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Abstract. This paper explores the problem of processing the immense volume
of measurement data arising during network traffic monitoring. Due to the ever-
increasing demands of current networks, observing accurate information about every
single flow is virtually infeasible. In many cases the existing methods for the reduc-
tion of flow records are still not sufficient enough. Since the accurate knowledge of
flows termed as “heavy-hitters” suffices to fulfill most of the monitoring purposes,
we decided to aggregate the flow records pertaining to non-heavy-hitters. However,
due to the ever-changing nature of traffic, their identification is a challenge. To
overcome this challenge, our proposed approach – the adaptive aggregation of flow
records – automatically adjusts its operation to the actual traffic load and to the
monitoring requirements. Preliminary experiments in existing network topologies
showed that adaptive aggregation efficiently reduces the number of flow records,
while a significant proportion of traffic details is preserved.
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1 INTRODUCTION

Traffic monitoring has a significant role in the design, management and optimization
of present computer networks. In order to achieve the full-featured operation of
the network it is essential to measure and evaluate various characteristics of the
traffic. Nowadays, the most commonly used data measurement methods are based
on collecting information about the network and its traffic at the level of flows.

Network monitoring by flow-level based measurement platforms – either imple-
menting the NetFlow v9 [1] or IPFIX [2] protocols – is based on the analysis of
information obtained from traffic properties and characteristics. Flow-level infor-
mation has a wide range of use from analyzing the traffic of the network through
anomaly detection up to ensuring QoS. Collecting flow-level information can provide
meaningful information about the dynamics of network traffic as well. Further, it
is also used for a variety of network monitoring tasks such as user and application
monitoring, traffic engineering, capacity planning, accounting, security applications
(IDSes and IPSes) and performance analysis. Despite its popularity, flow-level mea-
surement is still surrounded by several issues. As networks are continuously growing
in

1. size,

2. connected users and

3. the volume of transmitted data (traffic),

their operation and management are becoming more and more complex. In conse-
quence, current flow-based network monitoring systems generate a huge volume of
measurement data what represents one of the most critical issues from the view of
both data processing (analysis) and interpretation (visualization) [3].

In the following sections we provide a formal as well as informal description of
our systematic approach that have finally led to the design of a yet another adap-
tive aggregation method. They discuss several methods/techniques and phenomena
by the combination of which we achieved the aggregation of flow records and its
adaptability to the traffic character.

1.1 State-of-the-Art

Over the past decades many approaches were taken to create a unified standard for
monitoring the traffic which flows through the network. In consequence, various
techniques and methods were proposed. All of these methods have their advantages
and disadvantages. Some of them may excel in data reduction, but, on the other
hand, the obtained information may be less detailed and have coarse granularity.
On the contrary, other techniques may provide fine granularity, but data reduction
may not be sufficient enough. Generally, most of the techniques have been in-
corporated into unified standards for retrieving network device- and traffic-specific
information. Therefore, they are usually associated with a standard or protocol.
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The most commonly used protocols in network traffic measurement are counters
(SNMP counts [4]), flow-level information (Netflow/IPFIX [1, 5, 2]) and sampled
flow (sFlow [6]).

Although SNMP counts are simple and lightweight to process, they do not pro-
vide enough details about the network traffic. When details about the traffic seman-
tics are required, three main technologies come into consideration: packet capture,
sFlow and NetFlow/IPFIX. Some of them affect the data reduction more and some
less. Although NetFlow and IPFIX are surrounded by some challenges, their bene-
fits far outweigh their shortcomings and in comparison with other approaches they
provide more flexibility. Thus, collecting flow-level information is currently the most
preferred way to perform measurements. It provides measurement data at a rela-
tively high aggregation level while a considerable portion of traffic semantics needed
for various network monitoring tasks is still retained. However, gathering flow-level
information has to face some issues. The most emerging one is the volume of mea-
surement data [7, 3]. In general, the main aim of the network is to ensure the smooth
and fast transfer of traffic data. If the network has to deal with measurement data
at the very same time, it can easily cause over-utilization of various network entities
(e.g. inter-networking devices) and the network’s operation. For example, if the
individual inter-networking devices are involved in forwarding of measurement data
between the observation point(s) and the monitoring system(s), their performance
can be adversely affected. Similar situation occurs in case of routers which besides
capturing packets are involved in the creation and export of flow records.

