based on [10]. In this particular case an EM field excited by
a (point, line, planar, . . . ) source is propagated in an environment (see Figure 1 b)).

The task is to find the configuration of field intensity in a free space environ-
ment and current distribution on the source surface. The starting point is Poisson
equation:

∇2X = Y (1)

where X is the complex field distribution and Y is the complex source function. We
assume that the distribution of field sources is known. In case that this distribution is
unknown but its itegral magnitude in the closed volume V is known, then according
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Figure 1. Field propagation: a) inside of a closed space, b) in a free space

to [15] we have to rewrite the Poisson equation to the form:

∇2

∫
V

J dV = Y (2)

where J is the searched complex function of electromagnetic field source distribution.
From (2) we calculate the unknown function J , which in this case represents

current distribution in a source field while Y is powering this field. Solutions (2)
often lead to an analytically unsolvable task. Therefore a numerical solution which
gives very precise results is preferred. One of the most utilized numerical methods
used to solve (2) is called the method of moments – MoM.

MoM is a numerical method suitable for solving integral equations often occur-
ring in field theory (e.g. electromagnetic). This method is based on transforming the
integral equation to a system of algebraic equations. This system can be formally
described using a matrix equation, which is easily solvable using a computer.

Integral Equation (2) can be solved only if detailed parameters of the volume
containing field sources are known. In Figure 2 two examples of geometries deter-
mining complex function (e.g. current distribution) J are shown.

In the first case, (Figure 2a) the current distribution J is located on the surface
of the general volume V . It is clear that the current distribution is dependent on all
coordinates of the used coordinate system and therefore it is not possible to simplify
Equation (2). In the second case (Figure 2 b)), the current distribution J is located
on the surface of the cylinder. Under assumption: d→ 0 holds:

J(x′, y′, z′)→ J(z′) (3)

for the integration area:
V → 〈a, b〉. (4)

The integral Equation (2) can be written symbolically taking into account [13]
as: ∫ b

a

f(z, ξ) dξ = g(z) (5)

where
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Figure 2. Determining integral boundary for volume V

•
∫ b
a

is the linear operator L (in our case the integral),

• a, b defines the analysed area (with respect to the choice of linear operator a, b
are borders of the integral derived from the geometry of the analysed structure),

• g is a known complex source function (supply voltage of the analysed structure),

• f(z, ξ) is the unknown (searched) complex function (e.g. current distribution).

With the aid of MoM the unknown function is not searched for directly but it
is approximated with a series with N basis functions:1

f ≈ f̃ = α1f1 +α2f2 + . . .+αNfN =
N∑
n=1

αnfn (6)

where

• αn are unknown complex coefficients,

• fn(z0) are chosen known functions – basis functions.

This approximation can hold over the whole analyzed area a, b, or only on its part,
the so called segment. The segment is a subset of the area a, b, where: J=̇const .
Certain programming skills and experience is necessary for selecting the length
(shape) of the segment and also for choosing the basis functions. Suitable selec-
tion of these parameters can significantly decrease computing complexity, and thus
the computing time.

MoM by contrast to the other numerical methods does not need to input border
conditions. In this method the border conditions are directly contained in

∫
V

. Only

1 Approximation is only formal, since coefficients αn are unknown.
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the volume V contains field sources, which create radiated field in its vicinity (outside
the volume V ).

By substituting (6) back into the solved Equation (5) and using linearity of
integral it is possible to obtain:

N∑
n=1

αn

∫ b

a

fn(z, ξ) dξ = g(z) +R(z). (7)

The solution acquired by MoM fulfills the border condition of Equation (5) only
in discrete points. Between these points the border conditions are not fulfilled and
discontinuity exists – residuum, in (7) denoted as R(z). Discontinuity is caused by

certain differences between the exact and approximate solution (denoted f̃) of this
equation.

