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Abstract. An efficient allocation of tasks to the processors is a crucial problem in
heterogeneous computing systems. Finding an optimal schedule for such an environ-
ment is an NP-complete problem. Near optimal solutions are obtained within a fi-
nite duration using heuristics/meta-heuristics are used instead of exact optimization
methods. Heuristics and meta-heuristics are the efficient technologies for schedul-
ing tasks in distributed environment because of their ability to deliver high quality
solutions in a reasonable time. Discrete Particle Swarm Optimization (DPSO) is
a newly developed meta-heuristic computation technique. To enhance the final ac-
curacy and improve the convergence speed of DPSO, this paper presents a modified
DPSO algorithm by adjusting its inertia weight based on Hamming distance and
also makes a dependency between the two random parameters r1 and r2 to con-
trol the balance of individual’s and collective information in the velocity updating
equation. Three criteria such as make span, mean flow time and reliability cost
are used to assess the efficiency of the proposed DPSO algorithm for scheduling in-
dependent tasks on heterogeneous computing systems. Computational simulations
are performed based on a set of benchmark instances to evaluate the performance
of the proposed DPSO algorithm compared to existing methods.
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1 INTRODUCTION

Unlike homogeneous systems, Heterogeneous Systems (HS) are composed of com-
puters with different speeds [1]. Task Scheduling (TS) is one of the key challenges
in HS. It can be classified into two categories based on the types of tasks [2]: tasks
with no data dependencies (independent task) and tasks with precedence constraints
(dependent task). In this paper, the scheduler schedules only the meta-task in HS.
Meta-tasks composing of independent tasks occur in many circumstances. For ex-
ample, all of the jobs submitted to a super computer-center by different users consti-
tute a meta-task and another example of a meta-task is a group of image processing
applications all operating on different images [2].

The HS may become larger and larger because of its scalability nature. As
the numbers of interconnected heterogeneous resources are growing enormously, the
need for an algorithmic solution for efficient use of such platform is growing as well.
Different metrics may be used to evaluate the effectiveness of scheduling algorithms,
such as make span, flow time, resource utilization [3, 4]. All the existing works
investigated a number of scheduling algorithms for minimizing make span or flow
time. The issue of reliability for such an environment needs to be addressed or else
an application running on a very large system may crash because of the hardware
failure. The previous research work [5] evaluated the scheduler with the reliability
cost using DPSO algorithm. To enhance the reliability of the HS, this paper presents
a modified DPSO algorithm.

The most traditional approach to solve a multi-objective optimization problem
is to summative the objectives into a single objective by using a weighting sum.
Kim et al. presented an Adaptive Weighted Sum (AWS) method for multi-objective
optimization problems [6]. The author demonstrated that the AWS method pro-
duces a well-distributed Pareto front and also finds solutions in non-convex regions.
This paper presents the fitness value of each solution using AWS method that was
proposed by Kim et al. [6].

Heuristics are one of the suitable approaches to solve the TS problem in HS.
Some research works have been made in recent years using pure heuristics to discover
near-optimal solutions [7]. These heuristics are fast, simple and easy to implement.
Also, to improve the quality of solutions, meta-heuristics have been presented for
the TS problem. The most popular meta-heuristic algorithms in the literature are
Genetic Algorithm (GA), Differential Evolution (DE), Simulated Annealing (SA),
Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) [7].

PSO is a meta-heuristic algorithm proposed by Kennedy et al. [1] in 1995, mo-
tivated by the flocking behavior of birds. This has been applied in wide area in
different fields such as engineering, physics, mathematics and chemistry. The per-
formance of PSO greatly depends on its control parameters such as inertia weight.
Slightly different parameter settings may direct to different performance in the algo-
rithm. Kaushik et al. [8] proposed an adaptive inertia weight in continuous domain,
which is calculated based on the Euclidean distance of the particles of a particular
generation from the global best. This kind of the inertia factor ensures that the
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particles have not moved away from the global best. This paper makes the adaptive
inertia weight more suitable for discrete domain. The proposed inertia weight is
calculated based on the Hamming distance of the particles from global best.

The rest of the paper is organized as follows: Section 2 reviews the existing
algorithms for task scheduling problem. The proposed DPSO is presented in Sec-
tion 3. Experimental results are reported in Section 4. Finally, Section 5 concludes
the paper.

2 RELATED WORK

Finding an optimal solution for the TS problem in a Heterogeneous Computing
(HC) system is NP-hard. The precise algorithms can optimally solve the small-sized
instances of the problems. For large scale instances, most of the researchers have
spotlighted on developing heuristic algorithms that give up near-optimal solutions
within a reasonable computation time.

Braun et al. [2] clarified 11 heuristics such as Opportunistic Load Balancing,
Minimum Execution Time, Minimum Completion Time, Min-min, Max-min, Du-
plex, Genetic Algorithm, Simulated Annealing, Tabu, and A* for the TS problem
and assessed them on different types of heterogeneous environments. These heuris-
tics were evaluated by a single objective, the make span of the schedule. The authors
illustrated that the Genetic Algorithm can obtain better results in comparison with
11 heuristics. Izakian et al. [9] recommended an efficient heuristic called min-max
for scheduling meta-tasks in HS. The effectiveness of the recommended min-max
algorithm was investigated with five popular pure heuristics min-min, max-min,
LJFR-SJFR, suffrage, and work queue for minimizing make span and flow time.