A recent approach to programmable networks is the Software Defined Network-
ing (SDN) architecture, which is aimed, besides other things, at this issue. As
described in [8], the main idea behind SDN is to allow developers to rely on network
resources in the same easy manner as they do on computing or storage resources.
This is reached by decoupling the control and data planes of the network, i.e., the
network intelligence is logically centralized in software-based controllers (or control
plane), and network devices become simple packet forwarding devices (or data plane)
that can be programmed via an open interface (e.g. ForCES [9], OpenFlow [10, 11],
etc.).

OpenFlow is currently the most commonly deployed Software Defined Network-
ing (SDN) technology. Since the source code of the software running on the switches
is usually inaccessible nor can be modified, it is difficult for the science-research com-
munity to test new ideas in current environments. OpenFlow was proposed to stan-
dardize the communication between the switches and the software-based controller
in an SDN architecture, thus enabling researchers to test new ideas in a production
hardware. It provides means to control a switch without requiring the vendors to
expose the code of their devices. In the OpenFlow architecture the software-based
controller is responsible for managing the forwarding information of one or more
switches; while the hardware only handles the forwarding traffic according to the
rules set by the controller [11].

Since OpenFlow separates the control plane and data plane of networking de-
vices [11], it should be considered – as also suggested in [12] – a flow-based configura-
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tion technology for packet forwarding devices, rather than a flow export technology.
However, although it was not specifically developed for tasks related to data export
and network monitoring, according to [13], flow-level information available within
the OpenFlow control plane (e.g. packet and byte counters) was recently used for
performing network measurements as well.

1.2 IPFIX-Based Measurement Platforms

At present, the vast majority of monitoring tools are performing the measurement
of flow-level information using either the NetFlow [1] or the IPFIX [2] protocol.
Since we expect IPFIX to be the industry standard for flow monitoring in the near
future, and considering the fact that between IPFIX and NetFlow is just a slight
difference, in the following we will analyze the process of network traffic monitoring
in the context of the IPFIX specification.

IPFIX defines a format and a protocol for the export of information about IP
flows. IP flow is defined as an unidirectional stream of IP packets identified by
a common five-tuple (flow keys); specifically the protocol type, source IP address,
destination IP address, source port and destination port. Basically, network traffic
monitoring is based on the analysis of the exported information. The properties (e.g.
the total number of bytes of all packets belonging to a certain flow) and character-
istics (e.g. source IP address) of the flow are carried in flow records. The export
of flow records represents a push-based mechanism, where the data are transmitted
from the IPFIX exporter(s) to the IPFIX collector(s) over either the TCP, UDP
or the SCTP protocol. Actually, the exporters and the collectors are the essential
components of any IPFIX-based measurement platform.

Exporter is a device which basically hosts two processes: the metering and the
exporting. Each of these processes can have one or more instances. In general,
each exporter sends flow records to one or more collectors. The flow records are
generated by the metering process(es).

The architecture of the exporter along with the metering and exporting processes
is shown in Figure 1. The inputs for flow record generation are the packets
themselves. It logically follows that the essential task of the metering process
is packet capture. Its further optional functions include timestamping, packet
selection (sampling and filtering) and classification.

Another important function of the metering process is maintaining the flow
records. Tasks related to the maintenance of flow records include their creation,
update, detection of flow expiration, passing the flow records to the exporting
process and their removal. In practice, these tasks are performed using a flow
cache.

The exporting process is situated a layer higher (see Figure 1). It provides
an interface between the metering process(es) and the collecting process(es). In
simple terms, it sends (exports) the flow records obtained from the metering



146 A. Pekár, M. Chovanec, L. Vokorokos, E. Chovancová, P. Fecǐlak, M. Michalko
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Figure 1. The general architecture of the exporter

process(es) to one or more collectors. The method of exporting the flow records
is defined by the IPFIX protocol. Its further functional block is flow selection
that using sampling or filtering can provide further reduction of data destined
for export. This functional block of the exporting process is optional.

The metering process generates the flow records on the basis of the flow keys.

Flow keys are used to determine the conditions for creating flow records. In gen-
eral, flow keys are information elements (IEs) [5] that define IP flows. The most
commonly used information elements that serve as flow keys for flow genera-
tion are the sourceIPv4Address, destinationIPv4Address, sourceTransportPort,
DestinationTransportPort and protocolIdentifier1. However, some information
elements, for example those which belong to the timestamp and counter groups,
cannot serve as flow keys.

Collector is a device which hosts a collecting process. The collecting process re-
ceives flow records from one or more exporting processes [5]. The main goal of
the collector is to extract the measured properties and characteristics of the flow
from the flow records. For efficiency, this information is stored and carried in
information elements.

