Computing and Informatics, Vol. 36, 2017, doi: 10.4149/cai 2017 4

OPTIMIZING MEMORY USAGE IN L4-BASED
MICROKERNEL

Petre EFTIME, Lucian MOGOSANU, Mihai CARABAS
Razvan DEACONESCU, Laura GHEORGHE

Faculty of Automatic Control and Computers
University Politehnica of Bucharest, Splaiul Independentei nr. 313
Sector 6, Bucuresti, 060042, Romania
e-mail: petre.eftime@cti.pub.ro,
{1ucian.mogosanu, mihai. carabas}@cs .pub.ro,
{razvan.deaconescu, laura.gheorghe}@cs.pub.ro

Valentin Gabriel VOICULESCU

VirtualMetriz, Inc.
16788 Zumaque Street, PO Box 569
Rancho Santa Fe, CA 92067, USA

e-mail: gabi@virtualmetrix.com

Abstract. Memory allocation is a critical aspect of any modern operating system
kernel because it must run continuously for long periods of time, therefore memory
leaks and inefficiency must be eliminated. This paper presents different memory
management algorithms and their aplicability to an L4-based microkernel. We aim
to reduce memory usage and increase the performance of allocation and deallocation

of memory.

Keywords: Memory management, memory allocation, SLUB, SLAB, kernel, L4

microkernel

Mathematics Subject Classification 2010: 68N25, 68N99

926 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu
1 INTRODUCTION

Memory management is a critical part of every operating system kernel and bad
memory usage can negatively impact the usability of the system as a whole. Efficient
and reliable memory management is a desired feature of any kernel.

The goal of this paper is to identify and fix shortcomings related to memory
allocation and usage of an L4-based microkernel. Since a microkernel has limited
resources at its disposal, it must allocate them efficiently and usefully. Failure to
do so limits the system’s usability and reliability, features which are desired in any
kernel designed to run real life applications.

Allocation and freeing memory are some of the most frequent operations in
an operating system kernel [I]. Good memory operation performance is required.
Large overhead can slow down the whole system and negatively affect other as-
pects such as energy usage, which is important in all systems, from servers to cell
phones.

In practice one cannot optimally allocate memory because the number, the order
and the size of the objects cannot be predicted. We use state of the art approx-
imation algorithms to ensure fast allocation, minimize the internal/external frag-
mentation, but we have taken into account cache alignment, memory locality at the
expense of consuming more memory.

The paper is structured as follows. Section [J] introduces the reader to the basics
of operating systems and memory management mechanisms. Section [3lists previous
work on memory allocation, using some of the most well known and widely used
types of allocators available as examples. Sections [[] and [7] explain the design,
implementation and evaluation of a novel bitmap-based allocator and its benefits in
comparison to previous solutions. Section[f|describes and measures improvements of
memory-related updates added to the microkernel. In Section [8| we analyse how well
the goal was accomplished and what more can be done to improve kernel memory
utilisation.

2 BACKGROUND

This section describes the basic concepts of memory management and some of the
attributes that will be extended to the L4 microkernel used as basis for our imple-
mentation.

An operating system (OS) is a collection of programs and services that act
as intermediary between a computer and the user, such that the user does not
need to know any specifics about how the computer works at a fundamental level.
At the heart of every OS we find the kernel, with its main purpose of providing
an abstraction layer for the hardware such that the userspace programs can be
targeted at a broader range of devices, running the same — or similar, interface-wise —
kernel, but on different hardware. The kernel does not (or should not) provide any
functionality that the user needs directly; e.g., the kernel can provide a system call
through which the user can write to an external storage, but the user would still

Optimizing Memory Usage in L4-Based Microkernel 927

need a program to do so, possibly provided with the OS. Therefore, from a user’s
perspective, the kernel should use the least amount of resources necessary, so that
the user’s own programs can benefit from them.

Kernels can be classified into multiple categories, based on their internal ar-
chitecture: monolithic kernels, that have all the drivers running in kernel-mode —
a privileged mode which lets them access the kernel’s resources in a more direct
way, microkernels, that have the drivers running in non-privileged (userspace) mode,
or hybrid systems, where some drivers run in privileged mode, while some run in
userspace.

All these architectures provide a similar interface to userspace applications
in terms of usability, but they each have their respective strengths and weak-
nesses.

Monolithic kernels can be faster than microkernels and usually provide userspace
programs with a better API, but they are less stable. Due to their large codebase
a misbehaving driver can crash the whole system.

Drivers in microkernels are seen as servers. This means that driver failure only
results in a few programs losing connection to the driver in question, and the driver
my be restored. This provides improved reliability, but also increases communication
overhead.

2.1 Kernel Memory Management

An integral and critical part of every modern kernel, regardless of kernel architecture,
is the memory management. Overcommitted resources or slow performance during
memory allocation or deallocation impacts the functionality and stability of the
whole OS and the applications built upon it.

The kernel must allocate resources for the processes and threads running on top
of it. These resources are usually allocated in a dynamic way, so that the OS can be
used in any way the user wants. This means that most allocation and deallocation
of resources is done at runtime, and can be a source of latency when launching
a process or a thread, or when allocating memory in userspace. On mobile systems
it can also mean reduced battery life.

The kernel usually possesses a limited amount of memory available. In the case
of the microkernel, this memory can be very small (when compared to the total
amount of memory available). Proper usage of available memory is necessary, as
overcommitting memory can mean running out of the kernel memory for important
tasks that a user wants to perform.

2.2 L4 Microkernel

In this paper we present the optimization of memory management mechanisms
of a microkernel from the L4 family. A typical scenario is when the L4 micro-
kernel acts as a host for Linux-based operating systems, allowing for sandboxing

928 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

and sharing of resources between multiple instances of Linux or other native pro-
grams.

The original L4 microkernel was developed by Jochen Liedtke [2, B] and was
designed to address the performance problems that most microkernels suffered from,
which prevented them being used in real-world applications.

