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Abstract. The travelling salesman problem (TSP), a famous NP-hard combinato-
rial optimisation problem (COP), consists of finding a minimum length tour that
visits n cities exactly once and comes back to the starting city. This paper presents
a resolution of the TSP using the breakout local search metaheuristic algorithm
(BLS), which is based on the iterated local search (ILS) framework and improves it
by introducing some fundamental features of several well-established metaheuristics
such as tabu search (TS) and variable neighbourhood search (VNS). BLS moves
from a local optimum of a neighbourhood to another by applying perturbation
jumps whose type and number are determined adaptively. It has already been ap-
plied to many COP and gives good results. This innovative hybridisation resolved
well 41 instances from the commonly used benchmark library TSPLIB. The high
quality of experimental results shows the competitiveness of the proposed algorithm
compared to other algorithms based on local search.
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1 INTRODUCTION

The travelling salesman problem (TSP) [1, 3] is one of the most universally studied
combinatorial optimisation problems (COP). It is for more than half a century the
focus of many researchers from all around the world. Work on the TSP had an enor-
mous impact on the emergence and evolution of many important areas of research
(stochastic local search [9], integer programming [22], complexity theory [11] . . . ).
Besides its importance in practice, the TSP has also become a standard testbed for
new algorithmic ideas. The problem was introduced for the first time in 1859 by
William Rowan Hamilton. In its classic form, the statement is as follows: “A trav-
elling salesman must visit once and only once a finite number of cities and return to
its point of origin. Find the order of visiting cities that minimises the total distance
travelled by the salesman.”

Application domains of TSP are numerous: logistic problems of transportation
of goods, as well as people, and more generally all kinds of scheduling problems.
Some issues in the industry are modelled as a travelling salesman problem as the
optimisation of trajectories of machine tools: How to drill several points on an
electronic card as quickly as possible? The manufacturing of VLSI chips [23] and
X-ray crystallography [21] are just a few examples of several applications of the TSP.
Its simplicity and adaptability have made this problem for decades a starting point
for more work and research. This COP belongs to NP-complete problems [11].

We introduce the breakout local search metaheuristic algorithm (BLS) for solv-
ing the TSP. While iterated local search (ILS) [19] may suffer from lack of effec-
tiveness in escaping attractions, BLS follows the basic scheme of this framework
and improves it by combining the features of other robust and efficient methods,
including variable neighbourhood search (VNS) [15] adapted on perturbations [8].
The main idea of BLS is to use a descent-based local search to find local optima, and
use the most appropriate perturbations in order to move (without being blocked)
from one neighbourhood to another in the search space. Perturbation strategy of
BLS is based on both the history and state of search; it introduces a variable degree
of diversification by determining perturbation dynamically jumps and performing
adaptive selection from several types of dedicated movements.

BLS was developed by Benlic and Hao in 2012. Since then, it has been used
for solving some COP, such as the minimum sum coloring problem [4], maximum
clique problems [5], quadratic assignment problem [7] and max-cut problem [6] and
has given very good results. This paper deals with a resolution of the TSP, whose
performance will be evaluated by solving 41 benchmark instances of the TSPLIB [16].

The reminder of this paper is organised as follows: Section 2 introduces the TSP
and local search approaches. Section 3 describes in detail the BLS metaheuristic.
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Section 4 first reports the computational results and comparisons, which are based
on the TSPLIB benchmark instances; then it provides justification of the choice for
some of BLS parameter settings. Section 5 is devoted to a discussion around BLS
highlights which makes it different from other ILS algorithms. Finally, Section 6
concludes the paper.