1 Note that the notation of information elements in this work are in conformity with
the IPFIX information model [5].
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How the flow records are exported to the collector(s) is defined by the IPFIX
protocol. Actually, they are transmitted by two kinds of information: templates and
data. In simple terms, flow records are carried in data records and the structure of
these data records is defined by the templates. It follows from the fact that traffic
information depends on the purpose of the measurement and the network structure.

The information extracted from the data records can be stored in a database
and/or directly sent to one or more external evaluating entities by mechanisms
such as the Analyzer–Collector Protocol (ACP) introduced in one of our previous
contributions [14]. Given the base functionality of the external entity (i.e. analysis),
in the following we will refer to it as analyzer.

Analyzer provides further processing and analysis of the information about flows.
More comprehensive analyzers also provide a GUI for both the visualization of
the information obtained from the database/collector and the management of
the architecture’s lower components (i.e. exporter and collector). However, the
analyzer itself is not a part of the IPFIX specification. For this reason, neither
its requirements and functionalities, nor the communication principles between
the analyzer and the other components of the IPFIX-based metering tool are
limited.

In conclusion, monitoring and analyzing the network traffic based on the IPFIX
protocol, as depicted in Figure 2, can be split into the following steps:

1. The information obtained from the captured packets after timestamping, sam-
pling, classification, etc., are encapsulated into IPFIX messages and sent from
the exporter(s) to the collector(s).

2. In the collector, after parsing the currently obtained template/data record, the
obtained flow-level data are stored in the database of the metering platform
and/or sent directly to the analyzer.

3. The analysis over the flow-level information is performed by an analyzing appli-
cation. For example, the data obtained from a database can be processed and
visualized in a form of plots. Obviously, these plots will vary according to the
wanted type of analysis.
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Figure 2. General architecture of a monitoring platform implementing IPFIX
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1.3 Problem Statement

When too many flows are present in the traffic, IPFIX-based measurement plat-
forms [15, 16] have to deal with several issues. The root cause of the issues is con-
cerning the exporter(s), however, the immense volume of measurement data (flow
records) also has a high impact on the evaluating processes. The issues which can
rise during measurements are the following:

• Due to the connectionless nature of the UDP protocol, its use is avoided in many
cases. Especially when the loss of information is not affordable (e.g. anomaly
detection). It logically follows that TCP can provide a solution. However, when
TCP is used and the export rate is too high, due to the (expected) overload
of the collector, network congestion may occur between the exporter(s) and the
collector(s). In consequence, the performance and accuracy of the evaluation
processes might be significantly reduced.

• When using either TCP or SCTP, another issue represents their congestion
avoidance mechanism. When the export rates are limited by congestion avoid-
ance, the flow records can overwhelm the exporter. The expectable overflow of
the flow cache (buffer) can subsequently result in

1. the overutilization of the exporter’s resources,

2. the subsequent (radical) degradation of the flow records’ accuracy and

3. even in the exporter’s crash.

In network monitoring, the last issue represents a worst case scenario and its
prevention is highly desirable in all circumstances.

• Even if there was a pair of exporter and collector capable of serving the problem-
free export of flow records, the immense volume of data still represents an issue
in the analyzer. With respect to the results of the experiments stated in [7], the
demands related to the storage, processing, analysis, evaluation and visualization
of the flow records proportionally grow with their number.

Flow records are obviously not only an issue of two parties (i.e. exporter and
collector). Their analysis, evaluation and interpretation in the analyzer represent
also a demanding task. We can conclude that the core of the problems is the huge
number of flow records, which the exporter has to process and how it provides the
data for the upper layers. Since it is unable to measure the traffic on a per-flow
basis, in order to optimize the monitoring systems, the measurement data amount
has to be reduced.

1.4 Related Work

Initial efforts [17, 18] to monitor the network on a per-flow basis appeared to be
unscalable. The cost and speed of the memory required for a simple measurement
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of a large number of flows and subsequent generation of flow records proved to be
prohibitive. In response, packet and flow sampling techniques started to be used to
reduce the complexity of the metering and monitoring devices [19, 20, 21]. Since
these methods use sampling, they are exposed to a trade-off between monitoring
accuracy and limited resources (e.g. memory size, CPU speed).

