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Abstract. Column-oriented data are well suited for compression. Since values of
the same column are stored contiguously on disk, the information entropy is lower
if compared to the physical data organization of conventional databases. There are
many useful light-weight compression techniques targeted at specific data types and
domains, like integers and small lists of distinct values, respectively. However, com-
pression of textual values formed by skewed and high-cardinality words is usually
restricted to variations of the LZ compression algorithm. So far there are no empir-
ical evaluations that verify how other sophisticated compression methods address
columnar data that store text. In this paper we shed a light on this subject by
revisiting concepts of those algorithms. We also analyse how they behave in terms
of compression and speed when dealing with textual columns where values appear
in adjacent positions.
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1 INTRODUCTION

Traditional relational databases use a page layout called NSM (N-ary Storage Model)
where rows are stored contiguously on disk. Recent works propose a different page
layout called PAX (Partition Attribute Across) where columns of relational tables
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are stored contiguously on disk. A similar physical organization is also employed by
column-oriented databases, such as MonetDB.

This innovative data arrangement provides faster access for specific query pat-
terns, such as those requiring a small amount of columns. The reason is that less IO
is needed to retrieve the values of interest, as they fit in less data pages – no space is
wasted in the page with values from columns that are not needed [12]. Additionally,
all information stored in a page belong to the same domain and data type. This ho-
mogeneity allows data compression algorithms to achieve higher compression ratios
if compared to physical arrangements like NSM where data inside a page is much
more diverse [1].

Compression in column-oriented data is achieved in several different ways, de-
pending on the nature of data. Sybase IQ [14] and Vertica [11], two of the industry’s
leading column-oriented databases, use variations of the LZ compression method
when compressing high-cardinality texts. LZ is suited for data with a certain de-
gree of redundancy, such as sentences written in natural language, where words are
grammatically linked. The method is able to encode redundant parts effectively,
achieving good compression associated with a low execution time.

We note that there are other compression methods suited for texts, such as PPM
and BWT. Several works (e.g. [9]) report empirical results achieved when applying
these methods on the Calgary Corpus, a popular collection of documents used for
compression [4]. However, the redundancy in column-oriented data is naturally
different than redundancy found in conventional files. Also, there is a limit on the
size of a database page. The question of how such methods behave when compressing
columnar text organized as pages still deserves investigation.

The goal of this paper is to compare how effective are the BWT, LZ and PPM
methods with respect to compression and execution time when compressing column-
oriented textual data. We start describing our motivation and running example
(Section 2). From Section 3 to 6 we revisit the concepts behind the methods that
are part of the evaluation. For each method we outline in general terms how the
patterns found are explored to achieve compression. In the final part the paper is
dedicated to reporting on the experimental results (Section 6) and presenting our
concluding remarks (Section 7).

2 MOTIVATION AND RUNNING EXAMPLE

Figure 1 shows different page layouts for a table containing columns year, status
and comment. The NSM is the typical design choice of relational databases that
store rows contiguously on disk. Conversely, DSM (Decomposition Storage Model)
and PAX are designed to keep values of the same column together [2]. DSM splits
a table into as many columns as it has. Then, each column is stored in a separate
group of pages. PAX follows the same principle, but uses the concept of mini-pages
inside a page. The rationale is that whole records can be read from a single PAX
page. DSM is the precursor of modern columnar databases, while the general idea of
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PAX is employed by some relational database vendors, like the the Hybrid Columnar
Compression (HCC) used by Oracle Exadata [3].
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Figure 1. Three different page layouts

In what follows, we make a distinction between heavy-weight and light-weight
compression methods. We use the term heavy-weight to refer to methods where the
encoding of upcoming symbols relies on information gathered from the previously
encoded symbols. The term light-weight is used otherwise.

The first thing to notice about the illustrated example is that the values of the
status and year columns in the DSM/PAX page layouts are particularly suited
for light-weight compression methods, such as dictionary encoding and frame of
reference, respectively. In the former, one value is coded as an index that points
to a dictionary where all possible status values can be found. In the latter, one
value is coded as the difference from a reference value (the average stored year
value).

Some light-weight methods (like the ones mentioned above) compress values into
fixed-width codes. This allows fine grained decompression of single values, without
the need of full-page decompression. There is also the possibility to operate directly
on compressed data. Working with compressed data means that more information
fits in memory and the number of cache misses is reduced if the same value is
needed again. Also, the vectorized compressed data can be more efficiently handled
by modern CPUs that can pipeline and parallelize instructions [19].