2 THE TRAVELLING SALESMAN PROBLEM

2.1 TSP Formulation and Landscape Analysis

Given n cities and a matrix D = (dij)n×n of distances between all pairs of these cities.
The TSP aims to find a shortest closed tour (i.e. Hamiltonian cycle) in which each
city is visited once and only once. Each tour can be represented by a permutation
π = (π(1), π(2), . . . , π(n)) of integers from 1 to n where j = π(i) denotes the city j to
visit at step i, i = 1, 2, . . . , n. Therefore, the goal of TSP is to search a permutation
π (tour) that minimises the tour length given by the following equation:

n−1∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (1)

where dij is the distance between city i and city j. In this paper, we consider the
symmetric TSP where the distances satisfy dij = dji for 1 ≤ i, j ≤ n.

The study of TSP landscape [2] (or for any COP) allows us to know which
operator exploits better the search space of the problem. Changing neighbourhood
must be made such that it gives a new search area without escaping too far from the
previous neighbourhood, in which case would provide an independent neighbourhood
from those before. Such a study requires knowledge of some notions such as the
fitness function and correlation.

As mentioned earlier, the most common fitness function is that using the length
of the tour. A good fitness is a fitness with a low value, so a shorter tour. The
landscape of the problem depends on the fitness function of the different solutions,
hence the concept of fitness landscape.

The second important concept to know is that of correlation [14, 18], introduced
to provide a measure of the difficulty of a problem taking in account some operators.
It shows how much a tour is linked to its neighbours.

Experiments done previously on the TSP [10, 2, 18] showed that the landscape
is more correlated for 2-opt move than others. That is why it has been chosen in
this paper, especially in the local search phase.

2.2 Local Search Approaches for the TSP

Local search methods start from an initial configuration and apply successive trans-
formations to the current solution while a stopping criterion is not verified. There-
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fore, the implementation requires the choice of an initial solution(s) and local trans-
formation(s), also known as moves. These algorithms are frequently used for solving
the TSP problem. They improve iteratively the current solution seeking better in its
predefined neighbourhood. The algorithm stops when he reaches a maximal number
of iterations or when there is no better solution in a given neighbourhood: a local
minimum is attained. Historically, 2-opt [9] is one of the first algorithms to solve
instances of the TSP. It is a local search algorithm whose neighbourhood is defined
by removing two non-adjacent edges of the current solution. The two parts obtained
from this solution are reconnected by two other edges to obtain a new solution. The
iterated local search (ILS) proposed by T. Stützle [19] is a framework based on local
searches; it is a stochastic method that produces a sequence of solutions generated
by an introduced heuristic, leading to better results than if we use repeated random
testing of this heuristic. One of the main steps of ILS is perturbations [8], it is to
avoid to be trapped in a local optimum by switching to another more distant. Local
search in such a case will run more easily and will be more efficient.

However, perturbations applied by ILS for some TSP instances may not escape
attraction from some neighbourhoods. Based on the later point, we introduced a new
approach based on diversification of perturbations and moves, named “Breakout
Local Search”.

3 BREAKOUT LOCAL SEARCH FOR THE TSP

3.1 An Overview of BLS

The overall approach of BLS is a move from a local optimum of a neighbourhood to
another one by applying perturbation jumps type and number of which are deter-
mined adaptively. Algorithm 1 below is a pseudo-code of the BLS algorithm for solv-
ing the TSP. BLS starts from an initial solution π0 (having a cost C0) and performs
local search (the steepest descent) to reach a new local optimum π (lines 13–18).
Each iteration of the local search algorithm browses the whole neighbourhood and
chooses the best improving solution to replace the current neighbourhood solution.
If no improvement is made in the neighbourhood, the local optimality is reached.
BLS tries firstly to escape the neighbourhood attraction of the current local optimum
to move to a new neighbourhood attraction (line 38). BLS applies then a number
of moves (or jumps) starting from L0 and dedicated to the current local optimum π
which becomes disturbed and serves as a starting point for the next descent of the
local search procedure. When the local search procedure returns the same neigh-
bour π, BLS disturbs it more strongly by selecting a stronger perturbation, and
(when different perturbations are not able to move to a neighbourhood with a new
best local optimum) by increasing the number of jumps L by 1 to apply for this
perturbation (lines 30–32). After visiting some neighbourhoods without improving
the best solution found so far (lines 23–24) T times, BLS performs a much stronger
perturbation with Lmax jumps to permanently direct search into a new and more
distant region in the search space (lines 26–30).
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Algorithm 1 Breakout Local Search for TSP

Require: Maximal descents to perform Descmax, initial number of jumps L0, maximal
consecutive visited local optima without any improvement T , number of jumps in
strong perturbation Lmax.