The paper by Dressler and Münz [22] introduces an aggregation mechanism
for efficient and flexible use in flow accounting scenarios. Their approach is con-
trolled by aggregation rules that allow adapting to several application require-
ments. However, their proposed approach counts only with the requirements of
the monitoring purpose. They do not adapt the aggregation to the traffic behav-
ior.

Hu et al. [23] proposed an entropy-based adaptive flow aggregation algorithm.
They claim that their mechanism provides a relief from DoS attacks and other secu-
rity breaches. Unlike the mechanism designed by Dressler and Münz, this algorithm
does not take into account that the arbitrarily defined flow aggregates usually do
not meet the requirements of the monitoring purpose.

The most accurate version of the document [24] extending the IPFIX stan-
dard provides a common implementation-independent basis for an intermediate
component between the exporter and collector to handle flow aggregation. How-
ever, since the export of flow records between the exporter and the mediator is
performed over the same protocols as between the exporter and the collector (i.e.
TCP, UDP, SCTP), this standard still does not address the issues described in Sec-
tion 1.3. As we already stated, the issue of immense volume of flow records has to
be solved at the lowest layer of the IPFIX-based measurement platform. Passing
“the core of the problem” to the higher layers is not a good strategy to solve the
issue.

A promising way how to deal with large data sets is to deploy various data
reduction methods in the storage system of the monitoring tool. Although this
solution – as described in one of our previous works [7] – can bring positive results,
in a long term – as described in our further work [3] – they still do not represent
an appropriate workaround. Mainly due to the fact that the network has a lot more
devices than the monitoring system. This results in an incomparable difference
between their computation resources, i.e. the resources for traffic generation and
traffic measurement. Therefore, the issue of immense volume of flow records have
to be solved at the lowest layer of the IPFIX-based measurement platform, i.e. in
the exporter. Passing “the core of the problem” to the higher layers is not a good
strategy.

We can conclude that all the aforementioned approaches provide a solution to
the immense volume of measurement data at an acceptable level. A common de-
nominator of these approaches is that even if they adapt their operation to several
conditions, they do so only to one at a time. Intuitively, we can expect that increas-
ing the number of conditions taken into consideration during the adaptation process
should bring further improvements.
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2 ADAPTIVE AGGREGATION OF FLOW RECORDS

Monitoring mechanisms, whether it comes to the utilization of resources or to the
“volume of the measurement data/required granularity of information” ratio, often
perform inefficiently. It is mainly due to the absence of capabilities by which they
could adapt their “behavior” to the actual state of the network. With no doubt,
given the ever changing character of present network traffic, this adaptation is diffi-
cult to achieve. Even if adaptability is achieved, like in case of the approaches from
Section 1.4, it is usually performed according to only a single criterion/condition.
However, if there was a way to adapt the operation of the monitoring tool not only
to the traffic character but also to the requirements of the monitoring purpose, the
immense volume should not be longer an issue at higher layers (i.e. collector, ana-
lyzer). This is the basic idea that evolved to our proposed method – the adaptive
aggregation of flow records.

2.1 Aggregation of Flow Records

The general architecture of the exporter (see Figure 1) provides several options
where the number of flow records can be reduced, specifically:

• two in the metering process: sampling and filtering (denoted in Figure 1 as
Packet Selection);

• and two in the exporting process: sampling and filtering (denoted in Figure 1
as Flow Selection).

As we can see, sampling and filtering techniques can be applied at two different
layers on data of two different character. While sampling and filtering represent
in the metering process a packet selection task, in the exporting process they are
a task of flow selection. In addition, there are several other methods for data re-
duction whose implementation in the exporter would not violate the IPFIX spec-
ification (their most appropriate location is between the metering and exporting
processes). However, methods such as K-means or dimensionality reduction (e.g.
Cluster Analysis, Principal Component Analysis, etc.) are – due to their complex-
ity and computation demands – not suitable for implementation in the exporter [3].
This leaves us, as suggested in the IPFIX specification [2], with three further data
reduction techniques: sampling, filtering and aggregation. Although each of them
have their advantages and disadvantages, aggregation provides the most compre-
hensive solution for data reduction. It combines the advantages of both, sampling
and filtering. Indeed, while it can efficiently reduce the number of flow records (like
sampling); using subnet masks, it also provides a way to focus only on a specific
measurement target (like filtering). Its main advantage is that unlike sampling,
which discards an uncertain number of packets, the aggregated flow record reflects
all the flow properties. However, we can often observe that even with aggregation,
the number of measured flow records within a relatively small time interval is still
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too high [20, 23, 25]. Therefore, in order to achieve the reduction of flow records,
we had to make a shift away from the classical way of their aggregation.

