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Abstract. Data locality improvement and nested loops parallelization are two com-
plementary and competing approaches for optimizing loop nests that constitute
a large portion of computation times in scientific and engineering programs. While
there are effective methods for each one of these, prior studies have paid less atten-
tion to address these two simultaneously. This paper proposes a unified approach
that integrates these two techniques to obtain an appropriate locality conscious loop
transformation to partition the loop iteration space into outer parallel tiled loops.
The approach is based on the polyhedral model to achieve a multidimensional affine
scheduling as a transformation that result the largest groups of tilable loops with
maximum coarse grain parallelism, as far as possible. Furthermore, tiles will be
scheduled on processor cores to exploit maximum data reuse through scheduling
tiles with high volume of data sharing on the same core consecutively or on differ-
ent cores with shared cache at around the same time.
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1 INTRODUCTION

Loop parallelization without considering the locality of the data to be accessed
within the loop body may result in poor performance in terms of speed up. The main
barrier against the full utilization of the chip multi-processors (CMPs) is the off-chip
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memory accesses resulted from cache misses, caused by poor data locality. Therefore,
in order to fully utilize CMPs, it is suggested to consider data locality optimization
along with loop parallelization [1, 2, 3]. However, data locality optimization could
oppose loop parallelization as the data locality tend to place data items on the same
processor, while parallelization methods attempt to distribute computations and
their required data across parallel processors.

This paper proposes a novel approach to speed up loop execution through loop
tiling for coarse grain parallelization along with data locality improvement. Tiling
transformation has been widely used to improve data locality in the hierarchical
memory, as well as to efficiently execute loop iteration blocks in parallel on multi
processors [1, 4, 5]. Applying a tiling transformation, coarse grain parallelism with
a reduced inter-tile communication and synchronization could be achieved while the
data accesses within each tile or chunk of iterations may be localized to fit into the
cache [6]. Loop tiling support in most of the previous works is limited and usually
only perfect loop nests are considered [7, 8].

In the approach presented here, we apply a polyhedral pre-transformation as an
enabling transformation to help expose tiling opportunities and transform a loop
iteration space into a rectangular tilable space. Wolf [9] has proved that nested
loops should be transformed into groups of fully permutable loops to be prepared
for rectangular tiling. However, any transformation leading to groups of fully per-
mutable loops does not necessarily support tiles with minimized intercommunication
and maximized data locality.

To maximize coarse grain parallelism and data locality simultaneously, we com-
pute a transformation matrix to obtain fully permutable loops while moving the
loops dependences satisfactions to the inner levels in the transformed space, as much
as possible. When moving dependences to the inner loops the reuse distance of the
data accessed within the loop body is decreased as each data dependence between
statement instances is a data reuse. In this respect, the data locality of the accessed
data is enhanced. In addition, moving dependences satisfactions to the inner levels
of a nested loop, the outer loops are prepared for Do-All parallelization because
each cross iteration dependence prevents loop parallelization. As a result, a suitable
tilable iteration space will be obtained through finding the largest possible groups of
outer fully permutable loops while satisfying dependences at the inner loops. This
is our cost function which considers both data locality and parallelism together. To
construct the most suitable transformation matrix considering this cost function, we
propose a novel geometrical method to compute the most suitable transformation
hyperplanes step by step.

In addition to tile shape, the size of the tiles could have an impressive impact
on the performance of the tiled code. The ideal is to achieve tiles with minimum
inter-tile communication cost and maximum data locality. To achieve this, in the
previous works the tile size is determined in such a way that the data footprint of
a tile fits the private cache of its underlying processor cores [6]. However, this does
not guarantee the minimum intercommunication between tiles. To minimize the
inter-tile communication cost, we firstly computes the ratio of the tile sides in such
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a way that the side with more communications will be of a smaller size compared
with the ones with less communications. Then, to enhance the data locality, the
actual sizes of the tiles sides are computed in such a way that the data to be accessed
by each tile fits into the private cache of the computational cores.

When iteration space tiling is performed, statement instances in the tiled space
are represented by a higher dimensional domains polyhedral involving inter-tile it-
erators and intra-tile iterators. Inter-tile iterators specify the execution order of
tiles that is naturally sequential. In order to schedule tiles for parallel execution,
the most common approach is wavefronting transformation which can be applied to
the tiled space to create a pipeline-parallel schedule for tile execution [9, 10, 11].
Applying the wavefront transformation the tiled nested loops are modified to ex-
pose parallelism at the expense of increasing the reuse distances of data items which
results in the poor data locality. To support data locality, we offer a new compile-
time tile scheduling algorithm assigning tiles to the processor cores considering the
on-chip memory hierarchy of the underlying CMP into account. The scheduling
algorithm attempts to exploit maximum data reuse between tiles through schedul-
ing tiles with maximum data sharing on the same core consecutively or on different
cores with shared on-chip memory at the same time window. Using the resultant
scheduling, the final multi-threaded code is generated.

Briefly, the main contributions of this paper are as follows:

• The design and implementation of efficient nested loops transformation frame-
work for CMPs. In the proposed framework, a unified step by step approach for
nested loops parallelization along with data locality optimization is applied.

• A novel algebraic-based method to compute suitable transformation in order to
obtain locality optimized tilable iteration space considering outer loop paral-
lelization.

• A new memory hierarchy aware tile scheduling algorithm in order to expose
suitable thread-level parallelism.

The remaining parts of this paper are organized as follows: In Section 2, related
work is discussed. In Section 3 a brief description of polyhedral models is given.
Section 4 describes our loop transformation framework. This section includes our
proposed algorithm to obtain tilable nested loop, a new tile scheduling algorithm,
an example illustrating the main steps of our loop transformation algorithms and
the implementation details of the framework. In Section 5 experimental evaluation
demonstrating the efficiency of our loop transformation framework is given. Finally,
the conclusion and future works are presented in Section 6.

2 RELATED WORK

Although different studies have been considered nested loops parallelization [9, 12,
4, 13] and data locality enhancement [14, 15, 16] separately, there exists a small
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fraction of previous works that consider these two complementary and competing
techniques simultaneously.

Previous researches generally focused on one of the two complementary fac-
tors and do not consider a scalable and realistic cost model to guide nested loops
optimization for CMPs. Increasing the performance of programs through consid-
ering coarse grain parallelization along with data locality optimization has been
investigated recently. In [3] a constraint network formulation of the problem of par-
allelization and locality optimization was proposed and a search algorithm was used
to solve it. Lack of a suitable cost function is the main drawback of that work. Also,
since all elements of the multidimensional scheduling matrix are computed in one
step (instead of row by row), it seems that dealing with complex nested loops leads
to a search space combinatorial explosion.