The shortcoming of light-weight compression methods is that they do not address
well skewed and high-cardinality values, such as the ones found in the comment
column. Values of comments are typically sentences from a written language. In
this case, the patterns that emerge are different, comprising root words, frequent
sequences of contiguous words, or even a high frequency of single words, such as
prepositions and nouns. Heavy-weight methods are best suited under these circum-
stances.
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When using a heavy-weight method, the execution engine of a query processor
cannot operate on the compressed data directly. The whole page/mini-page needs to
be decompressed before a specific value can be accessed. The need for decompressing
text obviously slows down query execution. On the other hand, the IO cost is
reduced. For instance, leaving comment uncompressed (or poorly compressed) in
the PAX format may hinder the benefits of using light-weight methods to compress
other mini-pages, resulting in less rows per page and more data transfers. Besides,
a mini-page storing text occupies more space than a mini-page storing data types
typically supported by light-weight methods, which makes text compression even
more critical.

This is the motive that drove us into investigating compression methods suited
for high-cardinality and skewed textual values. Throughout the remaining of the
paper we revisit concepts of well-known heavy-weight compression methods in order
to understand how different they are and why they are strong candidates to compress
this sort of data.

Before we begin, we call the attention to the pages depicted in Figure 1 and
the fact that data grow from the one side and auxiliary vectors grow from the other
side. The vectors are useful for indirect access inside a page/mini-page. Examples
are presence vectors to indicate nullable fields and offset vectors to indicate where
a variable length record (in the case of a NSM) or a variable length field (in the case
of PAX/DSM) begins.

Observe that the usage of heavy-weight compression methods implies that ran-
dom access is not possible. Therefore, there is no need for an offset vector. We
argue that, in those cases, the page/mini-page design can be simplified by dropping
this kind of bookkeeping. If a column accepts texts with variable length, instead of
storing offsets, a special delimiter symbol could be used to separate one value from
the next.

For instance, suppose there are seven fields of the comment column. The value
of the forth field is ‘abc’ and the other fields are either nulls or blanks. Using the
semicolon (;) as the special delimiter symbol, the fields put together become as
follows:

; ; ; a b c ; ; ;

This is the information to be encoded, and the one we use as the running example
from now on. Observe the presence of two runs, for leading and trailing delimiters.
This is a kind of pattern that occurs when values of a column appear in adjacent
positions. It is a simple example, but it serves our purpose of illustrating how
patterns are coded by the investigated methods.

Throughout the rest of the paper we use the term message to refer to the contents
of the running example. We also use the term symbol to indicate each byte of the
message. We assume the files use the ASCII encoding scheme, so that each byte
maps to a different symbol. Compression is measured as bits per code (bpc), the
average number of bits needed to code a character.
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3 ENTROPY ENCODING

In information theory, the entropy of a message is a measure of how unpredictable
the message is. A higher entropy means it is more difficult to predict what symbols
are more likely to appear. For instance, messages where one symbol is much more
common than the others (like the delimiter in a very sparse dataset) have a low
entropy, since we can predict that symbol will appear quite often.

The purpose of entropy encoding is to approximate the entropy of a message,
that is, to use the minimal amount of bits to represent information. The lower
the entropy, the more compressed the message can be. Two of the most popular
compression methods based on entropy are the Huffman coding [10] and arithmetic
coding [16]. In what follows we present the differences between them.

Huffman Coding: The Huffman coding assigns to each symbol of the message
a unique and unambiguous sequence of bits, reserving the smaller sequences to
the most frequent symbols. A binary tree can be used to create the mapping
through a greedy algorithm that iteratively puts the two nodes (symbols) with
the minimum frequencies under the same parent. Figure 2 shows the tree gen-
erated based on the contents of the comment message. Observe that coding
the delimiter requires a single bit. After compression, the nine characters are
transformed into a 15 bit sequence (000101101110000), giving a compression of
1.66 bpc.