2.2 Aggregation of Non-Heavy-Hitter Flows

Examination of various phenomena in flows that can be statistically described by
either self-similarity, first-order similarity (long-range dependence) or heavy-tailed
distribution have been an objective of several research activities [26, 27]. A common
observation which can be deduced from these research activities is that a very small
percentage of flows carry the main part of the traffic (in bytes). We generally refer
to these flows as heavy-hitter flows.

Heavy-hitters and non-heavy-hitters enable us to examine the dynamics and se-
mantics of network traffic from a new perspective. Their main advantage is that
the differentiation of flows into two main classes (i.e. heavy-hitters and non-heavy-
hitters) can radically contribute to the reduction of the volume of flow records. In
addition, several research activities [20, 28, 21, 27] report that for many monitoring
purposes the accurate knowledge of heavy-hitters is still sufficient enough. These
monitoring purposes include anomaly and attack detection, scalable differentiated
services, usage-based pricing and accounting, making decisions about network up-
grades and peering. Therefore, instead of aggregating flow records in a classical
manner, we rather performed this critical tasks of the exporter with respect to the
heavy-tailed nature of network traffic.

From the well-know and commonly used flow types [27] we can deduce that the
elephant flow2 is the one for which holds that the smallest percentage of its flows
accounts for the largest percentage of the transmitted data. It logically follows that
in case of mouse flows, the largest percentage of the flows accounts for the smallest
percentage of the transmitted data. Therefore, from the view of data reduction, the
highest level of compression of flow records can be achieved by the aggregation of
mouse flows. Considering the all above, we proposed the aggregation of flow records
on the basis of the separation of flows into elephant flows and mouse flows:

We keep the heavy-hitters (elephants) in their original form and rather aggregate
the non-heavy-hitters (mice); where

elephant flow is a flow in which the total number of transferred data expressed in

bytes
(
nf
td

)
is larger than or equal to a predefined threshold T , i.e.

elephant
def
= nf

td ≥ T ; and (1)

2 The method of assigning the names to the flow types depends on the characteristics
these flows exhibit in network traffic [28].
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mouse flow is a flow in which the total number of transferred data expressed in

bytes
(
nf
td

)
is less than a predefined threshold T , i.e.

mouse
def
= nf

td < T . (2)

It is obvious that the evaluation of Equations (1) and (2) requires an accurate know-

ledge of the total number of transferred data
(
nf
td

)
of each flow. Fortunately, the

octetTotalCount information element of the IPFIX information model [5] provides
exactly such a measure, according to which:

octetTotalCount is the total number of octets (bytes) in incoming packets for
a given flow at an observation point.

In conclusion, flows meeting the following condition will be aggregated:

aggregate the flow record
def
= octetTotalCount < T. (3)

From the perspective of resource utilization, the accurate estimation of thres-
hold T is a critical task. Due to the dynamic nature of the traffic its value cannot
be estimated by performing a one-time experiment, because – although it would be
suitable for the identification of mice at one point in time – it will be unsuitable at
another point in time. This led us to its adaptation to the traffic load.

2.3 Adapting the Aggregation to the Traffic Character

The proposed aggregation adaptability is based on the resource utilization of the
exporter. For this purpose we track two parameters, the exporter’s CPU utilization
and memory utilization. The number of actually processed packets are directly
proportional to these two parameters. It means that if the traffic increases, the
number of captured packets grows as well. As a result, the exporter experiences an
increase in the CPU and memory load. On the contrary, if the traffic decreases,
since the number of captured packets in the exporter shrinks, the CPU and memory
load decreases as well. We can therefore conclude that:

the number of processed packets ∝ CPU load (%) ∝Memory load (%). (4)

As a result, we can define four different loads (characters) of the network traffic:

• Weak traffic – traffic utilizing 1/3 of the exporter’s CPU and memory resources.

• Moderate traffic – traffic utilizing 2/3 of the exporter’s CPU and memory re-
sources.

• Strong traffic – traffic utilizing 3/3 − k part of the exporter’s CPU and mem-
ory resources, where the subtraction of k determines the maximum resource
utilization while the exporter still reliably processes all the captured packets.
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• Critical traffic – traffic utilizing 3/3 of the exporter’s CPU and memory re-
sources. In other words, this traffic is utilizing the exporter to the maximum of
its resources, resulting in packet loss.