Ensure: A solution πbest
1: S ← 0
2: π ← initialSolution() /* generates a solution with greedy or random algorithm

*/
3: C ← Cost(π)
4: πbest ← π /* πbest saves best solution found */
5: cbest ← c /* cbest saves best objective value */
6: ω ← 0 /* ω gives the number of consecutive non-improving local optima */
7: L← L0 /* L saves number of jumps to perform, set to its minimal value L0 */
8: Lω ← 0 /* Lω is an indicator to guess which move to use in next perturbation

*/
9: cp ← c /* cp saves objective value of last descent */

10: Desc ← 0 /* Desc saves current number of descents */
11: Iter ← 0 /* global iteration counter */
12: while Desc < Descmax do
13: while ∃2optMove(x, y) such that (c+ delta2Opt(π, x, y) < c) do
14: π ← π ⊕ 2optMove(x, y) /* perform the best improving move */
15: c← c+ delta2Opt(π, x, y) /* cost variation of π with (x,y) move */
16: update H(Iter, x, y) /* update iteration number when edges move was last

performed */
17: Iter ← Iter + 1
18: end while
19: if c < cbest then
20: update πbest and cbest
21: ω ← 0
22: Desc ← Desc × 1

2 /* reduce current number of descents */
23: else
24: ω ← ω + 1
25: end if
26: if ω > T then /* performing strong perturbation */
27: π ← dbmPerturb(π, Lmax) /* Double Bridge Move perturbation with

Lmax moves */
28: ω ← 0
29: Desc ← Desc × 7

8 /* reduce current number of descents */
30: else if c = cp then /* search returned the previous local optimum */
31: Lω ← Lω + 1 /* increment indicator for the type of perturbation */
32: L← L0 + Lω

3 /* increment moves if the 3 moves do not improve */
33: else /* Search escaped from the previous local optimum, reinitialize indicator

*/
34: Lω ← 0
35: end if
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36: cp ← c /* update the objective value of the previous local optimum */
37: if Strong perturbation was not performed then
38: π ← Adaptive Perturbation(π, L, Lω,H, Iter, ω) /* see algorithm 4 */
39: end if
40: end while
41: return πbest

3.2 Exploring Solution Space by Neighbourhood

BLS is a metaheuristic based on the ILS framework, the process of descent/pertur-
bation is redone as we have not yet reached a number (Descmax) of descents. BLS
uses the steepest descent with a 2-opt neighbourhood in local search and is called
different perturbations, each of them introduces a different neighbourhood as shown
in Algorithm 2. One of these perturbations (depending on Lω value) is applied
L times to a local optimum π with moves chosen from the set of candidates M .

Algorithm 2 Dynamic Perturbation( π, L, Lω,H, Iter, ω,M)
Require: Initial solution π which is a local optimum, number of jumps L, indicator

of perturbation type Lω, matrix of history moves H, global iteration counter Iter,
number of consecutive non-improving local optima ω, set of candidate moves M .

Ensure: A perturbed solution π
1: if (Lω mod 3) = 0 then /* Call Perturbation Operator with 2Opt move */
2: π ← Perturbation Operator(π, L,H, Iter, ω,M, 2Opt)
3: else if (Lω mod 3)= 1 then /* Call Perturbation Operator with insert move */
4: π ← Perturbation Operator(π, L,H, Iter, ω,M, insert)
5: else /* Call Perturbation Operator with swap move */
6: π ← Perturbation Operator(π, L,H, Iter, ω,M, swap)
7: end if
8: return π

Perturbations play a key role in BLS since the steepest descent cannot escape
the local optimum. BLS tries then to exit the current neighbourhood by introducing
different parameterised perturbations, starting with

1. the nodes/cities to move, and

2. how many times to perturb and

3. which move type to make.