3 KERNEL MEMORY ALLOCATION

Kernel memory management must be fast, (space) efficient and reliable. Over years
many algorithms have been created to address these needs.

There are two factors which provide an insight into the efficiency of memory
allocation algorithms, namely internal and external fragmentation. Internal frag-
mentation (Formula [1) is the measure of unused space inside an allocated region,
while external fragmentation (Formula [2)) is the measure of how well compacted the
unallocated memory is.

Used Memory

Internal Fragmentation =

(1)
(2)

Allocated Memory

L t Block of Free M
External Fragmentation = 1 — ateesy Dock o1 T1ee Wemoty

Total Free Memory

A kernel memory allocator should be reliable: allocated areas should not over-
lap and the allocator should be able to allocate all the memory it manages. Bugs
in the allocator almost always lead to corruption of data and the system instabil-
ity.

Kernels usually do not have a large quantity of memory at their disposal. The
memory they use is non-paged, which means that it can never be swapped out,
and it has to fit inside the RAM available on the system at all times. If this
memory is not properly managed, the system could be severely limited in terms of
usability: only a small number of processes and threads could be created and drivers
would not be able to reserve enough memory for their needs, making some hardware
components unusable. Efficient management of memory should mean low internal
and external fragmentation. Metadata memory usage should also be kept as light
as possible.

The speed of memory management is usually secondary to reliability and effi-
ciency, since a slow allocator that works well is better than a fast allocator that
mismanages resources. However, this does not mean speed is not a desired feature,
and a tradeoff must usually be made between the speed and efficiency. Low average
allocation time translates to good performance of the system, while low maximum
allocation time makes it worst for a real OS time.

In the rest of this section we present various algorithms that are commonly used
in state of the art operating system kernels. Our focus lies mainly on Linux due to
its popularity and its open source nature. Other kernels, e.g. iOS or Windows, are

Optimizing Memory Usage in L4-Based Microkernel 929

also very relevant to our topic, but they are difficult to analyze due to the lack of
documentation.

3.1 Buddy Allocator

The buddy allocator is one of the oldest allocators available. It is first described
by Kenneth C. Knowlton H], but Donald Knuth attributes it to Harry Markowitz
as early as 1963 [5]. It is simple but flexible, and a number of improvements have
been made to it to better fit different scenarios or to provide better performance. It
is normally used as an allocator for smaller areas of memory, since the algorithm is
conducive for fragmentation.

The algorithm [B] implements two operations: allocate(size) and free(address).
The buddy allocator can only allocate sizes which are powers of two. It keeps a list
of free spaces for each power of two it can allocate.

At allocation, the algorithm rounds the requested size up to the nearest power of
two and searches in the list of free areas available for that size. If an area is available,
it is allocated. If not, the algorithm allocates an area of size 2°*! — repeating the
process if no area of size 2! exists — and splits it into two “buddy” areas, allocates
one, and puts the other in the free list. This is equivalent to using the Best Fit
Decreasing (BFD) policy.

At deallocation, the algorithm will try to locate the buddy area of the one being
deallocated, and if it is in the free list, the areas are merged together and added to
the list of blocks one size larger. The algorithm reiterates, if possible. It is easy to
compute the starting address of a buddy block, since allocation preserves alignment
and because of this only one bit needs to be flipped: for a block of size 2*, it is the
(k +1)* bit.

The main advantages of a buddy system allocator are simplicity and speed. The
worst case for allocation and deallocation is ©(logn), where n is the size of the mem-
ory. However it can be improved to O(1) at the cost of memory [6]. A comparison
can be made with algorithms that are using the First Fit Decreasing (FFD) policy,
which is much slower.

The biggest disadvantage of the buddy allocator is fragmentation, both internal
and external. In fact, it is even possible that enough continuous memory is available,
but it is spread in chunks of different sizes and cannot be allocated. The previously
mentioned FFD policy has a much lower fragmentation compared to the Buddy
Allocator and may be more desirable in some situations.

3.2 SLAB

The SLAB allocator was first introduced in the Solaris 2.4 kernel by Jeff Bonwick [1],
and is currently used in many UNIX(-like) operating systems such as FreeBSD
and Linux [7], although Linux has superseded it recently, with the introduction of
SLUB.

930 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

The SLAB allocator was built around the observation that many times the
costliest operation is not finding an empty memory area, but initializing the allocated
object. The policy aims to reduce the cost of initialization by maintaining caches of
common objects in an already-constructed state. SLAB can also be used by itself,
above another allocator that does not know of the SLAB system, but it cannot free
cache memory when it is needed, can complicate debugging and increase kernel code
size and maintenance cost.

alloc
page allocator objects >9k
free
alloc alloc
i slabs T i slabs T
free free
object cache object cache
[2N BN J

alloc alloc
objects objects
<9k <9k
free free

Figure 1. SLAB architecture

The SLAB allocator has two data structures at its base: caches and slabs.
For each type of object, a cache must be created, and it needs to include other
information besides size, namely the constructor, destructor and alignment of the
objects.

Each cache has a front-end and a back-end, as shown in Figure [} The front-end
are the object caches and the back-end is the page allocator. At the front-end, the
operations available are the allocation and deallocation of objects. These operations
can be performed in constant time, only needing to prepend a list, or remove the
head of the list. The back-end is hidden from the rest of the kernel and manages the
available physical memory. The operations available to the back-end are growing or
reaping the cache. The back-end is only accessed under stress conditions, usually
when a cache runs out of objects.

The constructorless allocation operations are handled either through a series of
internal caches of varying sizes, or directly from the back-end, for large sizes. Caches
improve concurrency as well, as there can be a lock for each cache and one for the
back-end, but back-end access is rare.

Slabs are areas of contiguous memory of one or more pages. They are the units
used by the allocator: when growing or shrinking a cache, an entire slab is affected.
Each slab has a reference count, and can be freed when that reference count is zero.
The advantages of using slabs are numerous: reclaiming memory is trivial, allocating

Optimizing Memory Usage in L4-Based Microkernel 931

and freeing slabs is a constant time operation, internal fragmentation is minimal and
external fragmentation is unlikely.