These individual network traffic loads are depicted in Figure 3.
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Figure 3. Traffic loads defined by the resource utilization of the exporter

Using these traffic types, instead of estimating the real character of the traffic we
rather estimate how it is perceived by the exporter. Since the direct proportionality
(Equation (4)) works in both directions, we can observe the network traffic character
by estimating the resource utilization of the exporter. If we consider the resource
utilization increases (decreases) to be a continuous process, we can define several
condition (state) changes by its discretization into time slices using regularly spaced
intervals. This allows us to adapt the threshold – for the separation of the flows
into heavy-hitters and non-heavy-hitters – to the actual state of traffic. Considering
all the above, the process of adapting the threshold to the individual states of the
traffic consists of the following steps:

1. Observe the CPU and memory3 utilization of the exporter in discrete time inter-
vals. For each time slice compute the value by averaging the CPU and memory
load. As a result, we get a set of n observations O of the resource utilization of
the exporter at each time slice t; i.e.

O = {ot, ot+1, . . . , ot+n} t = 0, 1, . . . , k (5)

3 Note that in case of the exporter, by over memory utilization we mean the load of
the cache in which it holds the captured packets, i.e. packet cache.
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where each observation o is computed by averaging the CPU and memory load
at time t, i.e.

ot = (cput + memoryt)/2. (6)

2. At the initialization of the aggregation process, compute the average resource
utilization (ARU) from all the observed values since the last process of aggre-
gation; i.e.

ARU =

∑k
i=0 ot+i

k
. (7)

3. Given the value of ARU , determine the pertaining traffic character (TCh), i.e.

TCh =


Weak if ARU ∈ {1, 2, . . . , 32},
Moderate if ARU ∈ {33, 34, . . . , 65},
Strong if ARU ∈ {65, 68, . . . , 98},
Critical if ARU ∈ {99, 100}.

(8)

In words, determine the pertaining actual traffic character (TCh) depending on
the actual average resource utilization of the exporter (ARU).

4. Adjust the value of the threshold (T ) for the separation of elephant and mouse
flows to the actual traffic character (TCh) according to the following criteria:

if TCht or TCht+1 == Critical then

T =

 2Td if TCht < TCht+1,

Td

2
if TCht > TCht+1

else

T =

{
T + (|ARUt − ARUt+1|) % of Td if TCht < TCht+1,

T − (|ARUt − ARUt+1|) % of Td if TCht > TCht+1

(9)

where Td is the default threshold determined by pilot measurements. In words,
if there was a transition where either the traffic character at the previous process
of aggregation (Tcht) or the current traffic character (TCht+1) was Critical, set
the threshold T to the double or halve of the default threshold (Td) depending
on the direction of this transition. Otherwise, i.e. if Tcht or Tcht+1 was Weak,
Moderate or Strong, if the traffic character at the previous process of aggregation
(Tcht) was smaller than the current traffic character (TCht+1) (i.e., the number
of packets increased), T will be increased by as many percent of the default
threshold (Td), by as many the average resource utilizations (ARU) in time t
and t + 1 differ. However, if TCht was larger than TCht+1 (i.e. the number of
packets decreased), T will be decreased by as many percent of Td, by as many
the ARUs in time t and t + 1 differ.

5. Store the current values of the actual traffic character (TCh) and the actual
average resource utilization (ARU) for the next iteration of this process.
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All we need to do is to set an initial threshold and an estimate of the resource
utilization of the exporter at the beginning of the measurement. The aforementioned
procedure will automatically adjust the threshold to the traffic character in which
the individual packets of the flows are captured. In addition, since the individual
traffic characters are computed via averaging, our method can also deal with various
peaks in the traffic (i.e. they will be averaged out).

2.4 Adapting the Aggregation to the Purpose of the Monitoring

Aggregation obviously causes some information losses. As a result, the information
provided by aggregated flow records has a coarse granularity. On the other hand,
our aim is to retain as many details of the network traffic as possible. This makes
a trade-off between the granularity of information and the volume of flow records.
Although our approach neglects the informational value of mouse flows, during the
aggregation we still want to preserve as many details about non-heavy-hitters as
possible. With respect to the nature of aggregation, this can be achieved only if
we take the purpose of monitoring into account. If we know which information
elements provide the most valuable information for the monitoring, all we need to
do is to take them into account during the process of aggregation. If we order the
information elements serving as flow keys [2] from the lowest to the highest according
to a ranking indicating the significance of the information element in the context of
the network monitoring purpose, we get n different levels of aggregation:

1. The first level of aggregation is performed over the information element with
the lowest ranking. As a result, the information carried by the aggregated flow
records has the “least coarse” level of granularity4.