All these steps will be detailed in the next sections.

3.3 Principle of Adaptive Perturbation

3.3.1 Main Idea

A variety of perturbations in BLS resides in the number of jumps and the (three)
types of perturbations implemented. The number of jumps increases once all the
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perturbations attempted without any improvement.

• The first perturbation is performed with a 2-opt move, wich is characterised by
an exchange of two non-adjacent edges as it is shown in Algorithm 3.

• Secondly we perform an insert move. It comes to move a node from one position
to another. This move results in a change of three edges.

• Finally a swap move. It comes to move an edge from one position to another.
This move results in a change of four edges.

We present below in Algorithm 3 a perturbation launched by the 2-opt move. The
same algorithm is adapted to insert and swap moves, by applying the appropriate
move and saving the affected edges.

Algorithm 3 Perturbation Operator(π, L,H, Iter, ω,M,mvt)
Require: Initial solution π which is a local optimum, number of jumps L, matrix of

history moves H, global iteration counter Iter, number of consecutive non-improving
local optima ω, set of candidate moves M , move type mvt.

Ensure: A perturbed solution π
1: for i← 1, L do
2: take a pair (x, y) ∈M
3: if mvt = 2Opt then
4: π ← π ⊕ 2OptMove(x, y)
5: c← c+ delta2Opt(π, x, y)
6: else if mvt = insert then
7: π ← π ⊕ insertMove(x, y)
8: c← c+ deltaInsert(π, x, y)
9: else

10: π ← π ⊕ swapMove(x, y)
11: c← c+ deltaSwap(π, x, y)
12: end if
13: update H(Iter, x, y)
14: Iter ← Iter + 1
15: if c < cbest then
16: update πbest and cbest
17: ω ← 0
18: Desc ← Desc × 1

2
19: end if
20: end for
21: return π

Rather than performing random jumps all the time, BLS switches between three
types of perturbations: directed, recency-based and random. Each perturbation gen-
erates, as shown in Algorithm 4, a set M of pairs that will be used in perturbations.



Breakout Local Search for the TSP 663

3.3.2 The Three Types of Perturbation Moves

The directed perturbation aims to build a set of candidates with the lowest
degradation during perturbation move. These candidates should not have been
solicited in the last γ moves: they are saved in a tabu list [12, 13], with the corre-
sponding length γ. However an edge can be part of the tabu list but still selected if
it leads to a solution that improves the best solution found so far. Directed pertur-
bation is built based on the tabu list, and the quality of the moves to be applied.
Eligible candidates for this perturbation are defined by the following set A:

A = {2OptMove(u, v) | min{delta2Opt(π, u, v)},

(Hu,v + γ) < Iter ∨ (delta2Opt(π, u, v) + c) < cbest, u 6= v}. (2)

The recency-based perturbation builds a set of candidates by using only the
matrix H of historical moves. The moves are those which have been least recently
used. These moves are identified by the set B such as:

B = {2OptMove(u, v) | min{Huv}, u 6= v}. (3)

Finally, the random perturbation simply makes moves that are picked uni-
formly at random. Those moves are identified as:

C = {2OptMove(u, v), u 6= v}. (4)

The three above formula adapt to both insert and swap movements, by applying
the appropriate movement and delta operations.

Depending on the state of search, BLS selects one of these three perturbations
pseudo-randomly with a probability. This state is determined by the parameter ω
that gives the number of consecutive non-improving local minima. The aim is to give
priority to the directed perturbation at the beginning of the search (when ω is still
small), and reduce the chances of running when the neighbourhood has important
attraction, to use other perturbations and have stronger diversifications.