The SLAB allocator has good performance and minimizes fragmentation, but
it requires extra data for each cache and slab, which can be a problem for systems
with limited space. Another shortcoming of SLAB is that it can keep slabs busy
with very few objects in each.

3.3 SLOB

SLOB is an allocator with a similar interface to SLAB [], but which does not cache
objects. Instead, it uses the constructor and destructor at every allocation and
deallocation. This means it does not have any of the advantages SLAB has, but it
does use less metadata, making it more useful for systems with limited memory.

free
I token
header

Figure 2. SLOB list overview

The SLOB allocator uses a few lists of pages, each allocating areas of a certain
size. For areas bigger than one page, there is a page allocator. Areas smaller
than a page will be allocated from one of the lists. The lists are linked lists of
pages, each page having a header and a number of objects of a given size (shown
in Figure . In Linux, by default there are 3 lists: one for objects under 256 B,
one for objects under 1kB, and one for objects under 4kB (default page size) [9].
When no more areas can be allocated from any of the pages, a new page will be
added.

Every page is divided into smaller chunks of a given size. Contiguous areas
of chunks are linked in a list. At allocation, these lists inside pages will be tra-
versed, and when a large enough area has been found, one or more chunks will be
removed from it. If an area is completely allocated, it will be removed from the
list. At deallocation, the page to which the area belongs is identified and either
the space is coalesced into an already existing area or a new area is added to the
list.

932 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

3.4 SLUB

SLUB is a Linux update [I0] to SLAB meant to reduce memory overhead [I1]. It
simplifies slab structure and packs metadata into already existing structures. It
also reduces the number of queues and introduces a thread that supervises which
CPU uses each queue, in order to prevent cache line bouncing. SLAB uses per-CPU
queues, which in systems with a large number of CPUs leads to large memory usage.
SLUB uses queues per memory node, which allows multiple CPUs to use the same
slabs.

SLUB is said to bring 5% to 10 % better performance and reduce slab caches
by 50 %, while also reducing slab fragmentation [L1].

3.5 Ordered Linked List Allocator

An allocator using an ordered linked list (shown in Figuro to keep track of available
free memory areas is an old and simple allocator, which like the buddy system, is
easy to implement. Unlike the buddy system, it is not really fast except under
certain conditions. It does not use extra memory, but it also cannot be improved
easily, and does not relate well to common hardware architectures, as it accesses
distant memory areas, which usually translates to cache misses. This was the default
allocator under the L4 microkernel used for testing and is used in other microkernels
from the L4 family such as OKL4 [12] and L4Ka::Pistachio [T3].

—~ Pointer +— Pointer +— Pointer +— — NULL

10248 10248 1024B| 1024B|

Figure 3. Ordered linked list

Allocation is done in chunks, the size of chunks being constant. This means that
for allocations under the chunk size, the allocator would still allocate one chunk,
which translates to internal fragmentation. As for external fragmentation, the al-
locator is a first-fit, which may lead to external fragmentation. Fortunately, if the
chunk size is chosen to be a commonly allocated size, this diminishes the impact of
first-fit in terms of fragmentation. Each free chunk in the list contains the address
of the next free chunk.

The allocation is a simple process: a pointer moves through the list of free
chunks, counting continuous memory areas. When it finds a continuous memory
area of sufficient capacity, it removes it from the list and allocates it. This works

Optimizing Memory Usage in L4-Based Microkernel 933

especially well for the most common case, which is allocations of 1kB, when it only
has to remove the head of list. However, for larger areas of memory, this algorithm
provides poor performance, especially when the memory becomes fragmented, since
the cache lines are not big enough to fit more than the start of each chunk, which
contains the address of the next chunk and nothing else.

Deallocation is also a simple process, but an expensive one. The algorithm
must keep the list of free chunks ordered, so when the memory area is freed, it
must find the original position from where the area came, which means iterating
through the list. Again, this means memory accesses instead of cache accesses, and
if the memory to be freed is towards the back of the list, this may take a long
time.

This algorithm is advantageous for certain use cases (e.g., when the number of
common case allocations is large and there is a small number of free operations).
If kernel memory becomes fragmented, this algorithm may start performing badly.
This also means that allocation and free time may vary in an unpredictable fashion.

4 DESIGN OF A NEW L4 MICROKERNEL ALLOCATOR

A new allocator for the L4 microkernel has design requirements in terms of memory
usage and performance requirements: stable time for allocation and deallocation
(which is required for an OS to be considered real time), better mean allocation
time, metadata usage kept to a minimum (so that more resources can be spent on
useful data) and maintaining the same interface as the previous allocator (to avoid
making large modifications to the kernel).

The allocators described in Section [§] are not necessarily good allocators for
a microkernel: SLAB uses too much metadata, SLUB could be good, but hard
to implement, as it relies on some other structures which the L4 microkernel does
not have, the buddy system fragments the memory too much. SLOB seems well
fitted for the task, but the microkernel already has a functional system for allo-
cations under 1kB, and SLOB uses extra metadata to deal with allocating dif-
ferent sizes in the same slab. Another point to be made about the SL*B family
of allocators is that they work on top of a page allocator, with code and meta-
data of their own. It is not practical to have multiple allocators in a microker-
nel.

This design does not approach any optimizations to the scheduling algorithms.
The L4 microkernel uses a simple round-robin scheduler in order to provide policy-
free scheduling to processes on top of it. Our main concern is that the scheduling
algorithm must be as generic as possible with no interest in optimality on processor
allocation.

Figure [shows that an overwhelming majority of the objects allocated in the
microkernel are of the sizes 1 kB and 4kB; 16 kB and 18 kB are also numerous under
our ktest test suite, but under real life conditions they end up at under 2% each
(see Section m for information about what data was collected). For objects under

934 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

0.2% other

other

16.2%

a) ktest b) Linux

Figure 4. Allocated sizes

1kB there is a special allocation system called smallpools (see Section 7 which
is available in the microkernel, so they do not show up on these charts.