Symbol Mapping
Symbol Frequency bit sequence

; 6 0
a 1 10
b 1 110
c 1 111

Huffman Tree

9

6
0

;
3

1
0

a

2

1
0

b

1
1

c

1

1

Figure 2. The Huffman tree created based on the comment message

Arithmetic Coding: Unlike the Huffman code, there is no unique bit sequence
that determines each symbol in the arithmetic coding method. Instead, the
bits lead to a value that indicates the probability of occurrence of that exact
sequence of symbols being compressed. The probability ranges from zero to
one. For sufficiently long messages, the probability would require a floating
point precision higher than computers are able to express. To circumvent this
architectural problem, a fixed-point precision value is used. When the value is
about to overflow, the most meaningful bits are flushed out and the value is
shifted to the right.
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Figure 3 illustrates how the encoded probability is updated as the symbols are
processed. Initially the probability of each symbol is divided into a scale rang-
ing from zero to one and the probability range is updated as the symbols are
processed. To simplify, the first case shows the probability distribution after the
nine symbols of the message were processed. At this point, the probability of
finding another delimiter is 66 %. If the delimiter is indeed found, the probabil-
ity is updated as demonstrated in the second case. As it shows, the probability
of finding another delimiter drops to 43 %. The probability keeps being updated
as the remaining symbols are processed, and eventually the most significant bits
are flushed.

0 0.66 0.77 0.88 10

; a b c

Probability after the first nine symbols (; ; ; a b c ; ; ;)

0 0.43 0.50 0.58 0.66 0.77 0.88 10

Probability if the 10th symbol is a delimiter
; a b c

Figure 3. Encoding probabilities based on the running example message

In comparison to the Huffman code, the arithmetic coding is better at approxi-
mating the entropy of the message. Moreover, it simplifies the process of adaptation,
where the probability of each symbol is updated as the symbols are being read, in-
stead of having a fixed precomputed probability. On the other hand, Huffman codes
allow reading from arbitrary positions of the compressed message, which is not pos-
sible using arithmetic coding. In either case, the effectiveness of both methods is
highly dependent on the existence of very frequent symbols. In most scenarios the
entropy coding is not used alone, but as part of a more complex method, such as
BWT, LZ and PPM, as we detail next.

4 BURROWS WHEELER TRANSFORM (BWT)

The compression method proposed by [5] is divided in stages, as illustrated in Fig-
ure 4. The information flows from left to right and each stage transforms data into
a format suited to the next stage.

Burrows Wheeler Transformation Stage: During the first stage, the message
(with n characters) is copied into n rows, where row i is the same as row i− 1
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Burrows Wheeler Transform
(BWT)

→ Move to Front
(MTF)

→ Entropy Encoding
(EC)

Figure 4. BWT Stages

rotated one character to the right and row 0 is the original message. The rows
are then ordered lexicographically. From this arrangement, two data elements
are passed to the next stage. The first is the content of the last column of
the sorted rows. The other is the index of the sorted rows that contains the
original message. The purpose of the latter is to reconstruct the message during
decompression.

The reasoning behind BWT is to explore the fact that some characters usually
come before other characters in many written languages. In such cases, a char-
acter that usually precedes others tends to appear in adjacent positions in the
last column. As we discuss later, this is desired when it comes to compression.
To illustrate, Figure 5 presents the Burrows Wheeler transformation of the com-
ment message. Observe that all delimiter symbols appear next to each other
in the last column of the sorted matrix. Curiously (and mostly because the
message is small) the leading and trailing runs of ‘;’ were merged into a single
run.

1 ; ; ; a b c ; ; ; ; ; ; ; ; ; a b c
2 ; ; ; ; a b c ; ; ; ; ; ; ; a b c ;
3 ; ; ; ; ; a b c ; ; ; ; ; a b c ; ;
4 ; ; ; ; ; ; a b c ; ; ; a b c ; ; ;
5 c ; ; ; ; ; ; a b → ; ; a b c ; ; ; ;
6 b c ; ; ; ; ; ; a ; a b c ; ; ; ; ;
7 a b c ; ; ; ; ; ; a b c ; ; ; ; ; ;
8 ; a b c ; ; ; ; ; b c ; ; ; ; ; ; a
9 ; ; a b c ; ; ; ; c ; ; ; ; ; ; a b

Before the sort operation After the sort operation

Figure 5. Applying the Burrows Wheeler transform to the comment message

Move To Front Stage: The purpose of the MTF stage is to encode each character
of the last column as a numeric index ranging from zero to 255. This index
refers to a lookup table that contains all possible characters. The table is first
built with characters occupying arbitrary positions. Then, when a character is
encoded, it is moved to the front of the list. When the next character to encode
is the same as the previous one, the resulting index position is zero, since the
character looked up is now found in the first position of the table. At the end
of the transformation, the result is expected to be formed by many consecutive
zeros. Also, few index positions will be very frequent (the smaller ones). This
allows entropy coding to be performed, as we detail next.
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Figure 6 presents the output generated after each stage of BWT (for the running
example). Line 3 shows how MTF transforms the symbols received from the
previous stage. To get this result we assume that the characters ‘;’, ‘a’, ‘b’,
‘c’ initially occupy the positions 0, 1, 2 and 3 of the lookup table, respectively.
Observe that every repeated adjacent symbol is encoded as zero.