We force the probability P of applying the directed perturbation to get values
no smaller than a threshold P0:

P =

{
e−ω/T , if (e−ω/T > P0),

P0, otherwise.
(5)

Given the probability P of using the directed perturbation, the probability of
applying both the recency-based and the random perturbations is determined re-
spectively by (1− P )×Q and (1− P )× (1−Q) where Q is a constant from [0, 1].
Algorithm 4 links the three probabilities to their respective perturbation.
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Algorithm 4 Adaptive Perturbation(π, L, Lω,H, Iter, ω)
Require: A tour π which is a local optimum, number of jumps L, determinant of pertur-

bation type Lω, matrix of history moves H, global iteration counter Iter, number of
consecutive non-improving local optima ω.

Ensure: A perturbed solution π
1: Determine probability P according to Formula (5) /* section above */
2: with a probability P , /* directed perturbation */
3: π ← Dynamic Perturbation(π, L, Lω,H, Iter, ω,A)
4: with a probability (1− P )×Q, /* recency-based perturbation */
5: π ← Dynamic Perturbation(π, L, Lω,H, Iter, ω,B)
6: with a probability (1− P )× (1−Q), /* random perturbation */
7: π ← Dynamic Perturbation(π, L, Lω,H, Iter, ω, C)
8: return π

3.3.3 Variation Jumps and Perturbation Moves

BLS varies (between two consecutive blocks) the number of jumps and performed
moves. These changes are executed in a particular order: the first change performed
is 2-opt move, characterised by the exchange of two edges, the second change tried
is insert move with three edges exchanged and finally the swap move defined by
an exchange of four edges. The main idea is to move to the nearest neighbourhood
and allow, at the same time, to escape the local optimum attractor and find a new
and better solution. In the case where the three changes fail to escape from the
optimum attractor, the number of jumps L is incremented.

The worst case is to redo the perturbation T times (consecutively) without
being able to leave this attractor. A strong perturbation defined by Lmax jumps
with a Double Bridge [20] move is then performed. The current number of descents
(Desc) is then reduced by 1

8
in order to give a chance to the new neighbourhood to

be enough scanned.

4 EXPERIMENTAL RESULTS

4.1 Experimental Protocol

BLS algorithm is programmed in Java 1.7, and compiled on a Pentium Dual-Core
CPU T4400 with 2.20 GHz and 2.8 GB. 41 instances from the commonly used
TSPLIB benchmark are considered in the experiments, their sizes range from 14
to 442 cities. Each instance is run 20 times, with the parameters listed in Table 1.
The choice of parameter values was carried out after many preliminary tests. This
is justified in Subsection 4.3.

We observed (in the worst cases) that BLS may never reach stopping conditions if
maximum number of non-improving attractors visited T before strong perturbation
is set to a small value: this deadlock is due to the repetitive reduction of current
number of runs (Desc) which prevents reaching Descmax. T must be greater than
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Parameter Value Meaning

Descmax 50n, 25n Maximal number of descents. 50n if n < 200,
25n otherwise

L0 1 Initial jump magnitude
Lmax 0.5n Jump magnitude during strong perturbation
γ n Tabu tenure/length
P0 0.75 Smallest probability to perform directed per-

turbation
Q 0.7 Probability to perform random over recency-

based perturbation
T ((Descmax − 1)/8) + 1 Maximal number of consecutive non-improving

local minima

Table 1. Settings of important parameters

(Desc − 1)× (1− 7
8
), so we set T to Descmax−1

8
+ 1.

4.2 Computational Results and Comparisons

In the following, there will be listed the used performance measures of BLS algo-
rithm:

1. the average deviation of obtained solutions from the best known solution, de-
noted δ:

δ = 100× (c̄− bks)/bks [%] (6)

where c̄ is the average tour length over 20 runs of BLS, and bks is the best known
value which can be found in the TSPLIB [16];

2. the number of solutions of which the deviation does not exceed 1 % (over
20 runs), denoted C1%;

3. the number of solutions where the cost is equal to the best known solution – Copt.
Instances with a zero in the two (merged) columns means that all executions
found the best known solution;

4. the CPU time in seconds.