Pluto [17] is the state of the art automatic nested loops parallelizer taking data
locality optimization into account. Pluto attempts to compute appropriate tiling
hyperplanes in the polyhedral model of the given nested loops. Although tiling can
improve the data locality, but specific precaution has to be made when computing
a transformation matrix to construct a tilable iteration space with minimal inter-tile
dependences. To compute an appropriate tiling transformation, Pluto suggests to
compute transformations that minimize an upper bound on the reuse distance of
dependent statement instances. To minimize the bound on all the reuse distances,
an integer linear programming (ILP) formulation considering the loop transforma-
tion validity constraints is constructed. The main drawback of this ILP formulation
is that only positive transformation coefficients could be computed while there are
certain cases in which using transformations with negative coefficients, optimized
parallelism along with locality could be achieved. For example, in this way any
combinations of transformations with negative coefficients including reversal (one
of the three main linear loop transformations [9]) are ignored. In addition, every
permutation of the transformation coefficients in the objective function of ILP for-
mulation has an impact on the obtained solution and it is a time consuming task to
examine all the permutations. In our work we offer a simple realistic cost function
that can be used to compute the multidimensional transformation matrix dimen-
sion by dimension. Applying the computed transformation to the given nested loops
results in appropriate tilable iteration space with minimized inter-tile communica-
tions.

On the other hand, most parallelization approaches use wavefronting technique
to schedule tiles for parallel execution on multiprocessors [10, 11]. In this way
parallel tiled code may suffer from poor data locality and significant load imbal-
ance which results poor scalability on multi processors. Pluto accommodates tile
scheduling on multi processors through dynamically allocating tiles to the processors
at runtime considering inter-tile dependences [18]. In this paper we propose a new
compile-time tile scheduling algorithm taking the tiled code and an on-chip mem-
ory hierarchy description as input and schedules tiles for the specified CMP. The
algorithm computes the data sharing amongst tiles and classifies them into localized
accessed groups that can be executed in parallel with minimum communication and
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synchronization cost. In comparison with Pluto scheduling, we offer a compile-time
tile scheduling algorithm that considers data reuse amongst tiles in assigning tiles
to computational cores to obtain maximum parallelism and data locality together
and do not have any run-time overhead. Also in [19] a compile time tile scheduling
algorithm based on the Pluto approach is presented which clusters tiles and assigns
clusters to computational cores based on the intra and inter-cluster communications.
The main drawbacks of that work are that all tiles in a cluster should be assigned
to the same processor cores and also do not consider the critical path of the data
dependence graph (DDG) in the scheduling algorithm.

3 PRELIMINARIES

To compute complex transformations, a well-known method is to represent nested
loops in the polyhedral model. Polyhedral model provides a powerful abstract al-
gebraic representation of nested loops with the statically predictable control flow,
called static control parts (SCoP) [20]. In contrast with most program representa-
tions that represent an occurrence of a statement in a nested loop only once even
if it is executed many times, the polyhedral model considers dynamic statement
instances. An instance of a statement is a dynamic occurrence of that statement
for a particular iteration of its surrounding loops. Since applying any combination
of loop transformations finally results in a new ordering of different instances of
statements, then it will be possible to represent a complex sequence of different loop
transformations in the form of one transformation matrix in the polyhedral model.

The polyhedral model includes iteration domain for each statement that is a set
of the statement instances and dependence polyhedron for each two dependent state-
ments that is a set of interdependences between instances of the two statements in
the given nested loop. In fact, iteration domain polyhedron, Ds, for a statement,
s, indicates the set of dynamic instances of the statement for all values of the sur-
rounding loops counters. For example, the statement s in Figure 1 a) is executed for
each value of its enclosing loop indices, xs = (i, j). The iteration domain, Ds, for
the statement, s, is:

Ds = {(i, j) | 0 ≤ i ≤M, 0 ≤ j ≤ N}.

A convenient way to represent the statement dependences is the DDG. DDG
is a directed acyclic graph G(V,E), where V is the set of vertices and E is the set
of edges. In DDG, each program statement is represented using a vertex, and the
dependences between instances of two statements are represented by an edge. For
each edge e = (r, s) of DDG there exists a dependence polyhedron, Dr,s. Dependence
polyhedron, Dr,s, is built for each pair of dependent statements, r and s. Each point
in the dependence polyhedron, Dr,s, represents a dependence between two instances
of the statements, r and s.

For example, the dependence polyhedron for the read-after-write (RAW) depen-
dence between instances of statement s in Figure 1 a), resulted from equality relation
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Figure 1. A sample loop and its transformations

a[i][j] = a[i− 1][j − 1] for any two iterations I = (i, j) and I ′ = (i′, j′) is:

Ds,s = {(i, j, i′, j′) | 0 ≤ i ≤M, 0 ≤ j ≤ N, 0 ≤ i′ ≤M, 0 ≤ j′ ≤ N,

i′ = i− 1, j′ = j − 1}.

For example, the point (2, 2, 1, 1) resides inside the dependence polyhedron Ds,s. It
means that the statement instance s in iteration (2, 2) is dependent on the statement
instance in iteration (1, 1) of the nested loop.

As mentioned above, statement domain polyhedron describes the set of dynamic
statement instances for each statement. However, the dependence polyhedron does
not specify the execution order of the statements instances. Originally, the execu-
tion of the statement instances in the nested loops follows lexicographic order of
their surrounding loops counters. A convenient way to specify the order in which
the statement instances have to be executed is to give a timestamp to each state-
ment instance. Instances of statements are executed in the increasing order of their
associated timestamp. A scheduling function Times(xs) determining the timestamp
of statement s instances as a function of its surrounding loops counters (iteration
vector) is built to express the execution order of instances of the statement. The
function Times(xs) is based on the iteration vector of the s surrounding loops, xs,
and program parameters, p. The scheduling function for each statement s is defined
as follows:

Times(xs) = Ts ∗ (xs, p, 1)T . (1)

In relation (1), Ts is an m× (n+ p+ 1) matrix, m is the number of scheduling
matrix rows (i.e. scheduling dimension). An example of a scheduling matrix is
presented in Figure 1. In this example the loop iteration vector xs is (i, j), the
parameter vector p is (M,N) and scheduling matrix Ts includes the coefficients for
(xs, p, 1). Multiplying the scheduling matrix with the vector (i, j,M,N, 1)T , orders
instances of the statement s according to i + j first and then j which is the new
order of execution of the statement s instances in the transformed nested loop in
Figure 1 b).
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Through this paper, to illustrates different steps of the nested loops transfor-
mation we consider a general non-perfect nested loop L of depth n. For example,
the loop iteration vector for statement s at depth ds is xs = (i1, i2, . . . , ids) where ik
represents the index of the loop, Lk, at level k of its enclosing loops. It is assumed
that the nested-loop is normalized and 0 ≤ ik ≤ Nk. The iteration domain of s is
as follows:

Ds = {(i1, i2, . . . , ids) | 0 ≤ i1 ≤ N1, . . . , 0 ≤ ids ≤ Nds}.

The dependence polyhedron, Dr,s, between two dependent statements r and s is
represented by the dependent iteration indices (xr, xs) where xr ∈ Dr and xs ∈ Ds.

As discussed in [17] leaving the nested loops input parameters out of schedul-
ing matrix, allows controlling the loop fusion and distribution. Therefore, we also
leave the input parameters out of scheduling matrix. The lth row of the statement
s scheduling matrix template Ts : m× (ds + 1) for statement s is presented in rela-
tion (2). In this relation, Cl,j are the scheduling coefficients for the loop index ij or
constant 1 at row l of the scheduling matrix. The scheduling matrix template for
the statement r is similar.