To achieve a better solution quality, meta-heuristics have been commenced for
the TS problem such as SA, Tabu Search, GA and Swarm Intelligence (SI). SI con-
sists of two successful techniques: PSO and ACO. Abraham et al. [10] stated the
usage of a number of nature inspired meta-heuristics (SA, GA, PSO, and ACO) for
TS in computational grids using single and multi-objective optimization techniques.
PSO yields faster convergence when compared with GA, because it has an iner-
tia factor for providing balance between exploration and exploitation in the search
space.

Kennedy et al. [1] developed PSO with no inertia weight. Shi et al. [11] pre-
sented the concept of inertia weight with constant value. Further, many researchers
introduced dynamical adjusting of inertia weight that can increase the capabilities of
PSO. Xin et al. [12] presented Linearly Decreasing Inertia weight (LDI) for enhancing
the efficiency and performance of PSO. Bansal et al. [13] presented a comparative
study on 15 strategies to set inertia weight in PSO. The four different modified
DPSO variants based on changing the value of inertia weight were addressed in TS
problem [14].

Hesam et al. [4] proposed DPSO approach for grid job scheduling problem to
minimize make span and flow time. In this paper, the author redefined the velocity
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and position updating equations for both direct particle representation (position
vector) and indirect particle representation (position matrix). Kang et al. [3] de-
veloped a new position update method for a particle that is represented in position
vector format in DPSO for scheduling of meta-tasks in HS to minimize make span of
the schedule. Further, the author applied variable neighborhood descent algorithm
and migration mechanism to escape DPSO from local optimum and to balance the
exploration and exploitation.

The previous research work [5] presented DPSO approach for scheduling problem
to minimize make span, flow time and reliability cost. The make span and flow time
values are in incomparable ranges and the flow time has a higher magnitude order
over the make span. DPSO is tested with small data set such as twenty tasks and
the number of processors is limited to two and three. Proposed work in this paper
extends DPSO for scheduling of independent tasks to minimize make span, mean
flow time and reliability cost using modified DPSO which also addresses the above
stated problem. The modified DPSO incorporates Hamming inertia weight and
dependent random parameters into DPSO, and proposes Hamming inertia weight
with Dependent random parameters DPSO (HDDPSO) for scheduling independent
tasks in HS. The HDDPSO is evaluated with benchmark ETC instances of 512 tasks
and 16 processors.

3 THE PROPOSED DPSO ALGORITHM

The proposed work emphasizes the significance of representing the particles in Per-
mutation Based Format (PBF) which conveys the flow of execution of tasks on
the processors for optimizing flow time. Representation of a particle is one of the
key issues in devising a successful PSO algorithm in discrete problems, since, the
particles convey the essential information related to the problem domain. PSO is
a prominent stochastic search method on continuous optimization problems because
position of the particles (solutions) is real value. Scheduling task in distributed
systems is discrete optimization problem because it has discrete decision variables
such as tasks and processors. Position Vector Format (PVF) is a well-known parti-
cle representation for an independent task scheduling problem. PVF representation
expresses only which task to be executed on which processor and it does not provide
the flow of execution of tasks in processors. The flow is not required for the algo-
rithm that evaluates only the makespan. However, Flow time is also an important
metric to evaluate the efficiency of the algorithm for scheduling independent tasks in
distributed systems. Flow of execution affects the flow time. The proposed DPSO
uses permutation based format for representing the particles to address the above
stated problem in PVF.

Linearly Decreasing Inertia (LDI) weight was used in the existing DPSO [3, 5]
algorithm. LDI needs only maximum (Wmax) and minimum (Wmin) values of W and
linearly decreased from Wmax to Wmin. This kind of the inertia factor does not guar-
antee that the particles have not moved away from the global best. The proposed
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work designs the inertia weight based on the distance between the particles and
their global best. This ensures that the particles have not moved away from their
global best because the distance is also considered as a part of velocity to update
the position of the particles. Here, the distance represents the count of dissimilar
values in two particles such as current particle and global best particle. The Ham-
ming distance is considerably suitable to the above stated distance. Therefore, the
proposed inertia weight is entitled as Hamming inertia which is used to improve the
performance of the algorithm. The flow of the proposed work is given in Figure 1.
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Figure 1. Flow diagram of the proposed DPSO

PSO is an optimization algorithm based on population. The system is initialized
with a population of random particles. The population of the possible particles in
PSO is called a swarm. Each particle moves in the D-dimensional problem space with
a velocity. The velocity is dynamically changed based on the flying knowledge of its
own (Personal best) and the knowledge of the swarm (Global best). The velocity of
a particle is controlled by three components, namely, inertial momentum, cognitive,
and social. The inertial component simulates the inertial behavior of the bird to fly
in the previous direction. The cognitive component models the memory of the bird
about its previous best position, and the social component models the memory of
the bird about the best position among the particles. PSO is different from other
evolutionary techniques in a way that it does not apply the filtering operation (such
as crossover and/or mutation) and the members of the entire swarm are preserved
through the search procedure, so that information is socially shared among particles
to direct the search towards the finest position in the search space. PSO can be
easily implemented and it is computationally inexpensive, since its memory and
CPU speed necessities are significantly low [15].