We compare the performance of BLS with the standard local search using 2-opt
neighbourhood [17] (LS 2-opt) from the literature, and basic ILS1 with a 2-opt de-
scent and a Double Bridge Move perturbation. The comparison reported in Table 2
is based on the Local Search framework used in BLS.

The results above shows the great contribution of BLS on both standard local
search and ILS. 38 of the 41 instances did not exceed a deviation of 1 % at least once
over the 20 executions, of which 30 have never exceeded. 27 instances have reached

1 Thomas Stützle. TSP-TEST, Version 0.9. Available from http://www.sls-book.

net, 2004.

http://www.sls-book.net
http://www.sls-book.net
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Instance n bks LS-2OPT (δ)
ILS BLS

• • • • δ C1%/Copt δ C1%/Copt CPU Time (sec)
burma14 14 3 323 – 0 0 0.00
ulysses16 16 6 859 – 0 0 0.00
ulysses22 16 7 013 – 0 0 0.00
eil51 51 426 – 0.469 14/5 0.199 20/8 0.58
berlin52 52 7 542 – 0.106 19/19 0 0.00
st70 70 675 – 0.741 13/3 0 0.97
eil76 76 538 – 0.929 11/3 0.492 18/5 2.67
pr76 76 108 159 – 0.518 20/7 0 1.41
gr96 96 55 209 0.997 0.466 18/4 0.215 20/5 6.00
rat99 99 1 211 0.614 1.652 7/0 0.057 20/12 5.72
kroA100 100 21 282 0.073 0.282 20/8 0 4.02
kroB100 100 22 141 0.379 0.632 14/5 0.012 20/18 6.58
kroC100 100 20 749 0.546 0.882 13/2 0 4.38
kroD100 100 21 294 1.538 0.977 13/0 0.053 20/14 5.16
kroE100 100 22 068 0.983 0.770 15/1 0.164 20/5 5.89
rd100 100 7 910 0.961 0.619 14/3 0.010 20/16 10
eil101 101 629 1.657 1.749 3/0 1.017 11/0 6.07
lin105 105 14 379 0.642 0.285 19/7 0 2.10
pr107 107 44 303 0.093 0.950 9/0 0.042 20/11 5.89
pr124 124 59 030 0.953 0.281 19/7 0 7.91
bier127 127 118 282 0.649 0.686 15/1 0.139 20/4 31
ch130 130 6 110 0.999 1.244 7/0 0.324 20/2 14
pr136 136 96 772 – 1.775 7/0 0.675 20/0 15
gr137 137 69 853 0.824 1.266 10/0 0.347 20/0 20
pr144 144 58 537 – 0.091 20/7 0 4.39
ch150 150 6 528 – 1.241 8/0 0.412 20/2 18
kroA150 150 26 524 – 1.421 6/0 0.374 20/0 26
kroB150 150 26 130 – 1.309 8/0 0.237 20/1 22
pr152 152 73 682 – 0.415 19/1 0.030 20/8 15
u159 159 42 080 – 1.694 5/1 0 25
rat195 195 2 323 – 2.927 0/0 1.157 1/0 40
d198 198 15 780 – 0.754 16/0 0.581 20/0 46
gr202 202 40 160 – 1.805 0/0 1.314 5/0 35
ts225 225 126 643 – 0.706 16/15 0.110 20/10 50
gr229 229 134 602 0.911 1.306 6/0 1.403 2/0 49
gil262 262 2 378 1.099 2.397 0/0 1.345 6/0 70
a280 280 2 579 – 3.373 1/0 0.866 12/0 68
lin318 318 42 029 1.202 2.253 0/0 1.384 2/0 152
rd400 400 15 281 1.543 3.030 0/0 2.493 0/0 280
gr431 431 171 414 3.045 2.357 0/0 2.243 0/0 294
pcb442 442 50 778 5.185 3.096 0/0 2.315 0/0 205

Table 2. Comparative results between BLS and standard local search using 2-opt

at least once the optimum, of which 12 have always reached within a reasonable
time.