For the most precise approximation of the solution residuum minimization is
necessary. It can be obtained by the method of weighted residua [5]. This procedure
introduces the term weighted function. It is defined so that its product with residuum
R, integrated over the analysed area a, b is zero:2∫ b

a

wm(z)R(z) dz = 0. (8)

If for weighting we use N basis functions, a system of N equations with N unknown
complex coefficients αn can be formed:

N∑
n=1

αn

∫ b

a

wm(z)

∫ b

a

fn(z, ξ) dξ dz =

∫ b

a

wm(z)g(z) dz, (9)

respectively in matrix form:
∫ b
a
w1

∫ b
a
f1 . . .

∫ b
a
w1

∫ b
a
fN

...
. . .

...∫ b
a
wN
∫ b
a
f1 . . .

∫ b
a
wN
∫ b
a
fN


 α1

...
αN

 =


∫ b
a
w1 g
...∫ b

a
wN g

 . (10)

In order the system (9) to be solvable on the interval a, b basis functions as well
as weighting functions on this interval have to be independent. The careful reader
would surely note that the solution of (5) depends primarily on the choice of basis
functions. If those functions are properly chosen, the resulting system of equations
(described by matrices) will be relatively small and the numerical solution will be
very fast. It means that if we split the interval a, b into a small number of seg-
ments combined with a good choice of basis functions, the solution of the current
distribution on a given interval will be relatively precise.

2 In the literature this product is also denoted is inner product
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3 WAVE EQUATION SOLUTION

Based on the brief theoretical introduction to principles of MoM we can present
an example of current distribution calculation at the dipole surface. The dipole is
fed in its middle by a high frequency voltage source. In various literatures dealing
with the theory of the electromagnetic field or antenna theory it is possible to find
an analytical description of a dipole as radiating structure. In [7] is the description
of a dipole created out of finite conductance material by means of the Pocklington
equation: (

d2

dz2
+ k2

)
Az(z) =

̇k2

ω
(Z(z)Iz(z)−UAδ(z)) (11)

where Az(z) is a complex amplitude of vector potential (see [13]):

Az(z) =
µ

4π

∫ h

−h
Iz(z

′)
e−̇k
√

(z−z′)2+a2√
(z − z′)2 + a2

dz′, (12)

• I(z) is searched function – the current distribution,

• UA is supply voltage phasor,

• k is wave number, k = 2π/λ,

• ω is radian frequency of supply voltage,

• λ is wave length.

Equation (12) is a special case of (1) respectively of (5), where the linear operator

is represented with the integral
∫ h
−h as well as with the second derivative d2

dz2
. In

order to apply MoM directly on Equation (12) it is neccesary to modify MoM the
following way:

• we substitute (15) into (12):(
d2

dz2
+ k2

)
µ

4π

∫ h

−h
Iz(z

′)
e−̇k
√

(z−z′)2+a2√
(z − z′)2 + a2

dz′ =
̇k2

ω
(Z(z)Iz(z)−UAδ(z)),

(13)

• the parenthesis with the second derivative is embedded into integral and the
whole equation is multiplied by ω

̇k2
. After rearrangement we get:

̇

ωε0

∫ h

−h

(
d2

dz2
+ k2

)
Iz(z

′)
e−̇k
√

(z−z′)2+a2

4π
√

(z − z′)2 + a2
dz′+Z(z)Iz(z) = UAδ(z). (14)

Let us assume that the radiation structure has a cylindrical form, constructed
from real material; it means it has a finite conductance. Therefore in Equation (11)
the member Z(z) – the impedance caused by dipole material resistivity also plays
a role. In order to use MoM it is necessary to divide the dipole into separate
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segments [11]. With a sufficient number of segments3 it is possible to assume that
the current distribution in each segment is constant and is equal to the current
present in the middle of a dipole. In Figure 3 an example of dipole segmentation
into 14 segments is shown.