1. original message ; ; ; a b c ; ; ;
2. BWT output c ; ; ; ; ; ; a b
3. MTF symbols 3 1 0 0 0 0 0 2 3
4. EC output 1110 10 0 0 0 0 0 110 1110

Figure 6. Encoding the running example message with BWT

Entropy Encoding Stage: The input for this stage is composed by a few in-
dexed positions with a very high frequency. Entropy coders (like Huffman and
arithmetic encoding) can explore this property to actually achieve compression.
With respect to our running example, the Huffman tree created for the indexes
would yield the sequences ‘0’, ‘10’, ‘110’ and ‘1110’ for the values 0, 1, 2 and 3,
respectively1. Line 4 of Figure 6 shows the Huffman coding of the input received
from the MTF stage. In this particular case the compressed data is three bits
longer than the data compressed when only the Huffman encoding is used (Sec-
tion 3). This is mostly due to the size of the example. As we demonstrate on the
experimental section, the behaviour is different when dealing with larger files.

Decompression is achieved by executing the stages in opposite direction, starting
from the entropy encoding and finishing with the Burrows Wheeler Transformation.
All stages are reversible, including the transformation. The last column along with
the index of the original text is enough information to reconstruct the original mes-
sage.

The BWT method is effective in compressing text, especially if data is domain
specific. The more specific is the domain, the shorter is the set of symbols that
precedes characters. This translates into longer runs of the same symbol after the
BWT stage. Runs of the delimiter symbol may also translate into runs of the same
delimiter, as the example shows. A handicap of BWT is that it is very memory
intensive, since the matrix transformation requires the whole message to be read.
To reduce memory requirements, the input is divided into blocks, and each block
is compressed separately. Higher compression ratios can be obtained when working
with longer blocks, as we demonstrate in Section 7.

1 The Huffman codes (or symbols frequencies) need also be saved as part of the encoded
file to allow decompression.
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5 LEMPEL-ZIV

This compression method compresses sequences of symbols of varying sizes by re-
placing them with a code that refers to a dictionary entry. The dictionary is formed
by symbols of the message that were already processed.

The idea of using the previous symbols as a dictionary was originally proposed
by Lempel and Ziv, which is why this kind of dictionary-based compression method
is commonly referred to as Lempel-Ziv, or LZ to short. The name LZ77 is used
to identify the original idea, where the dictionary is a sliding window formed by
past symbols [17]. The LZ78 is a variant where the dictionary is explicitly built as
a table, and its entries are accessed by an index [18].

Several other variations appeared, such as LZW (used in Sybase IQ) and LZO
(used in Vertica). The one we have presented here is based on LZ77. It is a sim-
plification of the method used in gzip, where the code is formed by a pair (dis-
tance, length). The distance is an index to a position of the dictionary where
a sequence starting at the current symbol is found. The length is the amount of
symbols to be coded from that index position. The distance is incremented back-
wards from the current symbol. The value zero indicates that the current symbol
was not found in the dictionary. In such cases the length is replaced by the actual
symbol.

Figure 7 shows what codes are generated for the comment message. The current
symbol is circled. Symbols before the current one becomes the part of the sliding
window. The first six symbols are encoded as literals (no dictionary entry was used).
The last three symbols (a sequence formed by repeated delimiters) are packed as
a single code. Observe that the second (or the third) symbol of the message could
also point to a dictionary entry, since a delimiter is already a part of the dictionary.
However, coding small sequences instead of outputting literals may actually result
in higher codes.