In PSO, the particles are encoded as a set of real values, which represents the
location of a particle in the search space. Task scheduling is one of the combinatorial
optimization problems because it has discrete decision variables (e.g. task number
or processor number). However, the classical PSO cannot be directly used in the
task scheduling problem because their positions are continuous values. The most
well-known encoding technique in the literature is Smallest Position Vector (SPV)
[16] rule for mapping continuous positions of particles in PSO to the discrete values.
The movement of the particle towards the best solution is directed by updating its
velocity and position characteristics. The velocity and position updates for PSO are
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given in Equations (1) and (2). The pseudo code of PSO algorithm with SPV rule
in task scheduling problem is given in Algorithm 1.

V
(t+1)
i (j) = WV t

i (j) + C1r1(Pbestti(j)− presentti(j))

+ C2r2(Gbestt(j)− presentti(j)), (1)

present
(t+1)
i (j) = presentti(j) + V

(t+1)
i (j). (2)

Algorithm 1 PSO with SPV for task scheduling problem

begin
Initialize the swarm randomly.
Initialize each particle position and velocity.
Using SPV rule to map the particle’s position from continuous space into
discrete space.
Evaluate each particle and find the Pbest and the Gbest.

repeat
Update velocity of each particle using Equation (1).
Update position of each particle using Equation (2).
Using SPV rule to map the particle’s position from continuous space into
discrete space.
Evaluate fitness value of each new particle.
Update Pbest and Gbest for each new particle.

until stopping condition is true.

Kang et al. [3] and Izakian et al. [4] proposed PSO called Discrete PSO (DPSO)
that can update their particles in a discrete domain directly. Here, the conversion
techniques are not required for mapping continuous positions of particles into dis-
crete values and hence much computation time can be saved. The authors [3, 4]
developed a DPSO algorithm of a particle representing in position vector format.
This representation does not provide the flow of execution of tasks. The flow is
not needed, if the algorithm minimizes only the makespan. The proposed algorithm
minimizes not only makespan, but also flow time. Therefore, the particles are rep-
resented as a permutation of integer values to identify the flow of execution. The
velocity and position update methods in DPSO are redefined to operate directly in
the permutation based format. The redefined velocity and position update [5] are
given in Equations (3) and (4).

V
(t+1)
i (j) = WV t

i (j) ∪ C1r1(Pbestti(j)− presentti(j)) ∪ C2r2(Gbestt(j)

− presentti(j)), (3)

present
(t+1)
i (j) = presentti(j)(swap)V

(t+1)
i (j). (4)
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The HDDPSO uses Hamming inertia weight that is given in Equation (5), where
W0 is the random number between 0.5 and 1, Hi is the current Hamming distance
of ith particle from the global best and MDH is the maximum distance of a particle
from the global best in that generation.

W = W0

(
1− Hi

MDH

)
, (5)

Hi = Hamming distance(Gbestt, presentti), (6)

MDH = Max(Hi). (7)

The two random parameters r1 and r2 in Equation (3) are independent. If the
two random parameters are high, both the personal and social experiences are over
used and the particle is moved too far away from the local optimum. If both are low,
both the personal and social experiences are not used completely and the conver-
gence speed of the optimization technique is reduced. Mandal et al. [17] proposed
dependent random parameters to control the balance of personal and social experi-
ences in continuous domain. The HDDPSO also uses dependent random parameters
r1 and r2 in discrete domain. In this method, one single random number r1 is chosen
so that when r1 is large, 1− r1 is small and vice versa.

The HDDPSO algorithm has taken the redefined velocity and position update
methods from [5] and incorporates Hamming inertia weight and dependent random
parameters to update the particles. The Equation (3) is rewritten in Equation (8).

V
(t+1)
i (j) = W (SSO1) ∪ C1r1(SSO2) ∪ C2(1− r1)(SSO3). (8)

An illustrative example of generating the new particle is shown below:
Assume,

n = 5; W = C1 = C2 = r1 = r2 = 1;
Vold = 0; Pbest = {2, 5, 3, 4, 1}; Gbest = {1, 3, 5, 2, 4}; present = {1, 2, 3, 4, 5}

• Vnew = {2, 5, 3, 4, 1} − {1, 2, 3, 4, 5} ∪ {1, 3, 5, 2, 4} − {1, 2, 3, 4, 5}
SSO1 = 0; SSO2 = {(1, 2)(2, 5)}; SSO3 = {(2, 3), (3, 5), (4, 5)}

Vnew = {(1, 2)(2, 5), (2, 3), (3, 5), (4, 5)}

• presentnew = {1, 2, 3, 4, 5}(swap){(1, 2)(2, 5), (2, 3), (3, 5), (4, 5)}
= {2, 1, 3, 4, 5}(swap){(2, 5), (2, 3), (3, 5), (4, 5)}

presentnew = {2, 3, 1, 5, 4}

The TS problem is formulated based on the following assumptions:
The n denotes the number of independent tasks T = {T 1, T 2, . . . , Tn} to be

scheduled on m processors P = {P1, P2, . . . , Pm}. All tasks are non-preemptive and
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every processor processes only a single task at a time. Each processor uses the First-
Come, First-Served (FCFS) method for performing the received tasks and every task
is processed on a single processor at a time [7]. At the time of submitting these tasks,
m processors P = {P1, P2, . . . , Pm} are within the Heterogeneous Computing (HC)
environment.