aa a

Figure 3. Spliting of a dipole into individual segments

Since the dipole is placed so that its axis is identical with the z axis and its cen-
ter is in the origin of a coordinate system, by applying [5] we can assume that the
same current distribution is in the segments 1 and 1′, similarly in segments 2 and 2′

and so on. Such geometry saves a lot of effort in the further analysis. Following
on from Equation (11) we have to calculate the current Iz(z), out of which we can
later calculate the other antenna parameters. Based on MoM the integral equation
must be rewritten into the form of a system of algebraic equations, which are easily
solvable numerically or algebraically. In such a case the integral transforms to the
sum. After rearrangement, Equation (14) has the form (10). In electrical engineer-
ing [3, 9] we can often encounter with the following form which is formally compliant
with Ohms law:

N∑
n=1

ZmnIn = Um (15)

where

• In is column matrix of the unknown currents (corresponding with αn in (10)),

• Zmn is the impedance matrix, representing the effect of the nth segment on the
observation point in the segment m (corresponding with double integral in (10)),

• Um is the column matrix of supply voltages containing 1 in the segment position
N/2 and 0 in all other positions (corresponding with

∫
wn g in (10)).

3 For a large number of segments, segment length approaches zero: ∆l→ 0.
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Impedance matrix Zmn is expressed the following way: position vector ~R is defined
from point N [0, 0, z′ ≡ ξ]4, lying in the center of a dipole to the observation point
M [x, y, z]. If point M [x, y, z] is identified with the dipole surface, as is shown in

Figure 3 b), then the magnitude of ~R is equal to:

Rzξ =
√

(z − ξ)2 + a2 (16)

The second derivation in (14) is applied to the integrand of a vector potential (12),
which consequently can be expressed as:

Ξzξ =
d2

dz2
Gzξ + k2Gzξ (17)

where

Gzξ =
e−̇kRzξ

4πRzξ

. (18)

Based on the previous equations it is possible to calculate elements of matrix Zmn

as:

̇

ωε0


∫ z1+1/2

z1−1/2
Ξz1ξ dξ +Zi

z(z1)∆z1 . . .
∫ zN+1/2

zN−1/2
Ξz1ξ dξ +Zi

z(z1)∆z1
...

. . .
...∫ z1+1/2

z1−1/2
ΞzN ξ dξ +Zi

z(zN)∆zN . . .
∫ zN+1/2

zN−1/2
ΞzN ξ dξ +Zi

z(zN)∆zN


(19)

where

• Zi
z(zm) is the impedance per unit length in the center of the mth segment,

• zn is the distance of the center of the nth segment from the origin of the coordi-
nate system,

• zn+1/2 is the distance of the upper edge of the segment from the center of the
coordinate system,

• zn−1/2 is the distance of the lower edge of the segment from the center of the
coordinate system,

• ∆zn is the length of the segment n, where ∆zn = zn−1/2 − zn+1/2.

In Equation (14) the value of the inner impedance per unit length still remains
undefined. This value depends on the shape and material of the analysed structure.
In order to continue in the previous analysis the course of the inner impedance can
be chosen based on the assignment or we can use the mathematical expression for
a concrete conductive geometry. In [16] the inner impedance is formulated for the
analysed dipole:

Zi
z(z) =

const

h− |z|
. (20)

4 Coordinate z′ we identify with ξ, in order to have the following formulas notated the
same as in the previous section.
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By substituting (20) into (19) we get an expression for the impedance matrix for
the dipole shown in Figure 3. This impedance is substituted into the matrix Equa-
tion (15). Based on such input conditions and with the help of the solution of the
system of linear equations we get column matrix In, which represents the searched
current distribution on the dipole surface.

4 MOMENT METHOD MODIFICATION

As can be seen from the previous section, MoM is a very powerful tool for simulating
conductive structures with infinite or finite inner conductivity. The weak point
of this method is when solving structures in which the inner impedance changes
depending on a coordinate. In such cases problems arise from time and hardware
computing demands.