4.1 Allocator Design

The observations made previously give some hints as to what could constitute a suit-
able allocator for our L4 microkernel: it must allocate memory in blocks of 1kB, or
multiples, so that internal fragmentation would be kept to a minimum; metadata
usage should be kept to a minimum; the mechanisms for allocating or freeing data
should be simple, but fast.

M ®o0 31
[32 ... @3
[64 ... 95] 00
(8160 8191]
10248 1024B 1024B ; 10248

Figure 5. New allocator design

A page allocator satisfies these criteria, but there is no need to allocate pages,
which are typically 4kB and aligned to 4 kB. This is not required for the microkernel
to function. The algorithms used by a page allocator could be modified and reused.

Optimizing Memory Usage in L4-Based Microkernel 935

The previous allocator achieves this successfully, but with poor performance, because
it keeps 1kB chunks in a list of free chunks. Another design for a page allocator is
bitmap-based, providing better performance.

A bitmap-based allocator (presented in Figure []) uses little metadata — 1 bit for
every chunk, with the value 0 for unallocated and 1 for allocated — which allows the
allocator to verify more possible options at once instead of having to iterate through
every item in a list. Allocation verifies a series of adjacent chunks at once if they
are all free and deallocation simply means marking a series of adjacent chunks at
once as free using a bit mask, thus making it faster than the ordered list iterator
presented in Section 3.5

For each chunk there is a bit in the bitmap to denote whether that chunk is
allocated or free. Formula [transforms bit index into the starting address of the
chunk it is referencing, needing the address of the first chunk and the size of each
chunk to calculate a displacement. The reverse operation is true (Formula E[), al-
lowing for immediate location of the bit indexing the chunk, needed during deallo-
cation.

Chunk Start Address = Kernel Memory Start Address + Bit Index * Chunk Size(3)

Chunk Start Address — Kernel Memory Start Address (@)
Chunk Size

Bit Index =

First set

small endian 31 30 29 28 27 2 b3 1 1 10
logical 0 1 2 3 4 27 28 29 30 31

000110...10000

Leading zeroes Trailing zeroes

Figure 6. Used instructions

This allocator can also be easily optimized for the architecture on which it runs,
as most modern architectures provide instructions such as find first zero, count
leading zeroes, count trailing zeroes (shown in Figure @ or can implement such
functionality using a small number of instructions. It preserves cache locality much
better, because metadata is all in the same memory area. It is fairly easy to optimize
to work well for the majority of allocations, knowing their size.

To reiterate, the theoretical advantages of the bitmap-based memory allocator
over other allocators would be:

e Minimal metadata. Metadata is constant, and only 1 bit per chunk. This
translates to one chunk of metadata for each 8192 chunks of data.

e Localized metadata. All allocator metadata is in the same place, making it
easier to search through it and reducing the number of cache misses.

936 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

e Bitwise operations. CPUs have instructions for bitwise operations, making the
code easy to optimize by the compiler.

e Simplicity. While it is more complicated than the buddy allocator and the sorted
list allocator, it simpler than SLAB/SLOB/SLUB, which in a microkernel is
an advantage.

e Flexibility. It allows for the system to have heuristics and can be changed
between first fit and best fit easily.

e Efficiency. It leads to less internal and external fragmentation than the buddy
allocator, and is on par with any other first fit allocators.

e Performance. It uses operations easily translated into assembly and does not
need to access the memory as often as other algorithms to read or write meta-
data.

In contrast, the disadvantages of a Bitmap-Based Chunk Allocator are:

e Complexity. Optimizations for special cases lead to longer and more complex
code that is more difficult to debug.

o Metadata. Metadata is minimal, but existent.

e Architecture specific code. Some of the operations work differently on little
endian systems than on big endian system. They are few, but require extra
testing and work.

e Performance. It is a general purpose cacheless allocator, so it will perform worse
than SLAB and SLUB.

e Fragmentation. Being a first fit allocator, external fragmentation is probably
larger than it is with a best fit or cache-based allocator. It allocates multiple
chunks of 1kB, so unless it is used with another allocator for areas under 1kB
it can also lead to internal fragmentation.

5 IMPLEMENTATION OF THE BITMAP-BASED ALLOCATOR
IN THE MICROKERNEL

The allocator uses chunks as units of allocation, and allocates areas which have
sizes equal to an integer multiple of the chunk size, by default 1kB. When the
microkernel is initialized it reserves at least one memory area. This memory area
will be used for allocating kernel objects dynamically. When a memory area is being
initialized for use, it checks the size of the area and allocates the first few chunks to
use as a bitmap. The number of chunks depends on how large the memory actually
is. It needs to allocate one chunk of memory as a bitmap for each 8 x chunk size
chunks of memory it manages. For 1kB sized chunks, this means 1kB for 8 MB of
memory.

Optimizing Memory Usage in L4-Based Microkernel 937

For brevity, the term “word” will be used to refer to an unsigned integer of 32
or 64 bits, depending on the architecture.

The bitmap is organized into words. For a significant speedup, the index of the
first word that contains a zero bit is memorized, so that the search is limited, and
more likely to find an empty area to allocate in the first few tries. Allocation moves
this index forward if necessary, while deallocation moves it backwards.

There are two types of allocation: aligned and unaligned. There is a public
method for each of them, and they hide the size of specific functions implemented
by the allocator.

SIZE: 4K

(2)[10000000...00]

(b)[0100000...01]

(C)|0100101...10 0000101...10

Figure 7. Word-sized allocation

SIZE: 127k
15+ 32 x 3 + 16 = 127

[11..100..0] [00..0 [00..0] [00..0] [00.001..1]
15 32 16

Figure 8. Large allocation

5.1 Unaligned Allocation

Unaligned allocation is done through one of three functions: one for one chunk, one
for allocations that could be fully completed with bits from one word, and one for
sizes larger than that.