4.3 Justification for Parameter Settings

The good quality of the results obtained by BLS is due in part to the choice of
the parameters (see Table 1), each of these is justified by its role and influence
in BLS. The most influential of these will be confirmed by comparative tests on
three TSPLIB instances (eil51, eil76 and eil101). Results will be represented on
two superposed charts: the first is a stacked bar charts, each stack gives the best,
average and the worst solution. It will show only two results if the best found
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solution is equal to the optimum. Second chart is a line chart showing evolution of
running time of BLS. The first two parameters below are defined according to the
instance size (N).

4.3.1 Maximum Number of Descents (Descmax)

The maximum number of descents decides how many times the local search will be
performed, the higher is the number of descents, the better are the results; each
one is a new chance to find better tour or escaping the attraction. In return, the
running time will be greater as shown in Figure 1. It was noted while testing that
over a certain number of descents, the results become quite satisfactory and adding
more only rises execution time without significant improvements.

Figure 1. Varying number of descents for eil instances

4.3.2 Initial Number of Moves/Jumps (L0)

This number gives the minimum of moves to be performed for each of the three types
of perturbation; it has its impact on the change of neighbourhood and therefore the
chances of unlocks. The larger it is, the more important is the changing neighbour-
hood, which may sometimes give the next descent a feeling of independence of the
previous descents.

The best results were obtained as shown in Figure 2 when starting with a single
jump, given the high effectiveness of diversification perturbations.

4.3.3 Maximum Number of Non-Improving Local Optima (T )

This variable indicates when we should perform the strong perturbation; it is reset
to zero once this perturbation performed. The smaller T is, the higher is the number
of perturbations, which increases the chances of unlocking. As mentioned earlier,
the number T must be greater than Descmax−1

8
+ 1 to avoid that the current number
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Figure 2. Varying initial number of moves for eil instances

of descents never reaches Descmax. The tests above in Figure 3 are performed with
variation of T three times: choosing firstly time the minimal value for each instance,
and then doubling and tripling these values.

Figure 3. Varying maximum number of non-improving local optima for eil instances

4.3.4 Performing 3-Opt as Descent

BLS can be improved by changing neighbourhood in the steepest descent by switch-
ing to the 3-opt, which is larger due to the number of edges that are affected in each
movement. This change will leave an impact on the performance of BLS: the his-
tory of changes is wider than the history constructed with the 2-opt steepest descent
(three edges affected instead of two with 2-opt), then the perturbations become more
diversified.

Table 3 shows BLS execution results with 3-opt (BLS 3-OPT), by comparing
it with the standard local search using 3-opt neighbourhood (LS 3-OPT) [17] and
BLS using 2-opt in the descent (BLS 2-OPT).
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Instance n bks LS-3OPT (δ)
BLS 2-OPT BLS 3-OPT