In the analysed case the inner impedance per unit lengthZi
z(zm) is approximated

by a function e.g. (20). For z → h this impedance approaches infinity. In such
locations there is a significant difference between the impedance per unit length
at the beginning Zi

z(zm−1/2) and at the end Zi
z(zm+1/2) of a particular segment.

If the total impedance of a segment Zs(zm) was calculated using mathematical
simplification following from (19) it would introduce a significant error:

Zs(zm) = Zi
z(zm)(zm+1/2 − zm−1/2). (21)

In order to minimize this error it is necessary to increase the number of segments.
But as the number of segments rises, so does the computing time. When solving
a complex resistive structure with a similar expression of Zi

z(zm) the above described
way would unacceptably prolong computing time, which in turn will complicate any
numerical analysis.

Based on these facts it is necessary to better describe the solved problem and
at the same time to minimize the disadvantages inherent to MoM.

• For calculating a structure divided into N segments it is necessary to compute
matrix Zmn containing N ×N complex numbers where each number has to be
calculated using (19).

• By minimizing the number of segments errors in current distribution occur5 and
consequently errors occur also in calculation of other parameters of the analyzed
structure.

Based on the previous analysis we end up with mutually exclusive requirements.
If we want to speed up calculations we have to decrease the number of segments
which results in inaccurate results. If we want to obtain accurate results we have to
increase the number of segments. The possible solution to this problem stated in [6]

5 In (19) the inner impedance of a dipole per unit length Zi
z(z) is taken with respect

to the center of a segment and is multiplied by the segment length. This simplification is
suitable only for very short segments, otherwise an error occures.
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is to divide Equation (19) into two separate parts. The first part, containing integral
and second order derivation is dependent on the shape of the analysed structure and
structure of supply signal. The second part contains only the overall impedances
Z(zm) of the individual segments. This part is dependant only on the shape and
material of the dipole. By splitting Equation (19) the impedance matrix Zmn is also
divided into two separate parts:

Zmn = Z′mn + Zs
mn. (22)

The matrix Z′mn is identical to the impedance matrix contained in solution of the
Pocklington Equation (11) using MoM for an infinitely conductive material. This
fact implies that for computation of elements of matrix Z′mn we can assume an
infinite conductance of the individual dipole segments.

Let’s look closer at the creation of matrix Z′mn. To calculate its individual
elements it is necessary to know only the magnitude of localization vector Rzξ and
not its direction. The element of the impedance matrix Z′

mn from point 1 to 2 is
the same as from point 2 to 1. This means: Z ′12 = Z ′21. The similar statement
holds true for the other segments as well. The magnitude of localization vector Rzξ

from point 1 to 1 is the same as from point 2 to 2, from 3 to 3 etc. (which represent
a diagonal in matrix (23)). This means that the diagonal elements are equal. Based
on these facts we can write the following equation:

Z′mn =


Z ′11 Z ′12 Z ′13 Z ′14 Z ′15 . . .
Z ′12 Z ′11 Z ′12 Z ′13 Z ′14 . . .
Z ′13 Z ′12 Z ′11 Z ′12 Z ′13 . . .
Z ′14 Z ′13 Z ′12 Z ′11 Z ′12 . . .

...
...

...
...

...
. . .

 . (23)

From Equation (23) it follows that we do not have to solve m×n numerical integrals
and derivations but it is sufficient to calculate only the first row of the matrix and
the other rows are combinations of the first one. This leads to the construction
of Toeplitz matrix. When there are repeatable elements or parts of geometry the
construction of Toeplitz matrix is relatively known. But only in the area of com-
mercial generation of simulation programs. Using this simplification in the technical
literature is quite rare.