The function for one chunk uses find first set to locate an empty chunk. However,
find first set identifies the first active bit, so the word must be negated first. Because
the index of the first word to contain an empty chunk is known, this algorithm does
not need to iterate through the bitmap. Because this is the most allocated size,
speed is very important and lack of loops helps achieve this performance. After
locating the index of the first empty chunk, the algorithm marks the bit as occupied
by using a bitmask.

The function for sizes under 32 or 64 chunks is the second most commonly used
and it has an advantage over a more general function: it only needs to check one word
or the border of two adjacent words. There is no need for it to search more than two

938 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

words at once since an allocation does not stretch over more than one word. This
reduces the number of possible branches, making branch prediction more efficient.
There are three possibilities for allocating an area: the current word is equal to zero
(see (a) in Figure[7]), which means that allocation can be done starting with the first
bit; the word is not zero, but has a number of consecutive zero bits equal to or larger
than the number of chunks required (see (b) in Figure @; or there are enough zeroes
at the end of the current word and the beginning of the next word to fit the required
size (see (c) in Figure @ After these cases are tried, if an area large enough can be
allocated, the corresponding bits are set using a mask, and the starting address is
returned. If not, the algorithm continues, testing the next available word, if there
is one.

The function for sizes exceeding the number of bits in a word is rarely used. It
has only one possible case (shown in Figure : it tries to acquire the trailing bits
of the word currently tested, and then all the bits from the following words, until it
either reaches a word that is not equal to zero, it acquired enough space or it reaches
the end of the memory reserved for allocation. If it reaches a word that is not zero
without acquiring enough memory for allocation, it acquires the leading zeroes of
this word as well. If it is still not enough space, it restarts the algorithm using this
last word as the start word.

5.2 Aligned Allocation

SIZE: 4K
Lalignedbit
[0100000...00]

yshift left
[0000010...00]
Taligned bit

Figure 9. Aligned allocation case

Aligned allocations have an extra requirement besides size: the starting address
must be aligned to a certain value, i.e., the starting address must be divisible by
the alignment. This is required usually because of hardware limitations, as certain
registers might not have enough bits to store the whole address and need to consider
the last few bits as 0.

Aligned allocations test if memory areas starting at bit indexes that provide
the required alignment are empty. The first bit index to test is generated from the
first address following the start of the empty memory that is properly aligned. The
subsequent bit indexes to test are generated by adding the number of chunks of
alignment to the bit index to be tested.

The allocations that would fit entirely inside one word must test two cases: if
the tested bit is 0 and there are no 1 bits between it and the end of the word,
then the number of zero bits following it plus the number of leading zero bits of

Optimizing Memory Usage in L4-Based Microkernel 939

next word must be greater or equal than the number of chunks that needs to be
allocated (similar to (c¢) in Figure @; otherwise, if it is 0, but there is at least
a 1 bit between it and the end of the word, the 0 bits between the tested bit and
the first 1 bit get counted and must be greater or equal than the number of chunks
that need to be allocated (shown in Figure E[) Otherwise, the next aligned area is
checked.

The large area allocation only checks the case where the tested bit is followed
only by zero bits. It tests the same bit indexes as the previous algorithm, but
it counts bits from more words, the same way the function for large unaligned
allocation does (Figure , but starting at the bit index corresponding to an aligned
location.

5.3 Free

The free function has two parameters, address and size, which can be easily trans-
formed to bit index and number of bits. These two pieces of information transform
the problem of freeing an allocated area into a trivial problem, with O(n) complex-
ity, where n is the number of words that must be modified. In practice, n is at
most 2, since the microkernel only allocates one area large enough to stretch over
more than two words and never frees it.

6 OTHER MEMORY USAGE OPTIMIZATIONS

The allocator was not the only problem regarding memory usage that the micro-
kernel had. The new allocator did not fix internal fragmentation for small objects
or reduce number of structures allocated. However, these problems were addressed
separately, leading to less memory usage overall.

6.1 Smallpools

The previous and current kernel allocators use 1kB sized chunks by default as al-
location units and all areas allocated will be 1kB, or a multiple of 1kB. However,
not all objects allocated in the kernel are at least 1kB, which means that unless
another mechanism is used, some memory will go to waste, resulting in internal
fragmentation.

The kernel has a mechanism named smallpools to employ in these cases, but it
was not used for all the objects smaller than 1kB. After identifying these objects,
they were moved to the smallpools mechanism, which provides other benefits besides
better usage of memory.

Smallpools are caches of objects of a certain size and, like the general purpose
allocator, use a bitmap to keep track of their allocation status. However, each pool
of objects can only allocate objects of a certain size. This reduces search time. A
pool contains one or more pages of memory, each with a bitmap and linked together
in a list.

940 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

Allocation entails flipping the first set bit, while freeing requires identifying the
page from which the object came from, identifying the index of the bit and then
flipping the bit.

It is a simple, yet efficient mechanism, somewhat similar to SLAB, with the
exception that objects are not pre-initialized, and metadata is simpler.

A case where smallpools made a large difference is the allocation of level 2
page table entries. This structure is 128 bytes long and is allocated very often.
During boot and running of the test program, this structure had a peak of 1438
instances allocated at once. If normal allocation was to be used, this would mean
1438 kB of space used. However, using smallpools, 196 kB were used to store all
these instances. The microkernel has 12 MB reserved for allocations, making the
1242%B saved 11.24 % of the total memory available for allocation.

6.2 On-Demand Allocation

After analysing what each data structure does, some objects were discovered to be
allocated but not used. More specifically, the context for the floating point unit
(named VFP on ARM CPUs), which most threads do not use, was allocated at
thread creation. Since not all threads are allowed to use the coprocessor, when
threads are created they are marked if they are able to use the VFP. However, space
is no longer allocated for the coprocessor context, allocation being postponed until
an exception arises and the function responsible for handling the exception is called.
This function allocates memory if it was not previously allocated and the thread is
allowed to use the floating point unit.