Because of the heterogeneous nature of the processors and disparate nature of the
tasks in HC, the expected execution times of a task executing on different processors
are different. Every task has an Expected Time to Compute (ETC) on a specific
processor. The ETC values are assumed to be known in advance. An ETC matrix is
an n×m matrix where m is the number of processors and n is the number of tasks.
One row of the ETC matrix represents estimated execution time for a specified task
on each processor. Similarly one column of the ETC matrix consists of the estimated
execution time of a specified processor for each task. An illustrative example for the
ETC model with 5 tasks and 3 processors is shown in Figure 2.

The asymptotic complexity of the HDDPSO algorithm is the same as the
DPSO [5] because the algorithm follows the same pseudo code of the DPSO. The
pseudo code of the proposed HDDPSO algorithm is given in Algorithm 2.
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Figure 2. ETC model for 5× 3 (5 tasks and 3 processors)

The following subsections describe in detail the steps of HDDPSO algorithm.

3.1 Particle Representation and Swarm Initialization

The DPSO algorithm [5] starts with a random initial swarm. The random initial-
ization is a simple and straightforward technique. However, the problem in this
technique is, some processors are busy with processing, while some processors are
idle without any processing. To make better utilization of the processors, the HD-
DPSO performs load sharing which assures no processor is idle initially.

Swarm initialization consists of two parts: Particle Initialization (PI) and Pro-
cessor Allocation (PA). Number of tasks and population size are required to generate
particles. Here, a particle is encoded in permutation based method instead of posi-
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Algorithm 2 HDDPSO for TS problem

begin
Initialize the swarm with load sharing and initialize each particle position and
velocity
Evaluate each particle and find the Personal best and the Global best

repeat
Update velocity of each particle using Equation (8)
Update position of each particle using Equation (4)
Evaluate fitness value of each new particle
Update Personal best and Global best for each new particle
Apply VND to the Global best particle

until stopping condition is true

tion vector format. In the permutation vector, the position of a task represents the
sequence the task is scheduled and the corresponding value indicates a task number.
An example of permutation based method is shown in Figure 3.

Population Size           :  2 

Number of Tasks        :  4 (1, 2, 3, 4) 

Number of processors :  2 (P1, P2)                                                                        

                                   Particle 1:   

                                                          P1  1     3     

    Particle 1:  1    2    3    4                P2  2     4 

                                                  

                                                  Particle 2: 

 Particle 2:  3    1    2    4                 P1  3      2 

                                                        P2  1      4 

(a)                                         (b) 

Task 

Number 

Figure 3. Swarm Initialization a) Particle Initialization b) Processor Allocation with shar-
ing the load

Kang et al. [3] and Izakian et al. [4] developed a DPSO algorithm of a particle
representing in PVF. An example for a particle that corresponds to a task assignment
that assigns five tasks to three processors is given in Figure 4 a). The internal
representation of the particle in Figure 4 a) is shown in Figure 4 b), which always
provides a single possible schedule in PVF.

In Figure 4, the tasks 2, 3 and 5 are assigned to processor 1. Because of in-
dependent nature of the tasks, the tasks can be executed in any order. So, it can
make 3! = 6 different possible schedules. The possible remaining schedules can be
represented using PBF only. Two sample schedules are presented in Figure 5.

It is inferred from Figure 6 to Figure 8, the value of make span does not change
if the order of the tasks assigned within a processor varies, but the value of flow
time varies if the order of tasks assigned within a processor varies. The PVF is not
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Figure 4. a) A particle in PVF, b) the internal representation of the particle in PVF
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Figure 6. Make span and mean flow time of a particle shown in Figure 4
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Figure 8. Make span and flow time of a right side particle shown in Figure 5

able to represent the particles in Figures 7 and 8. These can be represented only in
PBF. Therefore, the proposed algorithm represents the particles in PBF to improve
the performance for minimizing flow time.

3.2 Particle Evaluation

The three evaluation criteria such as make span [5], mean flow time and reliability
cost [5] are used to assess the efficiency of the proposed algorithms.

The value of mean flow time [17] is used to evaluate flow time. Assume k is
the total number of tasks assigned to processor Pi and Fji is the finishing time of
task T j on a processor Pi. The calculation of mean flow time is given in Equa-
tion (9).

Mean Flow time =

∑m
i=1M Flowi

m
, (9)

M Flowi =

∑k
j=1 Fji

k
. (10)

The three objectives are used to evaluate the performance of the scheduler. The
weighted single objective function called AWS [6] is used to calculate the fitness
value of each solution. This can be estimated using Equation (11).