Message Distance Length/Literal
;© ; ; a b c ; ; ; 0 ;
; ;© ; a b c ; ; ; 0 ;
; ; ;© a b c ; ; ; 0 ;
; ; ; a© b c ; ; ; 0 a
; ; ; a b© c ; ; ; 0 b
; ; ; a b c© ; ; ; 0 c
; ; ; a b c ;© ; ; 6 3

Figure 7. Encoding the comment message with LZ

Since the codes refer to a part of the message that have already been processed,
during decompression it is possible to use the codes in order to reconstruct the
original message. Decompression is much faster than compression, since there is
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no need to locate symbols from the sliding window. Instead, it only needs to copy
symbols from the sliding window (based on the code) into the output.

Gzip implements the DEFLATE standard [7], which imposes an agreement
on the code format, the maximum size of the window (32 k), the maximum length
ahead (258 bytes), among others. It also establishes that the distances and lengths
are further compressed using two separate Huffman trees.

Compression tools that implement this standard (like gzip) are heavily used.
One reason for the popularity (apart for being a recommendation) is that it is
relatively straightforward to implement a decompression algorithm that is com-
pliant with the standard. Besides, this kind of dictionary-based compression is
not only fast but also achieves good compression ratios for most of the file for-
mats.

With respect to column-oriented textual data, the occurrence of many similar
(or equal) values can also be encoded as pointers to a dictionary entry. Common ex-
pressions already processed can be used as dictionary entries for coding occurrences
of other common expressions yet to come. The impact this kind of information has
on a LZ based compression method is detailed in Section 7.

6 PPM

The PPM (Prediction by Partial Matching) compression method codes one symbol
at a time. Given the symbol to code, PPM predicts the probability of occurrence
of that symbol. This value is then coded using arithmetic encoding. Highly frequent
symbols are encoded with fewer bits. The main idea can also be adapted so that
other entropy coders (such as Huffman) can be used.

The probability estimation takes into account the context, which means the set of
symbols that precedes the symbol being coded. Most PPM approaches use Markov
models of different orders to issue a prediction. If the highest-order model is unable
to predict a symbol (it never occurred in that context before), the next-higher-order
model is used. In the worst case this goes on until reaching the zero-order model
that is able to predict all symbols.

When a symbol cannot be predicted by an order, PPM issues a signal indicating
that a symbol never seen before has appeared. This special signal is also referred
to as escape symbol. The probability of the escape depends on the variant of the
PPM used. One of the proposed ideas (called PPM-C) was to count the num-
ber of different symbols that occurred in that context and use it to compute the
probability [13].

To illustrate, consider the comment message reintroduced below. The arrow
points at the next symbol to encode and the curly bracket indicates the context to
be used to determine the probability of the next symbol. The length of the context
corresponds to the length of the highest Markov model. Empirical results reported
by [13] show that compression is best when using at least four as the higher order.
For the sake of presentation we use a maximum order of two.
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; ; ; a b c ; ; ;︸ ︷︷ ︸
Context

↓
?

Figure 8 shows the generated context tree. A context in this tree is formed by
the symbol of a node concatenated with all of its parents. The parenthesis indicates
the frequency of that context. For instance, the leftmost leaf node shows that the
context ‘;;;’ has already occurred twice. The circles indicate the current contexts
from the highest to the lowest order.

ROOT0

;(6)1

;(3)2

;(2) a(1)

a(1)

b(1)

a(1)

b(1)

c(1)

b(1)

c(1)

;(1)

c(1)

;(1)

;(1)

Figure 8. Context tree of the comment message (maximum order of two)

If the next symbol to encode (at the arrow position) was a delimiter, the highest
order 2 (‘;;’) would issue a probability of 40 % (two delimiters out of five occurrences:
the delimiters themselves, one character ‘a’ and two escapes). If the symbol was the
character ‘a’, the probability would be lower (20 %). If the symbol is new in that
context, like the character ‘b’, an escape probability is issued (40 %) and the search
continues in the order 1 (‘;’). Symbols with equal probability do not conflict since
they occupy different intervals in the probability scale.

One technique that achieves better compression is to ignore symbols that exist
in higher orders. For instance, if the incoming symbol is ‘b’, it would be found at
order 1. In this case, the ‘b’ probability at order 1 would be 25 % (one out of four),
if symbols from the upper level are ignored, and 7 % (one out of thirteen) otherwise.

The compression process is reversible. The encoding uses the context model,
which is constructed based on the symbols already processed. Thus, given a prob-
ability, it is possible to use the current model constructed so far in order to locate
the next symbol to be decoded.