As an example, during Linux boot and while running the test program (see
Section for information on the test program) only seven threads allocated
the VFP, which is negligible compared to all the threads created during this time.
On a more complex setup this percentage would be higher, but the majority of
programs only use integer arithmetic. Assuming 100 threads, and 20 % of them
utilize the FPU, 8 kB would be needed to store the context, if smallpools are used.
If all threads allocated the FPU context, 28 kB would be needed to store it, which
results in 20 kB of wasted memory. This is not much, but on real systems the number
of threads can be in the thousands, resulting in a larger amount of unused, allocated
memory.

However, space is not the only gain, but also cycles spent allocating these con-
texts would be wasted, slowing down thread creation.

7 ANALYSIS OF THE BITMAP-BASED ALLOCATOR

Testing and performance evaluation are important for proving the allocator is func-
tioning well and is both efficient and fast. The platform for most of the tests and
benchmarks was a development board called PandaBoard, based on a Texas Instru-
ments OMAP4430 system on a chip.

Optimizing Memory Usage in L4-Based Microkernel 941

Because the allocator is critical to the stability of the kernel, its functionality
must be tested and proved to be correct and without bugs. The allocator must
be able to use all the memory reserved, not overlap any areas and offer a properly
aligned memory area when it is required. Failing to meet these criteria can cause
system instability, possibly even leading to random, hard to debug crashes and
makes the system unusable for any real life scenario, where stability is one of the
biggest priorities.

In the course of this section we present various testing scenarios for our memory
allocation algorithm. We did not perform any comparative computational experi-
ments with list scheduling algorithms [T4]. We tried to see what were the best current
memory allocation algorithms used in operating systems and how they behave in
a particular environment, i.e. a microkernel-based system.

7.1 Testing

7.1.1 ktest

The ktest provides a number of tests that allocate and use a large number of kernel
structures. It does so in a controlled environment and provides a feedback for the
tests that fail. This makes it a really useful regression testing tool [I5]. Failed tests
indicate problems in the microkernel’s functionality and it is easier to trace their
cause than in a real world scenario.

7.1.2 Unit Testing the Allocator

The ktest only provides partial coverage for microkernel usage, and thus it does
not show all the possible problems which the allocator might have. Taking the
allocator out of the microkernel’s context and running allocate and free operations
in a controlled environment could reveal how it behaves in corner cases and under
a multitude of other circumstances.

The unit test is a program that runs under a GNU/Linux operating system.
The allocator code was copied from the microkernel, and minor modifications were
made to aid testing, such as making asserts in the allocator throw exceptions and
removing some of the debugging code that was not useful.

The first series of tests check the assertions in the allocator, to prove that they are
correct and work when they have to. The assertions are meant to help programmers
find mistakes in their code or show errors in the allocator’s functionality.

Another series of tests allocate as much memory as possible from the memory
pool given to the allocator, to prove that all memory is available for allocation and
the allocator does not over allocate. The size of the allocations varied from one
chunk to 64 chunks, to cover the whole range of functions specified in Section [

The last test made a large number of random allocations and frees, keeping
track of which chunks were allocated and which were not, to test possible overlaps
in allocations, bad frees or aligned allocations which were not aligned properly.

942 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

These tests helped to discover and fix a number of bugs, some of which occurred
under very specific circumstances.

7.1.3 Booting and Using Linux and Android

The previous tests were indicative of functionality under an artificial set of circum-
stances, that proved the algorithm correct in terms of its functionality as designed,
but not if the design is correct. Several tests were done under Linux and Android
to prove that the system works in a real life scenario as well. We used a mini-
mal filesystem from Angstrom distribution for Linux test-case and the Ice Cream
Sandwich version for Android. In both cases the 3.0.8 version of the kernel was
used.

Booting and running several programs under Linux proved that the allocator
does not break any functionality. We used the Linux Test Project [I6] benchmark
suite to validate that Linux system calls function correctly. The results yielded no
differences between a Linux system running natively on the development board and
the one running on the L4-based setup.

Android proved a similar point while booting up. Installing and using applica-
tions under Android worked without problems.

Allocation 5 Free
10

— Oldgiobalavg WEE Oldmin = New min
Newglobal avg @EE Oldavg =3 Newavg
£ Oldmax =3 New max|

— Oldgiobalavg WEE Oldmin G New min
Newglobalavg @HE Oldavg [Newavg
[Oldmax [New max|

10° 10°F

Cycles

AN N B

10

1k 4k 16k 18k

4k 16k
Size Size

a) allocation b) deallocation

Figure 10. ktest benchmark overview

7.2 Performance Evaluation

Evaluating the allocator can be done in a vacuum, but it is not necessarily represen-
tative. This is why the evaluation of the bitmap-based allocator was done against
the previous linked-list allocator. This shows the improvements of the new allocator
and served to point out where improvements could still be made during the process
of optimization.

Optimizing Memory Usage in L4-Based Microkernel 943

The data for these plots was collected using a trace buffer mechanism pro-
vided by the L4 microkernel. The metrics collected were number of cycles, the
size for which that number of cycles was recorded, and the type of operation (al-
location or free). These were chosen because they provide a complete image of
performance behaviour, including cache misses and any other possible cause of per-
formance loss. We did not include the number of cycles needed to acquire the
spinlocks that protect the metadata, because lock acquisition is non-deterministic,
but also because it is not representative of algorithm performance. Additionally we
omitted the time to zero the allocated area since it is constant across both algo-
rithms.

7.2.1 ktest

ktest is a synthetic benchmark, as it allocates a large number of objects, not neces-
sarily representative of how a real life system might behave. However it does show
how a system might behave under stress.

Figure shows that under the previous allocator, performance would de-
crease dramatically with allocation size. The new allocator also suffers from this,
but the decrease is not as substantial. Overall, the new allocator behaves better
under all circumstances, and the average in number of cycles is 32 times smaller.