Fitness = α1α2Makespan + (1− α1)α2Mean Flow time + (1− α2)Reliability Cost,

αiε[0, 1]. (11)

3.3 Updating the Particle’s Personal Best and Global Best Position

The Personal best position (Pbest) of each particle and Global best (Gbest) position
of the swarm can be determined based on the fitness value. The Pbest and the Gbest
should be determined before updating the position of the particle.
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3.4 Updating the Particle’s Velocity and Position

The particles in HDDPSO update their velocity and position using Equations (8)
and (4), respectively.

3.5 VND Heuristic

Local search technique was not included in DPSO [5] algorithm. Therefore the
algorithm may get struck in local optima. The HDDPSO algorithm applies VND [3]
(Variable NeighborhooD) local search heuristic when there is no change in the Global
best particle for consecutive iterations.

3.6 Stopping Condition

The above iterative processes on a swarm will continue until there is no change in the
fitness value of the Global best particle after applying VND heuristic for consecutive
iterations. The fitness value of the proposed algorithms and compared algorithms
are calculated using AWS method. In this method, the weights of the objective
values change generation to generation. The particles in different generation may
have the same objective values, but different fitness values. Therefore, the algorithm
may take time to converge. Hence, the stopping criterion of all the algorithms is set
to predefined maximum number of iteration. In this paper, the maximum number
of iteration is set to 1 000.

4 SIMULATION EXPERIMENTS AND ANALYSIS

The simulation results are attained using a set of benchmark ETC instances [19]
for the distributed heterogeneous systems. All algorithms are coded in Java and
executed in i5 processor.

4.1 Benchmark Instances Description

The simulation is performed on the benchmark ETC instances [19] which are cate-
gorized in 12 types of ETC’s based on the 3 following metrics: task heterogeneity,
machine heterogeneity and consistency. In this benchmark, quality of the ETC ma-
trices are varied in an attempt to simulate various possible HC environments by
setting the values of parameters meantask, Vtask and Vmachine, which represent the
mean task execution time, the task heterogeneity, and the machine heterogeneity,
respectively. In ETC matrices, the amount of variance among the execution time of
tasks in the meta-task for a given processor is defined as task heterogeneity. Machine
heterogeneity represents the distinction among the execution times for a given task
across all the processors. The Coefficient of Variation Based (CVB) [3, 20] ETC
generation method gives a larger control over the spread of execution time values
than the Range Based (RB) method proposed by Braun [2].
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To capture other possible characteristics of real scheduling problems, three dif-
ferent ETC consistencies, namely consistent, inconsistent and semi-consistent, are
used. An ETC matrix is considered consistent if a processor Pi executes task Tj
faster than processor Pj, then Pi executes all the jobs faster than Pj. Inconsis-
tency indicates that a processor is quicker for a few jobs and slower for some others.
An ETC matrix is considered semi-consistent if it includes a consistent sub-matrix.
A semi consistent ETC matrix is characterized by an inconsistent matrix which has
a consistent sub-matrix of a predefined size.

All instances consisting of 512 tasks and 16 processors are classified into 12 dif-
ferent types of ETC matrices according to the 3 metrics.

The instances are labeled as g a bb cc as follows:

• g means gamma distribution used in generating the matrices.

• a shows the type of inconsistency; c – consistent, i – inconsistent, and s – semi-
consistent.

• bb indicates the heterogeneity of the tasks; hi – high and lo – low.

• cc represents the heterogeneity of the machines; hi – high and lo – low.

4.2 Algorithms Comparison

The proposed algorithms in this paper are given below:

a) H-DPSO: Incorporate the proposed Hamming inertia in DPSO [3] instead of
using LDI

b) LDPSO: Incorporate PBF in DPSO [3]

c) HDPSO: Incorporate Hamming inertia in LDPSO instead of LDI

d) HDDPSO: Incorporate Dependent random parameters in HDPSO

Simulations were carried out to compare the performance analysis of proposed
algorithms with respect to:

a) Differential Evolution (DE) [20]. To make an effective comparison, DE [20] is
extended to minimize reliability cost also.

b) DPSO (position vector representation) [3]. For an effective comparison, DPSO
is extended to minimize mean flow time and reliability cost also.

c) Modified DPSO (MDPSO) [14]. This is a DPSO (position vector representa-
tion) with LDI and no VND. Swap mutation was applied to avoid premature
convergence. For an effective comparison, mean flow time is used instead of flow
time.

d) Multi-Objective DPSO (MODPSO) [5]. This is a DPSO (Permutation based
representation) with LDI and no VND. For an effective comparison, mean flow
time is used instead of flow time.
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All the algorithms are stochastic based algorithms. Each independent run of the
same algorithm on a particular problem instance may yield a different result. To
make a better comparison of the algorithms each experiment was repeated 10 times
with different random seeds and average of the results are tabulated and presented
below.

4.3 Parameter Setup

The following parameters are initialized for simulating existing algorithms DE,
DPSO, MDPSO, MODPSO and the proposed algorithms H-DPSO, LDPSO,
HDPSO and HDDPSO algorithms.

• The population size of all the algorithms is set to 32 as recommended in [3].

• Number of iterations is set to 1 000 for all the algorithms.

• The Failure rate for each processor is uniformly distributed [21] in the range
from 0.95× 10−6/h to 1.05× 10−6/h.