In order not to generate a significant error in specifying the overall impedance of
segments Zs(zm) (elements of matrix Zs

mn) it is necessary to modify their calculation
so that real overall impedance of the individual segments can be calculated. In such
a case it is not suitable to use an approximate impedance calculation (21) but an
exact one with the aid of analytic integration:

Zs
mn =

∫ m+1/2

m−1/2

const

h− |z|
dz. (24)
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By integration of (24) we get:

Zs
mn =

const
[
ln (h− zm−1/2)− ln (h− zm+1/2)

]
, z > 0,

const
[
ln (h+ zm−1/2)− ln (h+ zm+1/2)

]
, z < 0.

(25)

By using (25) with regards to (19) and (22) it is possible to create a matrix of inner
impedances:

Zs
mn =


Zs

1 Zs
1 Zs

1 Zs
1 . . .

Zs
2 Zs

2 Zs
2 Zs

2 . . .
Zs

3 Zs
3 Zs

3 Zs
3 . . .

Zs
4 Zs

4 Zs
4 Zs

4 . . .
...

...
...

...
. . .

 . (26)

By adding matrices (23) and (26) we will get back to classical MoM in which we
have to solve a system of linear equations using (15).

5 NUMERICAL RESULTS

In the previous section we analysed the principles of MoM using a concrete example.
We modified the method so the number of computations necessary to obtain the
impedance matrix is minimized. At the same time by applying analytical integration
we increased the precision of calculation of the overall segment impedance. This
section describes the MoM implementation, analysis of the obtainable accuracy and
computational speed. Cases of classical and modified MoM applied to dipoles from
infinitely conducting and resistive materials are analysed as well.

MoM is implemented in the software environment Mathematica by means of
functions applied in logical sequence of the individual steps. At first a Green function
was created (18), where distance[zm,zn,radius] is the location vector Rzξ:

greens[zm_, zn_,

a_] := E^(-I 2 \[Pi] distance[zm, zn, a])/(

4 Pi distance[zm, zn, a])

Next, by using a Green function an integrand of (17) without inner impedances per
unit length was created:

kernel[zm_, zn_, a_] :=

D[greens[zm, zn, a], {zm, 2}] +

(2 Pi)^2 greens[zm, zn, a];

Let us assume for now the analysis of structures with infinite conductivity. Then
for calculating the impedance matrix Zmn ≡ Z′mn we can use the function:
impedanceskk [length, radius, N], the attributes of which are: dipole length,
its radius and number of segments:
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impedanceskk[length_, radius_, N_] :=

Module[{zm, zn, zmin=-length/2, delz = length/N, i, kern},

kern = kernel[zm, zn, radius];

Table[

zm = j;

Table[

-60.0 I NIntegrate[Evaluate[kern],

{zn, i - delz/2, i + delz/2}],

{i, zmin + delz/2, -zmin - delz/2, delz}

] // N, {j, zmin + delz/2, -zmin - delz/2, delz}

]]

To achieve quick convergence of calculations we introduced so called MagneticFrill
matrix [1]. This matrix represents powering the dipole by a planar homogeneous
wave – the so called source function. MagneticFrill is a matrix representing a narrow
ring tightly fitting around dipole in its middle. The amplitude of source function
has a Gaussian distribution with its mean placed in the centre of a dipole. The
phase of the source function is approximately constant:

magneticfrill[length_, a_, b_, N_] :=

Module[{zmin=-length/2, zn, delz=length/N},

Table[2 Pi/Log[b/radius]*

(greens[i, 0, a] - greens[i, 0, b]),

{i, zmin + delz/2, -zmin - delz/2, delz}

] // N

]

Calculation of currents matrix (current distribution) is possible using the following
formula:

currents = LinearSolve[

impedanceskk[1 0.047, 0.0005, 101],

-magneticfrill[1 0.047, 0.0005, 2.23 * 0.0005, 101]

];

All data in the arguments of functions are related to wave length of the incident
wave. In this case the dipole length is 2h = 0.047λ and its radius is d = 0.0005λ.
The dipole is divided into N = 101 segments. In the function MagneticFrill we use
the argument 2.23× 0.0005, which represents the width of the source function ring.
This value was chosen based on [14].