Ts = [Cl,i1 , . . . , Cl,ids
, Cl,1], 0 ≤ l ≤ m. (2)

As discussed above, a scheduling function for a statement assigns a logical ex-
ecution time to each instance of the statement. Applying a combination of loop
transformations on a given nested loop may result in different order of executions
for the statements instances within the loop body. Thus, any combination of nested
loops transformations can be represented by a set of multidimensional scheduling [20]
matrices, one for each statement. The scheduling matrices for all statements can be
integrated into a new matrix called nested loop scheduling or transformation matrix.
The lth row of a nested loop transformation(scheduling) matrix is defined as follows:

Tl =
[
C l

s1,i1
. . . C l

s1,ids1
C l

s1
. . . . . . C l

sn,i1
. . . C l

sn,idsn
C l

sn

]
. (3)

In this matrix C l
sm,ik

is the coefficient for the kth iterator of the statement sm and

C l
sm is a constant coefficient. A transformation(scheduling) function for a nested

loop is defined as:

Time(xs1 , . . . , xsn) = T ∗ (xs1 , 1, . . . , xs2 , 1, . . . . . . , xsn , 1)T (4)

where xs is an iterator vector of the statement s. In this paper we use the scheduling
or transformation terms, alternately.

Applying the multidimensional scheduling function, the source iteration domain
polyhedron is transformed into target iteration domain polyhedron containing the
same iteration points, with a new lexicographic order. However, applying a multidi-
mensional scheduling matrix result a valid transformed nested loops if the relative
order of dependent instances of statements has been respected. In other words,
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the destination of each dependence should be scheduled at a time after the source
of the dependence. Therefore, a necessary and sufficient condition for preserving
semantic of the original program is to maintain the relative execution order of de-
pendent statements instances. The formal definition of the validity constraints for
a scheduling function is as follows:

Lemma 1 (Validity constraints). A loop transformation, Ts, for a statement s, is
valid if and only if:

∀e ∈ E,∀〈xr, xs〉 ∈ ρe : Times(xs)− Timer(xr) ≥ 0

⇒ ∀e ∈ E,∀〈xr, xs〉 ∈ ρe : Ts ∗ (xs, 1)T − Tr ∗ (xr, 1)T ≥ 0 (5)

where ρe indicates the dependence polyhedron of the dependence edge e of DDG.

Proof. As proved in [25], preserving the relative order of dependent statement in-
stances is a sufficient condition to maintain the semantics of the original program.
Thus, a schedule preserves the semantics of the original program if it does not change
the relative order of dependent statements instances. Each integral point of a de-
pendence polyhedron represents a pair of dependent statements instances. Thus,
a schedule is valid if and only if it preserves the relative order of instances repre-
sented by each integral point of dependence polyhedron for each pair of dependent
statements in DDG. Preserving the relative order of a pair of dependent instances
〈xr, xs〉 means that the time specified by scheduling function, Time(x), for the des-
tination of the dependence, xs, should be greater than equal to the source of the
dependence, xr, as shown in relation (5). 2

When the scheduling matrix is one-dimensional, the obtained execution time
for each statement instance will be an integer. In this case, all the dependences
between the instances of statements should be satisfied at a single time dimension.
Otherwise, the execution time computed for each statement instance will be a time
vector which represents the time of execution where the first dimension of the time,
which is computed by applying the first row of the transformation matrix, is the
most significant (like a logical time (hour, minute, second)). Then, the dependences
should be satisfied weakly until their strong satisfaction at a time dimension. It
will be in place to note that a dependence is satisfied strongly when for each two
dependent instances of the statements the destination of the dependence is scheduled
at a time after its source.

Definition 1 (Strong satisfaction). A dependence e between two statements r and
s is satisfied strongly at a level l of their surrounding loops, if and only if l is the
first level at which the following condition is met:

∀〈xr, xs〉 ∈ ρe, ∀k, 1 ≤ k ≤ l − 1: Timek
s(xs)− Timek

r(xr) ≥ 0
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∧ Time l
s(xs)− Time l

r(xr) > 0 (6)

where Timek
s(xs) is computed by applying the kth row of the scheduling matrix to

the s surrounding loops iteration vector xs.

Based on the definition 1, the dependence e at preceding levels of l has been satisfied
weakly. A dependence is weakly satisfied at the first time dimensions if applying
the corresponding rows of the scheduling matrices results in identical values for the
destination and source of the dependence. All the dependences have to be weakly
satisfied at the preceding levels of their strong satisfactions. Once a dependence has
been satisfied strongly at a level l, no further validity constraints is necessitated for
the next levels. Each dependence should be satisfied strongly at a time dimension.
Each possible decision about the dimension that the dependence should be satisfied
strongly leads to potentially different solutions.

4 TRANSFORMATION FRAMEWORK

The aim is to speed up the compute-intensive program execution on CMPs. To
achieve this, we present an efficient approach to optimize nested loops, considering
both data locality improvement and parallelization simultaneously. We divide the
problem of optimizing nested loops into two sub-problem of obtaining rectangularly
tilable iteration space considering locality and parallelism and of tile scheduling
considering the memory hierarchy of the underlying CMP. For the first problem,
we proposed a novel nested loop transformation algorithm, described in Section 4.1,
transforming nested loops to outer parallel tilable nested loops with localized data
accesses. For the second problem, we proposed a new tile scheduling algorithm,
described in Section 4.2, taking the memory hierarchy into account to assign tiles
to computational cores with respect to the amount of data reuse between tiles.

4.1 Tiling Transformation

In this section, a new algorithm is presented to transform a loop iteration space into a
valid and appropriate tilable space. Before describing the algorithm, in Section 4.1.1
a polyhedral approach to build the valid transformations space is described. In or-
der to obtain the most suitable transformation within the valid transformations
space, a novel cost function is offered in Section 4.1.2. In Section 4.1.3, our pro-
posed algorithm, using the offered cost function to build the most appropriate valid
transformation is presented. The transformation could be applied to transform the
iteration space into an outer parallel tilable iteration space with improved data lo-
cality. At the end, the problem of selecting the optimal tile size is addressed in
Section 4.1.4.
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4.1.1 Valid Transformations Space

The extracted polyhedral model including the iteration domains polyhedral and de-
pendences polyhedral for each nested loop are used to build the valid transformation
space for the nested loop. Here, as shown in Lemma 1, by valid we mean a transfor-
mation which does not violate the order of dependent statement instances within the
nested loop body. To build the valid transformation space, the validity constraint
relation is constructed for each dependence edge in the DDG.

For instance, applying relation (5) to the dependent instances of the statement,
s, of dependence polyhedron Ds,s resulted from equality a[i][j] = a[i − 1][j − 1] in
Figure 1 a), the validity constraints will be as follows:

(Ci, Cj, CM , CN , C1) ∗ (i, j,M,N, 1)T − (Ci, Cj, CM , CN , C1) ∗ (i′, j′,M,N, 1)T ≥ 0,

(Ci, Cj, CM , CN , C1)∗(i, j,M,N, 1)T−(Ci, Cj, CM , CN , C1)(i−1, j−1,M,N, 1)T ≥ 0

⇒ Ci + Cj ≥ 0.

Also the validity constraint for dependent instances of the statement, s, of de-
pendence polyhedron Ds,s resulted from equality a[i][j] = a[i + 1][j − 1] will be as
follows:

−Ci + Cj ≥ 0.