This technique is very useful for compressing texts written in natural language,
since it is able to predict with a high level of hit rate the next character of small
words (or roots/prefixes/suffixes) where their length is below the maximum order.
Given this, it is usually better than LZ to code small patterns. Also, it is able to
encode patterns found outside the LZ window. The bottleneck is decompression
speed, since PPM needs to traverse the list of children of a node to find out the one
to decode. The cost can be amortized by keeping the children sorter by frequency,
but the cost is still meaningful, as we discuss next.
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7 EXPERIMENTAL RESULTS

The purpose of this section is to evaluate how the three investigated compression
methods behave with columnar data. The experiments are divided in three parts.
First we analyse how the compression varies according to the nature of textual data.
Then we show how the compression and compression/decompression speed varies
according to the amount of data compressed. Finally we evaluated alternative LZ
based methods.

Initially, two commercially available compression tools were evaluated: bzip2
(version 1.0.6) and gzip (version 1.2.4) that implement the bwt and lz methods,
respectively. To avoid biased evaluations, the executables were used as is, without
any kind of tuning, and the meta-data overhead was stripped from the compressed
output. We also evaluated an implementation of ppm-c, implemented as part of
this work. Our version uses four levels of context and it ignores symbols from higher
orders in order to improve compression. All algorithms were written in C.

The algorithms were tested on a Pentium Dual-Core with 2.5 GHz. Compres-
sion speed was measured as the amount of data that is compressed by time, and
decompression speed is measured as the amount of data that is decompressed by
time. The time obtained is an average of 30 executions, ignoring the 10 % lesser and
higher times. The experiments were held in a minimalist operating system, where
functions are reduced to a bare minimum that does not sacrifice stability.

7.1 How the Data Format Impacts Compression

Throughout the paper we have seen that all of the investigated compression methods
are able to handle textual data, and they explore the patterns found in the already
processed message to achieve compression. However, text can be organized in very
distinct ways, following a rigid or relaxed structure, or having no structure at all.
Here we analyse how compression is affected by different text formats.

Two datasets were used, one for columnar data and the other for conventional
files. The columns were taken from the TPC-H benchmark, which is a set of tables
commonly used to evaluate database transaction processing features [15]. The con-
ventional files were taken from the Calgary Corpus. As mentioned earlier, it is a set
of files traditionally used to evaluate compression algorithms.

Results are presented for three high-cardinality columns from TPC-H: cus-
tomer.comment, lineitem.comment and part.name. Each column was stored
as a separate file, and a reserved symbol was used to separate one value from the
next. The columnar data are compared against four files from the Calgary Corpus:
a book (book2), a paper (paper2), a source code written in Pascal (progp), and
a list of bibliographic references (bib). Other files were considered as well (from
TPC-H and Calgary), and the variations observed were the same.

All uncompressed files were divided into chunks of 16 KB, and each chunk was
compressed separately. What we report is the average compression achieved for each
file, measured as bits per code (bpc). The compression is limited to chunks (and
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not the whole file) to emulate database compression schemes that handle one page
at a time.

Figure 9 shows how the compression varies according to the nature of textual
data. The results show that bzip2 and ppm achieve better compression than gzip in
most cases. Additionally, the columnar values are more compressible in comparison
to other texts written in natural language and even to the well behaved progp. One
of the possible reasons is that it is more likely to find patterns in a list composed
by small textual fields than it is in a single and longer instance of a text.

c.comment p.name l.comment
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Calgary files

Figure 9. Compression results

Interestingly, the compression improvement of bzip2 and ppm over gzip is more
meaningful with the columnar values. For instance, ppm uses almost 33 % less bits
than gzip when compressing part.name. The improvement of ppm over gzip with
the Calgary files is less apparent. With the highly structured propg, ppm is actually
worst. This behavior lead us to the conclusion that bzip2 and ppm explore higher
levels of redundancy better than gzip.

7.2 How the Data Length Impacts Compression

This experiment is focused on columnar data stored in database pages. It shows
how the bpc and compression/decompression speed varies according to how large
the pages are. The evaluation was done by compressing data chunks of different
sizes. We focused on the compression of the part.name column, but similar results
were obtained for other textual columns as well.