With the aid of the presented mathematical background and Mathematica it is
possible to calculate an impedance matrix Zmn for different number of segments.
Computing time was measured using the standard Mathematica command. Cal-
culations were performed using one core of an Intel Core i7 CPU 860 @ 2.8 GHz
processor. The dependence of computing time on number of segments is shown
in Figure 4. The number of segments varied from 21 to 101, which resulted in
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a quadratic increase of computing time from 6 to 147 [s]. Such a quadratic increase
of computation time was expected due to the quadratic increase of segment num-
bers in the impedance matrix. The measured total execution time is relatively high.
From [2] follows that MoM gives quite accurate results if segment length is much
less than physical length of dipole (ls � 2h). At the same time the segment length
has to be at least two times its radius (ls > 2d). In further analysis the number
of segments will vary by around 50. With this value the total execution time is
38 [s], which is with respect to the geometric simplicity of the dipole and available
computing power, an enormously high value.
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Figure 4. Total execution time for different numbers of segments

Let us perform a computation of the impedance matrix Zmn using simplifi-
cation (23). In this case only one row of matrix Zmn is calculated the following
way:

impedances[length_, a_, N_] :=

Module[{zm, zn, zmin=-length/2, delz = length/N, i, kern},

kern = kernel[zm, zn, a];

zm = zmin + delz/2;

Table[

-60.0 I NIntegrate[Evaluate[kern],

{zn, i - delz/2, i + delz/2}],

{i, zmin + delz/2, -zmin - delz/2, delz}

] // N

]

The other rows are obtained from combining the first row using the Toeplitz matrix.
The current matrix is then calculated the following way:
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currents = LinearSolve[

ToeplitzMatrix[impedances[1 0.047, 0.0005, 51]],

-magneticfrill[1 0.047, 0.0005, 2.23 * 0.0005, 51]

];

The current distribution on the dipole is calculated using the modified MoM by
applying (23). The input parameters (dipole length, its radius and number of seg-
ments) are the same as in the previous case. The plot of total execution time based
on the number of segments is shown in Figure 4, its magnified version is in Figure 5.
From Figure 5 it is possible to read that the total execution time for 50 segments
has been shortened to 0.7 [s]. At the same time the quadratic dependence of to-
tal execution time on number of segments has changed to linear. The improved
total execution time represents speeding up the computation by 60× compared to
the conventional method. This time reduction is very important especially for very
precise calculation of input impedances for complex, geometrically repeating struc-
tures. It is necessary to note that depicting and searching the impedance matrix
offers a solution by using the Toeplitz matrix.

For 50 segments memory usage was evaluated as well. Since the computation
was processed in system Mathematica, the most of the system memory was used
by it. To start Mathematica kernel approximately 28.8 MB of memory is required.
The calculation of current matrix with classical MoM took another – approximately
8.0 MB. The same calculation performed with the modified MoM took approximately
4.98 MB – that represents approximately 38 % memory saving.
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Figure 5. Total execution time for different numbers of segments obtained with modified
MoM
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5.1 Example of Resistive Structure Calculation

Sometimes a resistive structure depicting the matrix Zmn 6= Z′mn will not reveal any
regularities or repetition of segments. Even in the case of geometrically repeating
structure it is not clear how to simplify and speed up computations.

At first let us calculate the resistive structure – resistive dipole using classical
MoM. The starting point is (19) and inner impedance per unit length Zi

z(z) is taken
from [4]. Calculations can be performed using the following Mathematica code:

impedanceskkZi[Zi_, length_, radius_, N_] :=

Module[{zm, zn, zmin=-length/2, delz = length/N, i, kern},

kern = kernel[zm, zn, radius];

Table[

zm = j;

Table[

-(60.0 I NIntegrate[Evaluate[kern],

{zn, i - delz/2, i + delz/2}] + (

60 Zi)/(-zmin - Abs[j]) delz),

{i, zmin + delz/2, -zmin - delz/2, delz}

] // N, {j, zmin + delz/2, -zmin - delz/2, delz}

]]

Similarly as in previous cases we calculate the elements of impedance matrix for the
same dipole parameters like at the beginning of the presented analysis. The graph
of total execution time based on the number of segments is shown in Figure 6.