4.4 Performance Comparisons

In the initial population, one solution is generated using min-min heuristic and the
others are generated randomly. The average results of compared algorithms and the
proposed algorithm are shown in Table 1 for makespan, in Table 2 for mean flow
time and in Table 3 for reliability cost.

From Table 1 to Table 3, the first column indicates the ETC instance name,
the second, third, fourth, fifth, sixth, seventh, eighth and ninth columns indicate
the value obtained by DE, DPSO, MDPSO, H-DPSO, MODPSO, LDPSO, HDPSO
and HDDPSO, respectively. From Table 1 to Table 3, the values in bold indicate
an optimal value.

From Table 1, the proposed HDDPSO algorithm substantially provides better
makespan value in most of the ETC instances than the respective values obtained
by other algorithms and LDPSO provides acceptable makespan only in one case.

Table 2 shows that the proposed HDDPSO algorithm can achieve better mean
flow time than other algorithms. DPSO, MDPSO, H-DPSO attain admissible mean
flow time only for few instances. With obtained reliability cost in Table 3, the
proposed HDDPSO algorithm considerably gives better performance in most of the
ETC instances than other algorithms. The DE, H-DPSO, LDPSO and HDPSO
achieve acceptable results in few cases only.

The existing meta-heuristic algorithms DE, DPSO, MDPSO and proposed
H-DPSO represent the particles in position vector format. The existing MODPSO
and proposed LDPSO, HDPSO and HDDPSO algorithms represent the particles in
permutation based method. The above results proved that the permutation based
particle representation algorithms (MODPSO, LDPSO, HDPSO and HDDPSO) pro-
vide significant improvements compared to the position vector based particle rep-
resentation algorithms (DE, DPSO, MDPSO and H-DPSO) for optimizing multiple
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ETC DE DPSO MDPSO Proposed MODPSO Proposed Proposed Proposed
Instance H-DPSO LDPSO HDPSO HDDPSO
c lo lo 451 107.72 441 108.14 431 008.43 568 200.82 49 368.42 46 154.02 55 214.35 43 643.99
c lo hi 178 413.11 188 413.43 187 473.93 70 649.59 99 730.68 90 482.87 82 255.11 81 612.81
c hi lo 179 996.63 177 927.26 176 323.66 436 224.21 58 249.97 49 637.11 57 680.64 43 051.54
c hi hi 76 838.66 86 838.73 85 388.39 99 854.43 107 577.11 77 396.29 93 516.83 66 631.78
i lo lo 1 606 821.45 1 506 821.25 1 513 281.22 605 141.31 36 936.14 36 121.21 33 948.45 32 705.98
i lo hi 2 232 555.56 2 232 529.67 2 332 100.16 609 668.95 41 757.22 44 309.75 42 768.94 35 669.85
i hi lo 504 768.32 484 768.45 484 918.35 1 204 419.23 41 317.72 43 776.15 44 000.51 36 901.93
i hi hi 877 159.62 977 159.28 997 019.18 452 256.82 54 514.32 43 518.04 66 065.56 37 296.16
s lo lo 954 417.64 924 417.39 900 492.94 195 943.47 42 991.11 38 812.83 41 607.35 38 001.28
s li hi 68 716.88 58 716.82 60 716.82 222 039.16 69 037.49 49 788.27 51 983.13 50 695.75
s hi lo 648 728.23 748 728.25 729 718.05 1 213 979.11 50 652.82 42 031.54 39 670.28 37 104.56
s hi hi 702 668.29 672 668.55 692 668.44 232 549.82 72 357.83 63 718.57 65 144.73 53 539.03

Table 1. Comparison of makespan (in seconds) of proposed algorithms with existing al-
gorithms

ETC DE DPSO MDPSO Proposed MODPSO Proposed Proposed Proposed
Instance H-DPSO LDPSO HDPSO HDDPSO
c lo lo 58 138.47 55 138.47 52 939.92 71 025.09 16 479.65 16 703.19 16 828.59 16 307.47
c lo hi 29 551.81 23 551.67 21 291.72 8 831.19 16 511.09 16 214.53 16 241.61 15 632.38
c hi lo 20 240.81 22 240.82 22 102.12 54 528.03 15 891.55 16 415.92 16 115.71 15 872.59
c hi hi 11 854.93 10 854.83 10 729.18 12 481.81 17 296.37 16 394.39 16 853.59 15 420.42
i lo lo 198 352.59 188 352.59 189 952.35 75 642.67 16 537.13 15 653.43 16 205.09 15 196.03
i lo hi 379 066.18 279 066.18 281 126.98 76 208.62 16 318.29 14 944.84 15 401.63 14 912.74
i hi lo 20 435.81 26 435.81 26 785.93 150 552.41 15 688.48 15 542.91 15 716.21 14 992.95
i hi hi 123 144.84 122 144.84 130 014.31 56 532.11 17 727.99 15 770.66 16 794.22 14 204.53
s lo lo 151 552.14 115 552.14 121 242.19 24 492.93 16 380.35 16 173.51 16 664.88 13 433.23
s li hi 10 339.61 7 339.61 7 399.69 27 754.89 16 294.42 15 107.32 15 959.73 15 269.09
s hi lo 90 591.03 93 591.03 94 191.43 151 747.31 15 858.55 15 342.13 15 584.69 14 875.33
s hi hi 80 083.53 84 083.53 84 993.63 29 068.73 17 548.32 15 579.29 16 392.15 14 963.85

Table 2. Comparison of mean flow time (in seconds) of proposed algorithms with existing
algorithms

objectives. Comparison among the proposed algorithms, HDDPSO provides better
results in majority of the ETC instances with respect to multiple objectives.