The size of a chunk is related to the amount of uncompressed data, not to
the size of a page. For instance, gzip takes 1.7 bits per code to encode 16 KB
of comments, resulting in 3.481 bytes of compressed text in a page of unspecified
size. What we need are measures taken from the full occupation of a page with
a determined size. We did this by applying a linear interpolation of the results
achieved when compressing chunks of uncompressed data. The results are shown in
Figure 10. Solid lines indicate compression and dotted lines indicate compression
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speed (at the left) and decompression speed (at the right) as the amount of bytes
coded per millisecond. The size of the pages vary from 1 KB to 128 KB.
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Figure 10. Measuring the compression of the name column

As the page size gets longer, gzip becomes notably faster than bzip2, which is
in turn faster than ppm. Despite the speed, gzip does not explore the size factor
as well as the alternatives to obtain better compression. The reason is related to
the 32 KB sliding window of gzip. A longer message means more patterns can be
found. However, if the patterns lie beyond the limits of the sliding window, they
are not used to encode the incoming symbols.

For sufficiently long messages, gzip is the clear winner. It may loose regarding
the compression, but the speed compensates, especially for decompression. However,
databases use pages as the transfer unit between disk and memory, and pages have
a rather limited size. For the sake of comparison, MySQL uses 16 KB as the default
page size and Oracle 10g uses pages from 4 KB to 8 KB. Therefore, it makes sense
to consider scenarios where smaller messages need to be compressed. This type of
scenario is analysed in the next section.

7.3 How Page-Fitting Messages Impacts Compression

As we are working with columnar compression, two page layouts are considered:
DSM and PAX. These layouts subsume the main strategies adopted when values of
the same column are stored together. Our intention was to evaluate the methods
effectiveness when filling pages with compressed data.

When working with the DSM page layout, the whole page is dedicated to a single
column. We can see from Figure 10 that bzip2 is an interesting solution for the
storage of part.name values using this layout and regular page sizes (from 4 KB
to 16 KB). To give a better look, Table 1 details the measurements obtained when
storing small messages. bzip2 achieves a bpc 32 % superior than gzip when working
with a 4 KB page. In contrast, gzip is only 8 % and 6 % faster in compression and
decompression speed, respectively.
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When working with the PAX page layout, the page is divided into n mini-pages
for the n columns it stores. Unlike DSM, only part of the page is reserved to the
storage of columns whose values are textual. It means we need to look at the
compression of even smaller messages, where the tendency is that the compression
of bzip2/ppm proportionally degrade and execution time proportionally improve,
in comparison to gzip.

To exemplify, consider an hypothetical case where the mini-page for the
part.name column occupies 2 KB and compare it with the storage of 4 KB of com-
pressed values stored using the DSM layout. As Table 1 indicates, ppm is now
superior than its competitors. It used 1.78 bpc to encode 2 KB of part.name
values, which is still almost 32 % better than gzip. Besides, compression and de-
compression speeds are similar. Again, the reason is related to the sliding window
of gzip. For long messages, bzip2 and ppm spend more time analysing longer parts
of the message, whereas gzip is bounded by the window, regardless of the message
size. The overhead is reduced when the message is small, and ppm/bzip2 become
competitive in terms of execution time.

Measure Size [KB] bzip2 [bpc] gzip [bpc] ppm [bpc]

bpc 21 2.05 2.58 1.78
comp. [b/ms] 21 43 46 43
decomp. [b/ms] 21 46 46 41
bpc 22 1.64 2.40 1.52
comp. [b/ms] 22 84 91 73
decomp. [b/ms] 22 89 94 64

Table 1. Detailed measurements using pages of 21 and 22 KB

Table 2 presents some of the possible settings when 2 KB are dedicated to a single
mini-page for the part.name column, using ppm. For instance, if the page is
4 KB long, and each textual field occupies 40 characters, there would be enough
space in the page for 230 records. For each record, 8.9 bytes of compressed data
are used by the name field and another 8.9 bytes of compressed data are used
by the fields of the remaining columns. In general, the amount of space left for
other compressed columns is reasonable, especially if we consider a small amount
of columns or columns that are well compressed, such as numeric values. Besides,
more space for the remaining columns can be used by reducing the number of records
stored or increasing the page size, as the table shows. What is worth noting here is
that, if gzip is used instead of ppm, only 68 % of the records would fit in a page,
under the same conditions described in the table. If the textual values are not
compressed at all, the amount is reduced to 22 %. The difference is significant, and
should not be overlooked when deciding whether it is worthy to compress textual
values and which compression method to use.
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Page Size Text Length # of Records Text Compression Space Left

4 096 40 230 8.9 8.9
4 096 60 153 13.3 13.3
4 096 80 115 17.8 17.8
8 192 20 460 4.4 13.3
8 192 40 230 8.9 26.7