2. The second level of aggregation is performed over the information element with
the lowest ranking among the remaining information elements (i.e. the next
information element). As a result, the information carried by the aggregated
flow records has a coarser level of granularity.

3. The same procedure is repeated iteratively until it gets to the last information
element.

4. The last level of aggregation is performed over the nth information element hav-
ing the highest ranking. As a result, the information carried by the aggregated
flow records has the coarsest level of granularity.

This procedure5 is illustrated in Figure 4.
In consequence, even if we focus only on heavy-hitter flows, this method allows

to aggregate efficiently among the mouse flows. As a result, we can further separate
mouse flows into different classes that preserve the details of the traffic at various
levels of granularity.

4 The finest level of granularity provides the not aggregated heavy-hitter flow records.
5 Note that this approach represents a generalized form of the Gradual Flow Key Re-

duction method [29].
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Figure 4. Adapting the aggregation to the purpose of the monitoring based on [29]

2.5 Triggering the Process of Aggregation

The organization of packets into flows is a continuous process. Depending on whether
there is a record in the flow cache pertaining to the actually processed packet or not,
the existing flow record is updated or a new one is created. Obviously, the value
of octetTotalCount of those packets that belong to the same flow is conditioned by
these creations and updates. However, our approach for the separation of heavy-
hitter and non-heavy-hitter flows is based exactly on this value (see Equation (3)).
In consequence, the aggregation frequency must not be too low.

This is due to the fact that during a too short period of time the metering process
cannot capture enough information about the flows to separate them correctly into
elephants and mice. As a result, all the flows will be identified as mouse flows and
thus, they will be all aggregated; even those that are in real elephant flows. In
addition, a constantly running aggregation process can cause overutilization of the
exporter. Therefore, instead of carrying out aggregation at every point in time,
we decided for its execution in particular time periods. For this purpose we define
an aggregation frequency variable.

Aggregation frequency (Af) is the measure of time period expressed in millisec-
onds (ms) or the several fractions of it (e.g. microseconds, nanoseconds, etc.)
after which the aggregation of non-heavy-hitter flows takes place.

In other words, Af represents the rate at which the aggregation is performed.
The determination of its value, as in case of the threshold, highly depends on the
character of the traffic. It means that “weak” network traffic requires a different
value of Af than “strong” network traffic. For example, while in the case of weak
traffic, aggregation performs properly at higher aggregation frequency values (e.g.
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Af = 500 ms), in the case of strong network traffic it provides accurate results at
lower aggregation frequency values (e.g. Af = 100 ms). However, since the threshold
is already automatically adapted to the traffic character by the method described
in Section 2.3, there is no need to adjust also the aggregation frequency (Af ). In
simple words, instead of adapting the value of Af we rather adapt the threshold, by
which we should achieve the same result.

3 PRELIMINARY EXPERIMENTS

The module of adaptive aggregation was implemented in the BEEM component of the
SLAmeter IPFIX-based measuring platform [16] as a full-featured functional block
between the metering and the exporting processes. The aim of the experiments was
to verify the functionality of the SLAmeter with and without the proposed method.
For this reason we generated the same artificial traffic by several packet generators.

The accurate operation of adaptive aggregation required some conditions to be
satisfied. The individual information elements [5] that were set as flow keys for
the generation of flow records were the following: protocolIdentfier (highest rank),
sourceTransportPort, destinationTransportPort, destinationIPv4Address, sourceIP-
v4Address (lowest rank). The pilot measurement showed that the BEEM processed
the packets in every 35 000 ns. With respect to the predefined size of the allocated
memory for the flow records (flow cache = 8 MB), the value of Af was set to 250 ms in
the BEEM; where Af is the time period after which the aggregation of non-heavy-hitter
flows takes place. During this time interval, the BEEM was able to hold approximately
7 150 records in its flow cache at a time. Measurement results also showed that the
total value of transferred octets of almost 92 % of the identified flows was less than
10 000. In other words, during this pilot measurement the BEEM did not capture any
flow having more than 10 000 B (bytes) of transferred data till its passive expiration.
Considering all the above, the initial threshold T for the identification of elephant
and mouse flows was set to 10 000 octets in the BEEM, i.e. octetTotalCount < 10 000.