The following part describes the performance improvement of the proposed HD-
DPSO with other permutation based particle representation algorithms (MODPSO,
LDPSO and HDPSO) in terms of average Relative Percentage Deviation (RPD) [3].

ETC DE DPSO MDPSO Proposed MODPSO Proposed Proposed Proposed
Instance H-DPSO LDPSO HDPSO HDDPSO
c lo lo 1.050639 1.000639 1.030139 1.000961 0.509932 0.532011 0.515035 0.504714
c lo hi 0.839667 0.296866 0.192816 0.269642 0.519825 0.508718 0.503148 0.493887
c hi lo 0.473802 0.573804 0.551804 0.575274 0.504692 0.529443 0.477007 0.483374
c hi hi 0.305931 0.307031 0.306931 0.306731 0.524231 0.498573 0.515936 0.473123
i lo lo 1.940761 1.419476 1.310476 1.089812 0.512596 0.488641 0.539979 0.496405
i lo hi 1.731361 1.341873 1.243813 1.234524 0.505007 0.535615 0.469199 0.491156
i hi lo 0.725419 1.725419 1.800419 1.405323 0.497707 0.479278 0.499176 0.478036
i hi hi 1.100903 1.172903 1.181003 1.253371 0.534967 0.509245 0.518727 0.439922
s lo lo 1.007405 1.500741 1.199741 0.918074 0.507683 0.502852 0.529157 0.476322
s li hi 0.566386 0.460566 0.461066 0.909172 0.513329 0.474346 0.494333 0.434523
s hi lo 0.995581 0.981049 0.982009 1.479681 0.501462 0.492261 0.497563 0.470336
s hi hi 0.597713 0.935977 0.921077 0.461891 0.528311 0.483202 0.501902 0.473279

Table 3. Comparison of reliability cost of proposed algorithms with existing algorithms
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RPD is calculated using Equation (12), where P is the average result of the HD-
DPSO algorithm and ACi is the average result provided by MODPSO, LDPSO and
HDPSO for each instance.

RPD = (ACi − P )/P ∗ 100. (12)

The standard deviation of fitness values of MODPSO, LDPSO, HDPSO and
HDDPSO algorithms for 10 different random seeds are calculated and presented in
Table 4. The values in bold indicates the optimal results. In most of the ETC
instances, HDDPSO provides optimal results than other algorithms.

ETC MODPSO Proposed RPD Proposed Proposed RPD Proposed Proposed RPD
Instance HDDPSO (%) LDPSO HDDPSO (%) DPSO HDDPSO (%)
c lo lo 2 516.61 2 042.06 23.24 2 203.03 2 042.06 7.88 2 657.69 2 042.06 30.15
c lo hi 1 527.53 1 126.94 35.55 1 527.53 1 126.94 35.55 2 516.61 1 126.94 123.31
c hi lo 1 223.17 2 393.56 −48.89 3 511.89 2 393.56 46.72 2 000.01 2 393.56 −16.44
c hi hi 3 908.79 1 527.53 155.89 4 163.33 1 527.53 172.55 5 800.01 1 527.53 279.69
i lo lo 4 041.45 1 877.35 115.27 1 014.89 1 877.35 −45.94 2 181.67 1 877.35 16.21
i lo hi 2 377.98 2 445.75 −2.77 2 000.01 2 445.75 −18.22 1 527.53 2 445.75 −37.54
i hi lo 3 514.55 2 486.75 41.33 2 081.67 2 486.75 −16.29 2 741.75 2 486.75 10.25
i hi hi 6 931.61 2 001.67 246.29 5 041.45 2 001.67 151.86 3 705.55 2 001.67 85.12
s lo lo 2 516.61 2 167.49 16.11 3 605.55 2 167.49 66.35 1 539.48 2 167.49 −28.97
s li hi 2 500.01 1 527.53 63.66 2 000.01 1 527.53 30.93 2 055.05 1 527.53 34.53
s hi lo 1 542.22 1 000.01 54.22 4 041.45 1 000.01 304.14 2 400.01 1 000.01 139.99
s hi hi 5 990.01 1 501.88 298.83 3 516.61 1 501.88 134.15 3 911.89 1 501.88 160.47
Average 83.23 72.47 66.39

Table 4. Comparison of standard deviation of fitness value of HDDPSO algorithm with
other algorithms

Figure 9. Performance improvement of HDDPSO compared to other algorithms in terms
of average RPD (%)

Performance improvement of the proposed HDDPSO algorithm is presented in
Figure 9. It shows that the HDDPSO algorithm considerably provides better per-
formance than MODPSO, LDPSO, HDPSO in terms of fitness value by 83.23 %,
72.47 % and 66.39 % across all ETC instances respectively.
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Figure 10. RPD comparison of HDDPSO algorithm with other algorithms with respect
to makespan

Figure 11. RPD comparison of HDDPSO algorithm with other algorithms with respect
to mean flow time

From Table 5, it is inferred that HDDPSO is able to give better performance
in terms of make span by 28.43 %, 12.56 % and 21.86 %, mean flow time by 9.94 %,
5.03 % and 7.82 % and reliability cost by 28.43 %, 12.56 % and 21.86 % compared to
MODPSO, LDPSO and HDPSO across all ETC instances respectively. The negative
RPD values in the Table 5 indicate that the algorithm does not provide the optimal
results.