Figure shows what was expected: with the old allocator freeing could be
very costly, while under the bitmap-based allocator it is basically constant time,
regardless of size. The new allocator is 6852 times faster on average, which is
a significant improvement.

On average, considering both allocation and deallocation, the new allocator is
465 times faster than the previous one, under these circumstances.

Allocation
— Oligkbalavg S Olamin &3 — Oldgiobalavg R Oid min

Newglobalavg EHE Oldavg =3 Newglobalavg EHE Oldavg =3
3 Oldmax 3 N =3 0id max

10° 10°
10° 10°F

10

1k 4k 16k 18k 1k 4k 16k 18k
Size Size

a) allocation b) deallocation

Figure 11. Linux benchmark overview

944 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu
7.2.2 Linux

Under Linux, data was gathered from boot and from running a program that forks,
creates threads, allocates memory and opens files. This is meant to emulate how
a user might interact with the system, but in a short time.

Figure shows that unlike ktest, the differences are less accentuated, al-
though they still exist. The plot looks very similar to the previous plot, and prob-
ably, under a more stressful test, the averages would become even closer. Average
allocation time is only 3 times better.

Figure is, again, comparable to what is seen under ktest, although the
performance of the new allocator is slightly decreased. This may be because ktest did
all the deallocations in a row, preserving cache locality better. Average deallocation
is about 98 times faster.

On average, considering both allocation and deallocation, the new allocator is
26 times faster than the previous one, under these circumstances.

Allocation , Free

— Oldgiobalavg WEE Oldmin = New min
Newglobalavg @HE Oldavg =3 Newavg
£ Oldmax =3 New max|

— Oldgiobalavg WEN Oldmin G New min
Newglobalavg N Oldavg X Newavg
£ Oldmax =3 New max|

1k 4k 16k 18k 1k 4k
Size Size

a) allocation b) deallocation

Figure 12. Android benchmark overview

7.2.3 Android

Under Android, data was gathered from the boot process, running a game and
browsing the Internet. Since these tests were run by a user, less data was collected
and it is not identical between the two cases. However, this is still useful data and
can provide interesting information, because the averages should remain more or
less the same, if the pattern of usage continues.

Both Figure and Figure show that the difference between the two
allocators is not as impressive as it was with Linux or ktest. Android only has
one process in the foreground, at any one time, and a small number of background
processes, which makes stressing the allocators difficult. Especially allocating big

Optimizing Memory Usage in L4-Based Microkernel 945

objects seems to be a very rare process, as Android was built to be used on a system
with limited resources and be battery efficient.

On average, considering both allocation and deallocation, the new allocator is
only 1.5 times faster than the previous one, under these circumstances.

7.2.4 Fragmentation

Running Linux with a program that spawns threads and programs which allocate
and open files, has shown a maximum of 29% external fragmentation. However,
during ktest, external fragmentation was 49 %. This is not ideal, but it is expected
of first-fit allocators to cause external fragmentation.

Since most objects allocated are either 1 or 4kB in size, external fragmentation
should not pose a large problem.

Internal fragmentation is possible, but through smallpools (see Section
it is eliminated almost entirely. It might be possible to improve fragmentation by
adding some heuristics to not stop at the first possible solution, but find a few, and
choose one that is a better fit.

In Bonwick’s paper on the SLAB allocator [I] there is a table with total frag-
mentation for allocators in multiple kernels that were available at the time. For
some kernel allocators, total fragmentation does reach nearly 45 %, making 45 % of
memory inaccessible.

It is difficult to compute exactly what the total wasted memory in the L4 mi-
crokernel is, but memory allocator metadata provides a negligible overhead and the
only real waste arises from space that remains unoccupied in smallpools, which is
at most one byte less that the structures allocated from each pool. Right now, the
structure allocated predominantly is 128 bytes in size, other small objects having
significantly lower concurrent instance counts. If 128 byte structures are used as
a measure, only 3% of space is lost per page, which is less than SLAB, (between
11% and 14 % total fragmentation). It is entirely possible that there are pages from
which only a few objects are allocated, making 3 % the minimum and the maximum
dependent on the order of allocations and deallocations, with the worst case where
there are multiple pages, each with only one object. This is however a very unlikely
scenario.

8 CONCLUSION

The goal of this paper was to present the steps involved in improving memory usage
in an L4-based microkernel kernel. By reducing memory usage through the use of
smallpools, removing unnecessary allocations and improving the allocator this goal
was achieved.

Using the smallpools mechanism reduces the memory usage and makes costly
allocations (from the general allocator) more rare. This translates to better internal
and external fragmentation and better performance.

946 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

The new allocator is faster than the previous one, at the cost of a small memory
overhead. The new allocator performs better under fragmentation, and has a smaller
average and maximum time for allocation and deallocation, as seen in the previous
section, where under Linux it performed significantly better.

Better allocation time can be very important in automated tasks, such as HTTP
daemons, internet routing or databases, leading to a better throughput and lower
latency. It can be beneficial for a user experience as well, even if a user is not able
to quantify or even observe the difference.

Reducing the number of allocations for certain structures further decreases la-
tency and memory usage, making thread creation faster and removing additional
overhead for threads that do not need the resources.

Removing extraneous safety code from the allocator could further improve per-
formance. This code is useful for development, but not for a stable, tested system.
Reducing the size of certain structures could reduce memory usage and even allow
for them to be moved to the smallpools mechanism.

It might be possible to modify the smallpolls mechanism, make it more general
purpose, and use it to create caches of objects, considering that objects are of
well known sizes. This would reduce the number of allocations and deallocations
that have to go through the general purpose allocator, and could allow increasing
chunk size to a page, improving performance whilst maintaining minimal internal
fragmentation. This would make the allocator more similar to SLAB.

The smallpools mechanism might be improved by adding heuristics, to reduce
the number of page allocations and deallocations.