Assuming these prerequisites were satisfied, the process of adaptive aggregation
consisted of the iterative execution of the following two phases:

1. the adaptation phase, in which the threshold T was adjusted according to the
method described in Section 2.3; and

2. the aggregation phase, in which the individual flow records were aggregated
according to the method described in Section 2.4.

The results of the experiments are summarized in Tables 1 and 2.
Without adaptive aggregation, as shown in Table 1, approximately 120 000 flows

(sessions) were generated and as a result created approximately 300 000 flows records
in the flow cache. However, since the flow cache after a specific period of time
(around time 10:30:00) was utilized to its maximum, an undetermined number of
packets was not organized into flow records. Therefore, the values in Table 1 cannot
be considered as complete and have a certain bias. Moreover, the average load of
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the flow cache was over 90 % during the whole measurement. The flow-rate plot
pertaining to this measurement is shown in Figure 5 (denoted with red). From the
plot we can see that the average number of flows per a second was between 30 and 50.

Measurement Characteristics Results

Number of generated packets 1 950 448

Number of flows 121 641

Number of transferred data
1 455.1

(in MB)

Total number of flow records 281 537

Average load of Flow Cache 90 %

Table 1. Results without adaptive aggregation

With adaptive aggregation the threshold T was automatically adjusted accord-
ing to the method described in Section 2.3. The summary of the measurement is
shown in Table 2. As we expected, the average load of the flow cache was lower,
(i.e. around 20 %) during the whole measurement. The flow-rate plot pertaining to
this measurement is shown in Figure 5 (denoted with blue color). From the plot we
can see that the average number of flows per a second was between 7 and 15. The
plot perfectly emphasizes the coarse granularity of the observed information result-
ing from the aggregation. In addition, adaptive aggregation also handled the burst
in the flows that caused the erroneous operation of BEEM during the measurement
without adaptive aggregation.

Measurement Characteristics Results

Number of generated packets 1 950 448

Number of flows 3 460

Number of transferred data
1 455.1

(in MB)

Total number of flow records 6 670

Average load of Flow Cache 20 %

Table 2. Results with adaptive aggregation

Discussion

Adaptive aggregation radically reduced the number of flows. However, when we
compared the error rate between the measurements, we found that there was a trade-
off between the accurate identification of elephant/mouse flows and the load of flow
cache. In numbers, although the load of the flow cache was around 20 % during
the measurement with adaptive aggregation, the error rate of the identification of
mouse flows was around 12–14 %. The determination of the error rate was achieved
by the reconstruction of the flows exported and stored in the database from the first
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Figure 5. Combined flow-rate plot resulted from the measurements. Red colored flow-rate
plot pertains to the measurement without adaptive aggregation (Meas. 1). Blue colored
flow-rate plot pertains to the measurement with adaptive aggregation (Meas. 2).

measurement and compared with the results from the second measurement (time
intervals with packet loss were discarded).

We can therefore conclude that aggregation involves a certain error rate into
the measurements. However, when comparing this bias while all data are preserved
and a certain data loss because of memory issues, this error rate can be considered
acceptable. In summary, our approach has a significant impact on the monitoring
systems that implement IPFIX for collecting information about IP flows. Since in
case of the adaptation to the traffic character we did not consider the utilization of
the link bandwidth, the accuracy of the measurements still highly depends on the
initial value of the estimated threshold.

4 CONCLUSION AND FUTURE WORK

In this paper we introduced yet another approach whose aim is to address the issues
related to the volume of measurement data produced during network monitoring. Its
main contribution is the method of adaptive aggregation that adjusts its operation
to the network character and to the purpose of monitoring. To the best of our
knowledge, only a few methods adapts their behavior to more than one factor.
The results presented in Section 3 proved that by adaptive aggregation we can
efficiently reduce the number of measurement data and it has a positive impact on
the measurement platform. We can therefore conclude that our proposed approach
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considerably contributes to the research area of the measurement platforms based
on the IPFIX protocol.

Since adaptive aggregation, due to the error rate, brings a certain bias into the
measurement data, in the future, the method of adjusting the threshold for the
identification of (non) heavy-hitters will be extended with the utilization of the link
bandwidth as well. The proposed approach will be also examined in network moni-
toring scenarios with long duration. We will also review the possibility to implement
dynamic Bayesian networks, by which the traffic could be classified according to the
assumption that the probability distribution of different traffic types are far from
each other in the same network.
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Technical University of Košice and his scientific research was fo-
cused on network security and encryption algorithms. Currently,
he is Director of the Institute of Computer Technology of the
Technical University of Košice.
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