The validity constraint relation for non-uniform dependences could be non-linear.
In order to linearize a validity constraint relation build for a pair of dependent state-
ments, the Farkas lemma [23] is applied to the statements dependence polyhedron.
Using affine form of Farkas lemma, such constraints can be translated into an affine
equivalent form [23].

Lemma 2 (Farkas lemma). An affine function δ(x) has a non-negative value at
any point inside the polyhedron akx+ bk ≥ 0, iff it is a positive combination of the
polyhedron faces:

δ(x) ≡ λ0 +
∑
k

λk(akx+ bk), λk ≥ 0. (7)

Applying relation (7) to a non-linear validity constraint results in a set of lin-
ear equality relations. Then, using the Fourier-Motzkin elimination method Farkas
multipliers, λk, in the equality relations will be removed and a set of linear validity
constraints in terms of transformation coefficients will be computed.

Any feasible solution satisfying all the linear validity constraints provides a vec-
tor of valid transformation coefficients, which can be set as a separate row of the
transformation matrix. In this way many different transformation matrices, each
representing a valid transformation could be achieved. The difficulty is to obtain
the most suitable transformation among all the valid transformations based on the
desired performance factors. To resolve the difficulty, we proposed a realistic cost
function in [24] that considers both data locality and coarse grain parallelism as
the main interacting factors in the performance of the nested loops. In the next
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section, our proposed cost function is described. In this paper, we provide a novel
geometrical method to obtain the most suitable solution based on the proposed cost
function.

It should be reminded that the resultant transformation function is in fact
a scheduling function which computes a timestamp for each statement instances
within the loop body iterations. To achieve this, a transformation matrix considering
the linear validity constraints, is computed. The validity constraints provide inequal-
ities, representing the constraint that the source of dependence should be executed
before the destination of the dependence. For instance if the source and destination
of a dependence between statement instances of a statement are (i1, j1) and (i2, j2)
then the corresponding validity constraint is (ci, cj)(i2, j2)− (ci, cj)(i1, j1) ≥ 0. Our
algorithm begins with computing these coefficients from first row of the matrix, i.e.
(cicj), considering the cost function discussed in Section 4.1.2. Applying each row
of the transformation matrix to the statement instances within the original nested
loop, results in a new execution order for statement instances in the transformed
space.

4.1.2 Cost Function

Loop tiling is a loop transformation technique that can be applied to obtain coarse
grain parallelism and data locality improvement. Tiling for locality optimization
involves partitioning iteration space into smaller chunks to ensure the data that
is accessed in a chunk remains in the cache until it is reused. As well, tiling for
coarse-grain parallelism involves grouping neighboring iteration points together to
build a larger block of computation that may be concurrently executed on parallel
processors with a reduced communication and synchronization amongst processors.
To prepare the nested loop for tiling, often a complex enabling transformation is
required to be applied to the nested loop iteration space. Constructing tilable itera-
tion space, our proposed nested loops transformation algorithm attempts to compute
a transformation matrix, leading to groups of fully permutable loop nests. As proved
in [9], applying a rectangular tiling to a group of loop nests is valid, if they are fully
permutable.

Lemma 3 (Fully permutable loops). Applying a scheduling function Times(xs) to
the iteration vector of surrounding loops of statement s, a set of fully permutable
loops at levels p, p+ 1, , p+ s− 1 is constructed if and only if:

∀e ∈ Ep,∀〈xr, xs〉 ∈ ρe,∀k, p ≤ k ≤ p+ s− 1,Timek
s(xs)− Timek

r(xr) ≥ 0 (8)

where Ep is the set of dependences in DDG that have not been satisfied up to level
p− 1.

Proof. It is proved in [1]. 2

Based on this Lemma, each permutation of the loops at levels p, p+ 1, . . . , p+ s− 1
is legal.



Tiling for Parallelization and Locality Optimization 577

Although iteration space tiling can improve the data locality and/or coarsen
the granularity of parallelism to a certain level, specific precaution has to be made
when computing a transformation to construct a tilable iteration space, supporting
minimum inter-tile communications [17]. Loops cross-iteration dependences prevent
parallelization because dependent iterations of a loop cannot be executed in parallel.
On the other hand, each dependence is a type of data reuse because a same data
item is accessed by dependent loop iterations. Reducing the reuse distance amongst
accesses to the same data item, the data locality could be improved because by
reducing the distance the accessed data may be kept in the cache. To reduce the
reuse distance, the nested loop should be transformed in such a way that the de-
pendences satisfactions move to the inner loops, as much as possible. In addition,
by moving dependences satisfaction to inner loops, the outer loops cross-iteration
dependences will be transferred to inner loops and the outer loops iterations will be
prepared to be executed in parallel. In this way, the data locality and coarse-grain
parallelism could be achieved, simultaneously. Therefore, the problem of data lo-
cality enhancement along with coarse grain parallelization will be reformulated as
the problem of constructing outermost fully permutable groups of nested loops that
tend to satisfy dependences at inner loops. This is our cost function that considers
both data locality and parallelism.

4.1.3 The LCLT Proposed Algorithm

Our proposed Locality Conscious Loop Transformation (LCLT) algorithm is pre-
sented in Figure 2. The algorithm computes a transformation for a given nested
loop that transfers the original nested loops to the largest possible groups of outer
fully permutable nested loops while transferring dependences satisfaction to inner
loops as far as the validity constraints are not violated. The transformation is defined
as a matrix, which is computed row by row. Each row is computed as a transfor-
mation hyperplane which projects the nested loop iterations to a distinct dimension
in the transformed space. It should be noted that applying some consecutive rows
of the transformation matrix to the domain polyhedral of a nested loop result in
a group of fully permutable loops, if and only if all the dependences are satisfied at
least weakly at the corresponding levels. On the other hand, in order to move de-
pendences to the innermost loops, at each step the algorithm attempts to compute
transformation hyperplanes result in strongly satisfaction of as few dependences as
possible. As proved in Lemma 4 such a transformation hyperplane coefficients are
elements of a vertex or a point on the line or ray in the validity constraints polyhe-
dron that is the intersection of maximum number of its faces. We provide a novel
geometrical method for computing optimal transformation hyperplanes as proved in
Lemma 4.

The algorithm seeks for the new hyperplane as far as new hyperplane that are
linearly independent from the previous ones could be found. Linear independence
constraints for a set of obtained hyperplanes are computed based on the method
offered in [17] and added to the validity constraints. At the point when no extra
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Figure 2. LCLT algorithm
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independent hyperplane can be found, computed set of the hyperplanes construct
a new group of fully permutable loops in the transformed iteration space. Following
this, the satisfied dependences constraints are excluded from the validity constraints
to compute the next group of fully permutable loops. This trend goes on until all
the dependences are satisfied strongly. In step 2.1 of the LCLT algorithm, the next
rows of the transformation matrix are computed. If no row is computed, to eliminate
some of the constraints from the validity constraints, in step 2.2 a dependence is sat-
isfied through inserting a new scalar dimension into the transformation matrix. The
scalar dimension has zero values for all coefficients except the constant coefficients.
The constant coefficients are set to zero and one for the source and destination of
the dependence, respectively. In this way, the dependence is satisfied by assigning
a timestamp to the destination of the dependence that is greater than the timestamp
assigned to the source. The coefficients of a transformation hyperplane computed in
each stage constitute a row of a multi-dimensional transformation matrix. Applying
these transformation hyperplanes to the domain polyhedral of the original nested
loop, a suitable rectangular tilable iteration space will be computed.