Table 6 presents the average RPD values obtained by the algorithms with respect
to ETC instances such as lo lo, lo hi, hi lo and hi hi. The values in bold represent
the highest RPD value of the algorithm.

The results obtained from Table 6 and Figure 10 to Figure 12, the proposed
HDDPSO algorithm provides the highest RPD values in hi hi ETC instances. Hence,
it is found to be more suitable for high task and high machine heterogeneity.
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Figure 12. RPD comparison of HDDPSO algorithm with other algorithms with respect
to reliability cost

Instance Make span Mean Flow Time Reliability Cost
RPD RPD RPD RPD RPD RPD RPD RPD RPD
(%) (%) (%) (%) (%) (%) (%) (%) (%)

LDPSO- LDPSO- HDPSO- LDPSO- LDPSO- HDPSO- LDPSO- LDPSO- HDPSO-
NVND, VND, VND, NVND, VND, VND, NVND, VND, VND,

HDDPSOHDDPSOHDDPSOHDDPSOHDDPSOHDDPSOHDDPSOHDDPSOHDDPSO
c lo lo 13.12 5.75 26.51 1.06 2.43 3.20 1.03 5.41 2.04
c lo hi 22.20 10.87 0.79 5.62 3.72 3.90 5.25 3.00 1.88
c hi lo 35.30 15.30 33.10 0.12 3.42 1.53 4.41 9.53 −1.32
c hi hi 61.45 16.16 40.35 12.17 6.32 9.30 10.80 5.38 9.05
i lo lo 12.93 10.44 3.80 8.83 3.01 6.64 3.26 −1.56 8.78
i lo hi 17.07 24.22 19.90 9.43 0.22 3.28 2.82 9.05 −4.47
i hi lo 11.97 18.63 19.24 4.64 3.67 4.82 4.11 0.26 4.42
i hi hi 46.17 16.68 77.14 24.81 11.03 18.23 21.60 15.76 17.91
s lo lo 13.13 2.14 9.49 21.94 20.40 24.06 6.58 5.57 11.09
s lo hi 36.18 −1.80 2.54 6.72 −1.06 4.52 18.14 9.16 13.76
s hi lo 36.51 13.28 6.92 6.61 3.14 4.77 6.62 4.66 5.79
s hi hi 35.15 19.01 21.68 17.27 4.11 9.55 11.63 2.10 6.05
Average 28.43 12.56 21.79 9.94 5.03 7.82 8.02 5.69 6.25

Table 5. Performance comparison of RPD (%) of HDDPSO algorithm with other algo-
rithms

ETC Make span Mean Flow Time Reliability Cost
Instance RPD RPD RPD RPD RPD RPD RPD RPD RPD

(%) (%) (%) (%) (%) (%) (%) (%) (%)
MODPSO, LDPSO, HDPSO,MODPSO, LDPSO, HDPSO,MODPSO, LDPSO, HDPSO,
HDDPSOHDDPSOHDDPSO HDDPSOHDDPSOHDDPSO HDDPSOHDDPSOHDDPSO

lo lo 13.06 6.11 13.27 10.61 8.61 11.31 3.62 3.14 7.30
lo hi 25.15 11.09 7.74 7.26 0.96 3.91 8.74 7.07 3.72
hi lo 27.93 15.74 19.75 3.79 3.41 3.71 5.05 4.82 2.96
hi hi 47.59 17.28 46.39 18.08 7.15 12.36 14.68 7.75 11.01

Table 6. Performance comparison of average RPD of HDDPSO algorithm with other al-
gorithms
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It can be seen from the results that the proposed HDDPSO algorithm remark-
ably gives better performance than exiting algorithms DE, DPSO, MDPSO and the
proposed H-DPSO by representing the particles in permutation based method which
optimizes the multiple objectives. Compared to the existing MODPSO and the pro-
posed LDPSO, using Hamming inertia confirmed the particles are not moved away
from the global best particle. The proposed HDDPSO algorithm has also ensured
that the particles are not moved too far away from the local optimum due to make
a dependency between the random parameters to control the balance of personal
and social experiences. Therefore, the proposed HDDSPO is significantly better
than the proposed HDPSO.

5 CONCLUSION

The proposed HDDPSO algorithm is efficient and adapts the inertia weight based
on the Hamming distance of the particles from global best. In comparison with the
position vector based algorithms, the permutation based algorithms provide signifi-
cant results in majority of the ETC instances. In addition, an effective VND local
search algorithm is embedded into the DPSO to perform exploitation. Simulation
results and comparisons with existing algorithms demonstrated the effectiveness of
the proposed HDDPSO algorithm and it also shows that the HDDPSO is more
suitable for high task and high machine heterogeneity environment.
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