0 20 40 60 80 100

0.5

1.0

5.0

10.0

50.0

100.0

Number of segments @ND

T
o
ta

l
ex

ec
u
ti

o
n

ti
m

e
@s
D

Classical MoM

Modified MoM

Figure 6. Total execution time for different number of segments in case of resistive struc-
ture
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By comparing the dashed lines in Figure 4 and Figure 6 (representing using
classical MoM) it can be observed that the shape of both graphs is similar. In the
case of resistive dipole total execution time has increased. For 50 segments it is
approximately 50 [s], which represents 30 % increase of computing time with respect
to the solution of classical dipole.

Let us apply the theoretical analysis described in (22) and (24)–(26) for solving
a resistive structure. The first row of matrix Z′mn is calculated using the function
onlyZi[Zi, length, radius, N]:

onlyZi[Zi_, length_, radius_, N_] :=

Module[{zm, zn, zmin=-length/2, delz = length/N, i, kern},

kern = kernel[zm, zn, radius];

Table[

zm = j;

Table[

(60 Zi)/(-zmin - Abs[j]) delz,

{i, zmin + delz/2, -zmin - delz/2, delz}

] // N, {j, zmin + delz/2, -zmin - delz/2, delz}

]]

The loading of all rows and columns of the impedance matrix Zmn in the case of
resistive dipole (dipole length 2h = 0.047λ, its radius d = 0.0005λ and number of
segments N = 101) is obtained using the following commands:

ToeplitzMatrixB[impedances[0.047, 0.0005, 101]] -

onlyZi[8.10988, 0.047, 0.0005, 101]

The plot of total execution time versus number of segments is in Figure 6 (solid line)
and its magnified version is in Figure 7.

Similarly as in Figure 5 we can observe linear dependency of total execution
time on the number of segments. Since it was necessary to compute two impedance
submatrices, the computing time rose by 10 % compared to the structure with infinite
conductivity. If we compare the computing time for an impedance matrix of resistive
structure using classical and modified MoM it can be observed that computing time
has decreased more than 50× for 50 segments.

Similarly as in the previous case we were analyzing the memory usage for cal-
culation of the current matrix for 50 segments. Calculation of this matrix using the
classical MoM took approximately 8.0 MB of memory. The same calculation using
modified MoM required approximately 5.22 MB – it represents approximately 35 %
of memory savings compared to the classical method.

6 CONCLUSIONS

By comparing computing times for solving a dipole with infinite conductivity using
classical and modified method it can be observed that the proposed modified method
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Figure 7. Total execution time for different number of segments in the case of resistive
structure obtained with modified MoM

was able to create an impedance matrix 60× faster. In the case of the resistive dipole
creation of the impedance matrix was 50× faster than using the classical MoM.
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Electromagnetic Field. ČVUT, Praha, Czech Republic, 2001.

[12] Orkisz, J.—Glowacki, M.: On Acceleration of Evolutionary Algorithms Taking
Advantage of A Posteriori Error Analysis. Computing and Informatics, Vol. 33, 2014,
No. 1, pp. 154–174.

[13] Raida, Z. et al.: Multimedia Textbook of Electromagnetic Waves and Microwave
Techniques. Available on: http://www.feec.vutbr.cz/~raida/multimedia, 2001.

[14] Rockway, J. W.—Logan, J. C.—Tam, D. W. S.—Li, S. T.: The MININEC Sys-
tem: Microcomputer Analysis of Wire Antennas. Artech House, Norwood, USA,
1988.
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