For example, aggregating the legality constraints obtained for the nested loop
of Figure 1 a), the coefficients (Ci, Cj, CM , CN , C1) of the first transformation hyper-
plane obtained by our algorithm is (1, 1, 0, 0, 0). This hyperplane strongly satisfies
a minimum number of dependences (i.e. only the first dependence):

Ci + Cj ≥ 0

−Ci + Cj ≥ 0

The next solution should be linearly independent from the first solution. Finding
the appropriate value for Ci and Cj which satisfies the validity constraints, the
coefficients of the resultant linearly independent hyperplane will be (0, 1, 0, 0, 0).
This hyperplane strongly satisfy the second dependence. As a result, the resultant
transformation matrix, Ts, is defined as shown in Figure 1.

Applying Ts to the original nested loop statement domain, results in the nested
loop shown in the Figure 1 b). The transformed space is tilable and can be tiled,
rectangularly. It should be noticed that in this case the nested loop cannot be
transformed to the outer parallel loops as the statement dependences span two
dimensions of the 2-dimensional nested loop iteration space [9].

Finding the most suitable solution. Before, our method for obtaining the
most suitable transformation hyperplane could be described, some backgrounds
about geometrical concepts concerning polyhedral optimization seem to be bene-
ficial. A hyperplane is defined as a n − 1 dimensional sub-space of n-dimensional
space. Precisely, an affine hyperplane is the set of vectors v such that h.v = c, for
c ∈ Z. Different values for c represent different parallel hyperplanes with the vector
h as their normal vector. A hyperplane h.v = c partitions the n-dimensional space
into two half-spaces, namely the positive halfspace, h.v > c, and negative halfspace,
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h.v < c. A half-space is represented by an affine inequality. A hyperplane and its
two halfspaces are shown in Figure 3 a).

A polyhedron is the intersection of finite number of halfspaces which are the faces
of the polyhedron. Therefore, a polyhedron can be represented as a system of affine
inequalities, each inequality representing a face of the polyhedron. For example,
a polyhedron with m faces in the n-dimensional space is shown in relation (9).

P = {x ∈ Rn | Ax+ b ≥ 0} (9)

where A is a m ∗ n matrix and b is a vector of m elements.

Figure 3. Hyperplane, halfspaces and polyhedron

Based on the concepts mentioned above, the system of affine validity constraints
computed in step 1 of the LCLT algorithm constructs a polyhedron called the va-
lidity constraints polyhedron. LCLT searches for those values of the coefficients,
Hi = (Cs1,i1 , . . . , Cs1,ids1

, Cs1, . . . , Csn,i1 , . . . , Csn,idsn
, Csn) in the validity constraints

polyhedron that minimize the number of strongly satisfied dependences.

Lemma 4 (LCLT solution point). A point Hi = (Cs1,i1 , . . . , Cs1,ids1
, Cs1, . . . , Csn,i1 ,

. . . , Csn,idsn
, Csn) in the validity constraint polyhedron, minimizing the number of

strongly satisfied dependences is a point at the intersection of maximum number of
polyhedron faces.

Proof. A polyhedron is a set of affine inequalities and can be represented as a system
of affine inequalities:

P = {x ∈ Rn | Ax+ b ≥ 0} ≡

a1x+ b1 ≥ 0,

a2x+ b2 ≥ 0,

. . .

anx+ bn ≥ 0.

Each point x satisfying an inequality aix + bi ≥ 0 in the validity constraints poly-
hedron, Ax + b ≥ 0, should be a point on the corresponding face, aix + bi = 0,
or a point in the positive halfspace of the face, aix + bi > 0. Each inequality in
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the validity constraints polyhedron is a validity constraint indicating the difference
between the timestamp of statement instances of the destination and source of the
dependence (see Lemma 1). Therefore, the greater than inequality (positive half-
space of the face, i.e. aix+bi > 0) in the constraints indicates strongly satisfaction of
the dependences, because in this case the destination of the dependences scheduled
at a time greater than its source in the transformed space. In addition, equal to zero
relation for a constraint (aix + bi = 0) indicates weakly satisfaction of the related
dependence, because in this case the destination and source of the dependence are
scheduled to the same time. Hence, a point in the validity constraints polyhedron
that does not strongly satisfy a validity constraint aix + bi ≥ 0, should be on the
corresponding face of the polyhedron constructed by the constraint, i.e. aix+bi = 0.
Therefore, to locate a point minimizing the number of strongly satisfied dependences
we should search for a point x that for maximum number of constraints inequalities
aix + bi ≥ 0 results in aix + bi = 0. Obviously, such a point is on the maximum
number of faces of the polyhedron which is at the intersection of maximum number
of intersecting faces of the polyhedron. 2

To find a solution point on the intersection of maximum number of faces of
a polyhedron, the duality form [26] of the polyhedron is used. It should be noted
that each polyhedron can be represented by an alternative dual form in terms of its
lines, rays, and vertices. Chernikova algorithm is applied to transfer a polyhedron
representation from constraints based representation to dual representation [26].
Vertices, lines and rays are the intersection of at least two faces of the polyhedron.
For example, two polyhedral and the solution set of them are given in Figure 3 b).

Based on the above discussion, the solution should be a vertex or a point on
a line or a ray at the intersection of the maximum number of faces of the validity
constraints polyhedron. If the polyhedron does not have at least one vertex, the ray
or line that is at the maximum number of faces is selected as a solution set and any
point on the ray or line can be selected as a solution point. Such a point weakly
satisfies all constraints as it is in the constraints polyhedron and strongly satisfies
minimum number of constraints, as it is at the intersection of maximum number
of faces of the polyhedron. If there exist more than one solution, the hyperplane
that strongly satisfy minimum number of dependences including Read-After-Read
(RAR) dependences is selected. This hyperplane minimize the RAR dependences
distances and improve the data locality furthers.

Time complexity. In the following the time complexity of the LCLT algorithm
is discussed. The inputs to the algorithm are e and m where e indicates the number
of data dependencies and m is the maximum domain dimensionality of the given
nested loop. The for loop in step 1 of the algorithm runs for e times which could
be as big as O(e ∗m3). In the worst case, for each iteration of the loop the Fourier-
Motzkin elimination method is applied to eliminate the Farkas multipliers which
takes O(m3). It takes O(m2) to eliminate a Farkas multipliers from constraints set
with m inequalities. Therefore, it takes O(m3) to eliminate m Farkas multipliers.
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Step 2 of the algorithm needs O(m) number of applying Chernikova algorithm [30]
to find the optimal solution with respect to Lemma 4. An enhanced implementation
of Chernikova algorithm is used for finding a set of vertices and rays of a given
polyhedron defined by a system of linear equations and inequalities. Chernikova
algorithm takes exponential time O(2m). However, the Chernikova algorithm is
very efficient in practice, although its worst case time complexity is exponential.
For example, as shown in [30] for a polyhedron with dimension 8, the execution
time of the implemented algorithm is about 0.5s.