Memory zeroization is done in the most straightforward way, each word being
written separately, with a store instruction. It could be improved through DMA
transfers or other architecture-specific methods.

Acknowledgment

The work has been funded by the Sectoral Operational Programme Human Re-
sources Development 2007-2013 of the Ministry of European Funds through the
Financial Agreement POSDRU/159/1.5/S/134398.

REFERENCES

[1] BoNwICK, J.: The Slab Allocator: An Object-Caching Kernel Memory Allocator.
In USENIX Summer, 1994, pp. 87-98.

[2] L4 microkernel family. http://en.wikipedia.org/wiki/L4_microkernel_family
[Online; accessed 2 July 2013].

[3] LIEDTKE, J.: On Microkernel Construction. http://14ka.org/publications/, De-
cember 1995.

[4] KnowrTON, K. C.: A Fast Storage Allocator. Communication of the ACM, Vol. 8,
1965, No. 10, pp. 623-624, doi: 10.1145/365628.365655.

http://en.wikipedia.org/wiki/L4_microkernel_family
http://l4ka.org/publications/
https://doi.org/10.1145/365628.365655

Optimizing Memory Usage in L4-Based Microkernel 947

[5]

[6]

7]
8]
9]

[10]

[11]

12]

13]

[14]

[15]

[16]

KnutH, D. E.: The Art of Computer Programming. Volume 1: Fundamental Algo-
rithms. 3" Edition. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1997.

BroDAL, G.S.—DEMAINE, E. D.—MUNRO, J.I.: Fast Allocation and Deallocation
with an Improved Buddy System. Acta Informatica, Vol. 41, 2005, No. 4, pp. 273-291,
doi: 10.1007/s00236-004-0159-6.

Slab Linux Implementation. http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/
mm/slab.c [Online; accessed 2 July 2013].

ROSENBERG, D.: A Heap of Trouble: Breaking the Linux Kernel Slob Allocator.
http://vsecurity.com/download/papers/slob-exploitation.pdf, January 2012
[Online; accessed 25 June 2013].

Slob Linux Implementation.

Slub Linux Implementation. http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/
mm/slub.c [Online; accessed 2 July 2013].

CORBET, J.: The Slub Allocator. http://lwn.net/Articles/229984/, April 2007
[Online; accessed 2 July 2013].

OKL4 Microkernel — Reference Manual. http://wiki.ok-labs.com/downloads/
release-3.0/0kl4-ref-manual-3.0.pdf| [Online; accessed 2 July 2013].
L4Ka::Pistachio Microkernel. http://www.14ka.org/65 . php|[Online; accessed 2 July
2013].

Apam, T.L.—CHANDY, K. M.—DIcksoN, J. R.: A Comparison of List Schedules
for Parallel Processing Systems. Communication of the ACM, Vol. 17, 1974, No. 12,
pp. 685-690.

BuHA1Uu, A.—MORARU, C.—CO0JOCAR, L.—PRIESCU, V.: Microkernel Virtualiza-
tion Support for Multiprocessor Embedded System.

Linux Test Project. https://github.com/linux-test-project/1ltp/wiki/ [On-
line; accessed 10 July 2013]. http://1xr.cpsc.ucalgary.ca/lxr/#linux+v3.9/mm/
slob.c [Online; accessed 2 July 2013].

https://doi.org/10.1007/s00236-004-0159-6
http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/mm/slab.c
http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/mm/slab.c
http://vsecurity.com/download/papers/slob-exploitation.pdf
http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/mm/slub.c
http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/mm/slub.c
http://lwn.net/Articles/229984/
http://wiki.ok-labs.com/downloads/release-3.0/okl4-ref-manual-3.0.pdf
http://wiki.ok-labs.com/downloads/release-3.0/okl4-ref-manual-3.0.pdf
http://www.l4ka.org/65.php
https://github.com/linux-test-project/ltp/wiki
http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/mm/slob.c
http://lxr.cpsc.ucalgary.ca/lxr/#linux+v3.9/mm/slob.c

948 P. Eftime, L. Mogosanu, M. Carabas, R. Deaconescu, L. Gheorghe, V. G. Voiculescu

Petre EFTIME is a Master’s student at University Politehnica
of Bucharest. He is doing research on embedded operating sys-
tems and virtualization, supported by VirtualMetrix, Inc. His
interests include distributed systems and IoT.

Lucian M0GO$ANU is a Ph.D. student and Teaching Assistant
at University Politehnica of Bucharest. He is also doing research
on operating systems security at VirtualMetrix, Inc., his main
focus is the usage of formal methods to verify security and safety
properties of system software. Other interests include virtualiza-
tion technology, programming languages and compilers.

Mihai CARABAS is Teaching Assistant and a Ph.D. student at
University Politehnica of Bucharest and a researcher at Virtual-
Metrix, Inc. His main research interest is studying and develop-
ing mechanisms to improve virtualization in operating systems.
Other interests include system administration, high performance
computing and advanced network protocols.

Razvan DEACONESCU is Assistant Professor at University Po-
litehnica of Bucharest. He is fond of teaching and doing research
in operating systems-related topics, with interest in systems se-
curity. His recent activities have targeted mobile operating sys-
tem security, virtualization and embedded systems.

Optimizing Memory Usage in L4-Based Microkernel 949

Laura GHEORGHE is Assistant Professor and Researcher at Uni-
versity Politehnica of Bucharest. She is passionate about secu-
rity and operating systems. Her current research focused on
malware detection in Android operating system is supported by
VirtualMetrix, Inc.

Valentin Gabriel VOICULESCU has been involved with embed-
ded devices for the last nine years, with interest ranging from
low level to middleware and high level OS in FPGA’s, 8-16 bit
microcontrollers, SoC’s in modern smartphones and tablets. He
has been with VirtualMetrix, Inc., a startup focused on reducing
power in select embedded devices (lately in flagship smartphone
and tablets), by fine grained performance management of the
system.