Table 2. Some settings considering PAX with a 2 KB mini-page reserved for a textual
column compressed with PPM

7.4 How Other LZ Based Methods Impact Compression

The previous sections showed that gzip is not a compelling approach for the com-
pression of page-fitting messages. It is usually faster than the alternatives for large
files. However, there are no remarkable differences in efficiency when files are small.
Here we extend this analysis by comparing additional LZ based methods. The al-
gorithms are presented below:

lzf (version 3.6): This method is a LZ77 variant. One of its features is that the
distance/length codes produced are not further compressed using any kind of
entropy encoding. Therefore, it is a fast method, especially for decompression.
However, compression rate is usually compromised.

zstd (version 0.8.2): This is another LZ77 variant, recently proposed by Yann
Collet at Facebook [6]. The entropy encoding stage is done by a fast method
based on the asymmetric numeral systems (ANS) theory [8]. The author claims
that zstd is very efficient and achieves acceptable compression.

We have also evaluated gzip with different settings. This method can be tuned
by allowing the compressor to spend more time inside the sliding window trying to
find longer patterns to encode. A parameter value ranging from 1 to 9 defines how
much effort should be spent. Smaller values means the search is faster, at the cost
of a reduced compression. The default value (6) represents a balance between high
compression and an acceptable response time. The two extremes (1 and 9) were
included in the experiment, so we can verify how much compression is possible and
how fast the method can be.

Table 3 brings the comparison, when compressing the part.name column, con-
sidering small messages (that fit in a regular page) and long messages. There are
remarkable differences between the two scenarios. The first thing to notice is that
the non-lz methods tested are not suited when messages are long. Despite the fact
that they reach a low bpc, the processing time is much higher than the lz alterna-
tives. Also, gzip-1 is an interesting choice for long messages. It is practically twice
as more efficient that gzip standard for compression time, and compression is only
6 % worst. Decompression time is similar, as the processing is pretty much limited
to copying symbols from the window to the output. lzf is a little faster, as there is
no entropy decoding involved.
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Measure Size [KB] ppm bzip2 gzip gzip-9 gzip-1 zstd lzf

bpc 21 1.78 2.05 2.58 2.58 2.74 3.01 3.73
comp. [b/ms] 21 43 43 46 47 47 54 49
decomp. [b/ms] 21 41 46 46 47 46 54 49
bpc 27 1.16 1.25 2.06 2.06 2.33 2.28 3.02
comp. [b/ms] 27 229 752 1 407 1 408 2 458 2 084 2 637
decomp. [b/ms] 27 177 1 300 2 751 2 776 2 781 2 326 2 912

Table 3. Comparison between lz based methods and non-lz based methods

What is worth noting is that, when messages are small, the compression and
decompression time of all methods are levelled, and the compression achieved by ppm
and bzip2 are substantially better. In fact, ppm is particularly appealing. It is 15 %
better than the second best (bzip2) and 31 % better than the best lz based method
(gzip). The combination of outstanding compression and competitive execution
time (even for decompression) makes it a strong candidate for the compression of
page-fitting columnar data.

8 CONCLUDING REMARKS

In this paper we analysed the compression of textual values from column-oriented
data stored in page layouts based on DSM and PAX. We have seen that the difference
in terms of number of records that fit in a page is significant when comparing the
compressed and uncompressed format. This is even more important if we consider
that CPUs are getting much faster compared to memory bandwidth. We argue
that reducing the transfer load at the expense of having to decompress data before
actually using it is an attractive trade-off.

Some of the current solutions for text compression are based on variants of the
LZ method. This is a great alternative when dealing with long messages, since
it is able to associate high compression with low execution time. However, our
experiments show that other methods need to be taken into account when messages
are short. This is the case if we consider that compression is devoted to single pages,
and pages are small enough to make the bzip2 and ppm compelling approaches.

With respect to ppm specifically, besides the applicability to text, we believe
it is possible to leverage compression when dealing with short fields by adjusting
the way probability is computed, especially if the fields follow a regular structure,
even in the presence of outliers. For instance, dates and currency fields are expected
to have the same symbols appearing at determined positions, and a probabilistic
model is able to map this relation. This example is not only a topic we intend to
further investigate, but it supports our claim that there are indeed data types that
are not effectively covered by light-weight compression methods. Textual data types
columns are some of them, and some others also exist.
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