Overall, the worst case complexity appears to be O(m ∗ 2m + e ∗ m3). Since
our approach relies on Chernikova algorithm, it has a worst-case exponential time
complexity O(2m). However, due to the simple structure of the program polyhedral,
our source-to-source code optimizer runs very fast in practice.

4.1.4 Iteration Space Tiling

Applying LCLT algorithm to a given nested loop, the transformed space may con-
tain groups of fully permutable loops. As proved in [9] the iteration space of a group
of fully permutable loops can be partitioned into rectangular tiles, legally. A rect-
angular tiled space could be accurately identified by the computed hyperplanes as
tiles sides and the size of each side. In addition to the shape, the tiles size can
have significant impact on the performance of the tiled code. To achieve good per-
formance through iteration space tiling, the data items accessed in each tile should
reside in the private cache of the processor cores. Computing the optimal size of
the tiles is known to be a difficult problem and generally empirical search is used
to calculate the optimal size [27]. In order to specify tiles accurately, the tile size
will be computed based on our proposed decoupling method to further minimize the
communication cost amongst tiles and fit the set of data items accessed within tiles
into local caches of the processor cores.

We separate the problem of computing the size of each side of the tile into the
problem of computing the size ratio of sides based on the amount of communica-
tion across each side and then determining the exact size of each side based on the
amount of data accessed within the tile. Separating the size ratio of sides and ac-
tual size of the sides can help to consider the two important parameters of inter-tile
communication and the amount of accessed data within each tile in the tiling of
iteration space. We consider the size ratio of a side as the reverse of the amount of
communication across that side to other sides. The amount of communication for
each side is obtained based on the number of dependences carried through the hy-
perplane that constitute that side of the tile. Therefore, the size ratio for sides with
more communications will be smaller than the sides with smaller communications.
The side ratio, Ri, for side i is computed in such a way that shown in relation (10)
(if comi = 0 then set comi = 1):

di =
MaxCom

com i

⇒ Ri =
di∑
j dj

. (10)
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MaxCom is the maximum communications passed through sides and com i is the
communication of side i. The actual size of each side of the tiles is determined
based on the capacity of the private cache of the processor cores in such a way that
the average amount of the different accessed data in each tile can be placed inside
the private cache. To do this, first the average amount of the different accessed
data in each iteration is obtained. Then, the number of all iterations that should
be executed in each tile is determined based on the local cache size and the average
amount of the different data items accessed in each iteration.

AvgDataInIteration =
NumberOfAllDifferentDataAccessed

NumberOfAllIteration
, (11)

IntraTileIterations =
CacheSize

AvgDataInIteration
. (12)

Finally, the actual size of each dimension is computed based on the dimension ratio
and the number of iterations of the tiles, as shown in relation (13).

Size(i) = IntraTileIterations ∗Ri. (13)

4.2 Tile Scheduling

Tile scheduling algorithms are generally aimed at assignment of tiles to the available
processors in such a way that the highest possible parallelism in the execution of the
tiles is achieved. A general tile scheduling strategy which is used in most previous
works is wavefront technique [9, 19]. Tiles within each wavefront are independent
from one another and may be executed in parallel, although the wavefronts must
be executed in proper sequence to satisfy the loop-carried dependences. Wavefronts
can be applied to locate all the tiles that have no interdependences and may execute
at the same time in parallel. The main problem of the wavefronting is consider-
ing parallelism as the main objective and inattention data sharing between tiles
and the possibility of improving data locality. In addition, the number of tiles on
each wavefront can be different and may result in imbalanced load on processor
cores.

In the rest of this section, we present a different tile scheduling strategy to
obtain coarse grain parallelism and improve data locality further. To this end,
tiles are statically scheduled for parallel execution on a multiprocessor. The aim of
the proposed scheduling algorithm is to exploit the data reuse among tiles through
scheduling tiles with high volume of data sharing to be executed consecutively on
the same core or on the different cores with the same shared cache at around the
same time.

To represent the data reuse between tiles, we use a variation of the DDG, named
data reuse graph (DRG) which is a DDG including RAR dependences amongst tiles.
It should be noted that in contrast to most scheduling algorithms that aimed at
minimizing the critical path of the graph, we must also consider the data reuse
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amongst the tiles as an important factor in the tiles scheduling. We employ the
polyhedral dependence model and construct a dependence polyhedron for all types
of data reuse in the tiled space to build our DRG. In addition, each edge of the
DRG is labeled by the data reuse degree which is the number of accesses to the
same memory locations from the connected pair of tiles.

Our proposed locality conscious tile scheduling algorithm (LCTS) is given in
Figure 4. LCTS takes a rectangular tiled iteration space and an on-chip memory
hierarchy description of its underlying CMP as input and results in a multithreaded
code customized for the specified CMP. The proposed tile scheduling algorithm is
a type of list scheduling. The algorithm keeps track the tiles in the tree struc-
ture of cache memories, from the private cache of each core to the last level of
on-chip shared cache amongst all the cores, at each cycle based on the least re-
cently used (LRU) cache replacement policy. At each cycle, a node of the DRG
is schedulable if all its non-RAR predecessors were being scheduled in the earlier
cycles. In addition, the priority of nodes that are the source of at least one non-
RAR dependence is higher, as scheduling them make all of their successor nodes
schedulable.

The algorithm comprises two main steps. In step 1, all the tiles with non-RAR
outgoing edges are scheduled. In fact, a list of schedulable DRG nodes with at least
one non-RAR outgoing dependence is considered as ready list. The priority of each
node in the ready list is set to the longest distance with the DRG end nodes. Each
time, the node with maximum priority is selected and the amount of data sharing
between it and tiles in private caches of each core are determined. Afterwards, the
selected node is scheduled to the core with maximum data sharing between them. If
there are not any data sharing between selected node and the nodes in the private
cache of each core, then the data sharing between it and tiles in the next level of
the cache hierarchy is considered and this trend continues while empty cores and
unscheduled nodes in the ready list are exist.

After scheduling all non-RAR output nodes, in step 2 all the tiles with RAR
outgoing edges are scheduled. To schedule the schedulable nodes, a two sided graph
is build, one side of which comprises unscheduled schedulable nodes and the other
side is provided by all cores with empty cycle. Each node in the graph is connected
to all cores with the weight equal to the amount of data sharing between it and tiles
in the private cache of each core. A greedy approach is used and repetitively selects
the edge with maximum weight and schedule the connected tile to the current cycle
of the connected core. Then, the core and all edges connected to that are removed
from the graph. This goes on while there exist edges with weight greater than zero.
If weights of all edges are equal to zero, weights are set equal to the amount of
data sharing between the nodes and tiles in the next level of the cache hierarchy of
cores. This trend goes on until all schedulable nodes or cores cycles are scheduled.
After that, before going to the scheduling of the next cycle, the schedulable node
list will be updated based on the scheduled node in the current cores cycles. After
scheduling a cycle of all cores, if there exist cross-cores dependences between tiles
scheduled in this cycle and previous cycles, the synchronization table entry for the



Tiling for Parallelization and Locality Optimization 585

Figure 4. LCTS algorithm
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core that is the destination of the dependence should be set to be sure that its source
is completed.

Applying the proposed algorithm, computational cores accesses the data through
private caches as much as possible. On the other hand, considering the cache hierar-
chy of the CMP into account the processor cores accesses the shared data amongst
them at around the same time and as a result maximizing locality of data in shared
on-chip memories. In the other word, the algorithm attempt to obtain the maximum
parallelization degree and data locality and minimize the off-chip memory accesses.

Finally, the parallel code should be generated based on the scheduling matrix.
We use a customized version of polyhedral code generator, Cloog [22], to apply
the transformation matrix computed based on the LCLT algorithm to the domain
polyhedral of the initial nested loop and generate inter-tile iterator loops. Then,
applying the LCTS algorithm the scheduling and synchronization table is obtained.
Afterward, the executor threads are constructed and the obtained iterator loops are
considered as execution code and the scheduling and synchronization table for each
core is passed to that. The executor threads start the execution of the iterations of
tiles in the scheduling matrix and if there exist synchronization point synchronize
themselves with other threads.

Time complexity. In the following the time complexity of the LCTS algorithm
is discussed. The inputs to the algorithm are v and p where v indicates the number
of tiles and p is the number of processor cores. The time complexity of step 1 of
the algorithm could be as big as O(Max(v3, v ∗ p)). Also, step 2 of the algorithm
could be as big as O(v ∗ (v + p)2). We assume that the number of tiles is much
more than the number of processor cores. Overall, the worst case complexity will
be O(v4).

4.3 Example

In this section, we provide a stepwise use of our approach to determine the trans-
formation matrix for a nested loop. Consider the original nested loop presented in
Figure 5 a). The iteration domain for the statement s is:

Ds = {(i, j, k) | 0 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1, 0 ≤ k ≤ O − 1}.

The nested loop includes four dependences which two of them are non-uniform
dependence. The dependence polyhedron for the uniform read after write (RAW)
dependence resulted from a[i][j][k] = a[i − 1][j + 1][k + 1] for any two iterations
I = (i, j, k) and I ′ = (i′, j′, k′) is:

Ds,s = {(i, j, k, i′, j′, k′) | 0 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1, 0 ≤ k ≤ O − 1,

0 ≤ i′ ≤ N − 1, 0 ≤ j′ ≤M − 1, 0 ≤ k′ ≤ O − 1,

i′ = i− 1, j′ = j + 1, k′ = k + 1}.
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Figure 5. Applying transformation algorithms on an example

The validity constraint for this dependence is as follows:

(Ci, Cj, Ck, C1) ∗ (i, j, k, 1)T − (Ci, Cj, Ck, C1)(i
′, j′, k′, 1)T ≥ 0

⇒ (Ci, Cj, Ck, C1) ∗ (i, j, k, 1)T − (Ci, Cj, Ck, C1)(i− 1, j + 1, k + 1, 1)T ≥ 0

⇒ Ci − Cj − Ck ≥ 0.

Dependence 2: Uniform WAR dependence, a[i][j][k]→ a[i+ 2][j + 1][k + 1].

Obtained constraint: 2Ci + Cj + Ck ≥ 0.

Dependence 3: Non-uniform RAW dependence, a[i][j][k]→ a[N − i][j][k].

Non-linear validity constraint: 2Ci ∗ i−N ∗ Ci ≥ 0.

Applying the Farkas lemma to the corresponding dependence polyhe-
dron:

2Ci ∗ i−N ∗ Ci ≡ λ0 + λ1(i) + λ2(N − i− 1) + λ3(N).

Obtained constraint using Fourier-Motzkin elimination method: Ci ≥ 0.

Dependence 4: Non-uniform WAR dependence, a[N − i][j][k]→ a[i][j][k].

Obtained constraint is similar to dependence 3: Ci ≥ 0.
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Also, avoiding obvious zero solution for these constraints, a solution
should respect the non-zero constraint:

(Ci||Cj||Cj) 6= 0.

Aggregating three different validity constraints, the constraint polyhe-
dron is constructed:

Ci − Cj − Ck ≥ 0, 2Ci + Cj + Ck ≥ 0, Ci ≥ 0.

The first solution found by our method could be any point (Ci, Cj, Ck, C1) on the
line {Cj + Ck = 0, Ci = 0} in the constraint polyhedron. It should be explained
that this line is the intersection of all faces of the constraints polyhedron and as
a result any point on the line does not satisfy any constraint strongly. The point
(0,−1, 1, 0) on this line is selected as the first transformation hyperplane coefficients.
To obtain the next solution, the algorithm search for a linearly independent solu-
tion in the constraints polyhedron. Finding the appropriate linearly independent
hyperplane(Ci, Cj, Ck, C1) in the constraints polyhedron, the resultant hyperplane
coefficients can be (1, 1, 0, 0). Finally, the next solution can be (1, 0, 0, 0) which sat-
isfies the last dependence, dependence 1, and is linearly independent from previous
solutions. Then, the computed transformation matrix can be defined as:

Ts =

0 −1 1 0
1 1 0 0
1 0 0 0

 .
Applying the computed transformation matrix to the original nested loop, the resul-
tant code is shown in Figure 5 b). As it can be seen, the outer loop iterations of the
transformed loops are independent and can be executed in parallel. In addition, the
transformed iteration space can be tiled rectangularly, as shown in Figure 5 c). After
transforming the nested loop and tiling the resultant iteration space, the LCTS tile
scheduling algorithm is applied to the tiled space. Applying LCTS algorithm the
resultant tile scheduling and synchronization tables are shown in Figure 5 e). The
final multi-threaded code is shown in Figure 5 d).

Using Pluto, the state of the art automatic parallelizer and locality optimizer [17],
the resultant transformation matrix is computed as follows:

Ts =

1 0 0 0
1 1 0 0
1 0 1 0


As it can be seen, applying this transformation the maximum coarse grain paral-
lelism through outer loops parallelization cannot be achieved.
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4.4 Implementation

We use PoCC tools collection [28] to implement our nested loops optimization frame-
work. PoCC is a collection of source code optimization tools and a source-to-source
compiler, embedding Clan, Candl [21], Cloog [22], Polylib [29] and some other useful
polyhedral compilation libraries.

Figure 6. Framework for locality conscious nested loops parallelization

Main components of our proposed optimization framework are shown in Figure 6.
In the first step we have applied Clan (Chunky Loop Analyzer) library to extract
the iteration domains polyhedral. Clan is a library that translates Static Control
Parts (SCoP) of programs written in C or Java into a polyhedral representation.
A SCoP is a set of consecutive statements, where loop bounds, array subscripts
and conditionals of if statements are affine functions of enclosing loop iterators and
input parameters. We invoke Clan to parse the source code of a given nested loop
and extract the iteration domain polyhedron for each statement within the SCoP.
The output of Clan is a list of matrices, where each matrix represents an iteration
domain polyhedron of a statement within the loops body.

In the second step, DDG and its related dependency polyhedral are extracted
by Candl (Chunky ANalyzer for Dependencies in Loops). Candl is a library for
data dependence analysis of SCoPs. Candl is able to extract the set of dependencies
between statement instances from a polyhedral representation of a SCoP obtained in
previous step. It takes the SCoP and iteration domains as input and computes the
dependence polyhedron for each pair of dependent statements. Using the resultant
dependencies polyhedral, DDG of the SCoP can be constructed easily.

Next, our proposed algorithm LCLT, described in Section 4.1.3, is applied to
the polyhedral model extracted in the previous steps to compute a suitable trans-
formation matrix. Using the dependences polyhedral and iteration domains, the
valid transformation space is constructed based on the Lemma 1. Afterwards, to
compute the optimal transformation matrix level by level, the optimal solution at
each level is obtained from dual representation of constraints polyhedron which can
be computed using Chernikova algorithm implemented in PolyLib library. Polylib
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is a library for the manipulation of polyhedral. Polylib uses the Chernikova algo-
rithm to move between the implicit form of a polyhedron (as a set of constraints)
and its dual form as a set of lines, rays and vertices. Also, independent constraints
is computed based on the method proposed in [1] and its implementation already
exists in PoCC. Finally, tile size is deterimind based on the method described in
Section 4.1.4.

A customized version of polyhedral code generator tool Cloog (Chunky Loop
Generator), converts the initial sequential loop to the desired parallel loop using
the iteration domains polyhedral and computed transformation matrix. CLoog is
a library for code generation in the polyhedral model. Cloog can scan a union
of polyhedral under a lexicographic ordering specified as a transformation matrix.
LCLT component computes transformation matrix and provides it to Cloog. On
providing the iteration domains along with transformation matrix T , Cloog can
generate nested loops which scan the iteration domains in the lexicographic ordering
imposed by T for all statements.

In the next step, to construct our DRG we employ the polyhedral dependence
model and deduce a polyhedron for data reuse in the tiled domain using Candl.
A higher dimensional dependence polyhedron is used to represent data dependences
between two dependent statements in the tiled iteration space. Dimensions of intra-
tile iterators are projected out from the dependence polyhedron to extract inter-tile
dependences in the tiled space. The projection method is performed for all depen-
dence polyhedral using Fourier-Motzkin elimination method implemented in Polylib
library. Using the obtained inter-tile dependences, the DRG can be constructed.

In the next step, the proposed tile scheduling algorithm, described in Section 4.2,
takes the resultant DRG as input and computes a tile scheduling and synchronization
table which determines the execution order of tiles considering the memory hierarchy
of the underlying processor architecture. Implementation of this component is based
on the pseudo code shown in Figure 4.

Finally, a postprocessor component takes the tiled code generated by Cloog and
synchronization and scheduling table obtained in the previous steps as input and
generates final parallel code. In fact, the postprocessor removes inter-tile iterator
loops from tiled code and adds a new loop with necessary synchronization codes.
The newly added loop selects the specified tile at each cycle and executes its intra-
tile code. The resultant code may act as the main function of some threads which
are attached to different processor cores.

5 PERFORMANCE EVALUATION

In order to evaluate the proposed method, we implement our source-to-source trans-
formation method as a preprocessing phase of compilation. We used Clan [21] to
obtain the iteration domains and Candl [21] to extract the dependences polyhedral
from the source code. Also, we used Cloog [22] and customized it to generate the
final multithreaded code. We carry out experiments with five compute-intensive
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array based nested loops generally used as benchmarks to evaluate the proposed
method (from polybench benchmark suit [31]). Our evaluation is performed on In-
tel Xeon E5620 workstation with dual quad-core 2.8 GHz, 32 KB L1 cache, 12 MB
L2 cache, 48 GB memory running Linux Ubuntu server 12.04. All versions of the
benchmarks are compiled by Intel’s ICC 10.1 compiler with ‘-fast’ option. In addi-
tion, we used a simulation environment for modeling a simple multiprocessor system
with cache hierarchies to evaluate the impact of the proposed method on the data
locality enhancement.

Our evaluation starts with a comparison of execution time of four different ver-
sions of each code in our benchmark suite on the workstation with 1, 2, 4 and
8 threads. The first one (original) is the original nested loop source code. The
second version (LCLT) is the transformed code by applying the LCLT algorithm
without tiling. The third version (Tiled-LCLT) is the tiled version of the LCLT
optimized version. Finally the fourth one (LCLT-LCTS) is the tiled version of the
code optimized by applying LCLT and scheduled by LCTS algorithm. The normal-
ized execution times of different optimized versions of benchmarks with respect to
the original version are given in Figure 7. As expected, in average the best case is
the LCLT-LCTS versions which are the transformed, tiled and scheduled code by
applying all steps of our optimization approach. An important observation that can
be made is that as the machine scale out, our LCLT-LCTS version of codes makes
better results in comparison with the LCLT and Tiled-LCLT versions which are due
to the data locality improvement of tiled code along with coarse grain parallelization
and suitable scheduling of tiles. Some important results that can be obtained are
as follows:

1. LCLT prepares the iteration space for tiling; without tiling, performance may
not be good enough due to ignoring the data reuse in multiple dimension and
coarse grain parallelism,

2. due to the overhead of reading from scheduling and synchronization table, the
LCLT-LCTS is not the best choice for small number of cores; in this case Tiled-
LCLT generates better results and

3. our proposed approach (LCLT-LCTS version) provides a scalable farmework
and brings more performance on CMPs with large number of cores; because of
exploiting data reuse, parallelism and load balance.

In Figure 8, the improvements in execution time on 8 cores obtained by applying
our method (LCLT-LCTS version) are compared with those of Pluto, the state of
the art approach in parallelization and locality improvement. In comparison with
Pluto, there is about 17 % decrease in the execution time of the programs on average,
which shows the superiority of the proposed approach.

On the other hand, to present the impact of the proposed algorithm in locality
improvement, the cache-miss reductions gained under our approach on a simple
simulated machine for all the benchmarks are shown in Figure 9. Specifically, we
simulated a simple multi-core processor that can issue and execute four instructions
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Figure 7. Normalized execution times on different number of cores

Figure 8. Improvements in execution time over Pluto

Figure 9. Cache miss reduction in private L1 and shared L2 caches
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in parallel. The machine configuration includes private L1 data caches; each is 16 KB
and fully associative, and shared L2 cache; 1 MB and fully associative. The average
percentages of private L1 and shared L2 cache miss reductions on this machine
are shown in the Figure 9. The important point is that by applying the proposed
method the data locality enhancement can be achieved through data reuse of shared
data items amongst all cores in L2 cache as well as data reuse of private data items
in L1 cache of each core. The main reasons summarized as follows:

1. decreasing reuse distances of data items achieved by the LCLT algorithm,

2. exploiting data reuse in multiple dimensions of the arrays via tiling and

3. obtaining locality through tile scheduling by assigning tiles with high volume of
data sharing to the same core or different cores with shared cache at around the
same time.

6 CONCLUSIONS

This paper presents a new compile-time source-to-source loop transformation ap-
proach based on the polyhedral model to address the problem of data locality en-
hancement along with coarse grain parallelization. In order to maximize the paral-
lelism degree and minimize the reuse distance of data items, the proposed method
objective is to obtain a set of outermost fully permutable nested loops that are tilable
while moving the dependences satisfaction to the inner loops, as much as possible.
Applying the computed transformation following by tiling and memory hierarchy-
aware tile scheduling strategy, the coarse-grained parallel nested loops with localized
data accesses will be obtained.
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