• • • • δ C1%/Copt CPU (sec) δ C1%/Copt CPU (sec)
burma14 14 3 323 – 0 0.00 0 0.00
ulysses16 16 6 859 – 0 0.00 0 0.00
ulysses22 16 7 013 – 0 0.00 0 0.00
eil51 51 426 – 0.199 20/8 0.58 0 2.69
berlin52 52 7 542 – 0 0.00 0 0.47
st70 70 675 – 0 0.97 0 11
eil76 76 538 – 0.492 18/5 2.67 0 8.55
pr76 76 108 159 – 0 1.41 0 21
gr96 96 55 209 0.997 0.215 20/5 6.00 0 23
rat99 99 1 211 0.614 0.057 20/12 5.72 0.033 20/12 16
kroA100 100 21 282 0.073 0 4.02 0 18
kroB100 100 22 141 0.379 0.012 20/18 6.58 0 62
kroC100 100 20 749 0.546 0 4.38 0 25
kroD100 100 21 294 1.538 0.053 20/14 5.16 0 35
kroE100 100 22 068 0.983 0.164 20/5 5.89 0138 20/10 52
rd100 100 7 910 0.961 0.010 20/16 10 0 54
eil101 101 629 1.657 1.017 11/0 6.07 0.063 20/12 39
lin105 105 14 379 0.642 0 2.10 0 29
pr107 107 44 303 0.093 0.042 20/11 5.89 0 36
pr124 124 59 030 0.953 0 7.91 0 21
bier127 127 118 282 0.649 0.139 20/4 31 0.102 20/9 247
ch130 130 6 110 0.999 0.324 20/2 14 0.216 20/7 196
pr136 136 96 772 – 0.675 20/0 15 0.374 20/0 244
pr144 144 58 537 – 0 4.39 0 12
ch150 150 6 528 – 0.412 20/2 18 0.117 20/14 284
kroA150 150 26 524 – 0.374 20/0 26 0.162 20/0 400
kroB150 150 26 130 – 0.237 20/1 22 0.185 18/0 626
pr152 152 73 682 – 0.030 20/8 15 0.041 20/6 374
u159 159 42 080 – 0 25 0 287
rat195 195 2 323 – 1.157 1/0 40 0.499 20/0 624

Table 3. Comparative results between BLS and standard local search using 3-opt

3-Opt neighbourhood brings many improvements to BLS. All running instances
did not exceed a deviation of 1 %, the worst average does not even exceed 0.5 %.
Only 4 out of 30 instances could not reach the optimum, while 21 have always
reached the optimum.

5 DISCUSSIONS

Observing the overall framework of ILS, BLS uses local search to get local optima,
and perturbation to vary the search. However, BLS differentiates itself from most
ILS algorithms by the combination of various perturbation strategies of different
strengths, triggered according to the search status. As explained in Section 3.3,
BLS uses a perturbation of weaker diversification with a higher probability P as the
search progresses toward improved new local optima.

By neglecting the maximum number of descents set in our algorithm, BLS always
succeeds in finding the optimal solution. Indeed, the BLS search space expands after
each series of perturbations until it finds the neighbourhood that his local optimum
is the optimal solution. Below in Table 4 are shown the best and average running
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CPU time execution (in seconds) of some instances of a BLS execution where we
ignored this stopping condition criteria.

Instances n bks Best Average Instances n bks Best Average

eil51 51 426 0 2.2 kroC100 100 20 749 1.4 20
berlin52 52 7 542 0 0.3 kroD100 100 21 294 24 433
st70 70 675 0.6 13 kroE100 100 22 068 1.19 47
eil76 76 538 1.2 9.4 rd100 100 7 910 1.5 55
pr76 76 108 159 0.3 6.9 eil101 101 629 2 257
rat99 99 1 211 2.1 960 lin105 105 14 379 0.6 41
kroA100 100 21 282 0.5 35 pr107 107 44 303 0.6 78
kroB100 100 22 141 8.1 95 pr124 124 59 030 1.3 27

Table 4. Execution time required for BLS to find the optimum

6 CONCLUSION

We explained in this paper the breakout local search approach for solving the TSP.
This algorithm uses the ILS framework and brings improvements in the perturbation:
it performs a local search and a perturbation-based diversification phase (to jump
from a local optimum to another one). The local search procedure uses the steepest
descent with 2-opt move strategy. To visit a local optima of high quality, the jumps
toward new neighbourhood are adaptively controlled according to the state of search.
Perturbation is achieved by varying the type of moves and then the size of a jump
and selecting the most fitting perturbation for each diversification period.

The quality of BLS results reported in Section 4, proves its competitiveness
compared to other algorithms. The repeated constructions (on each jump) of the set
of candidate couples (formula (2), (3) and (4)) lead to a slowness of BLS compared
to its competitors. For a better compromise of results’ quality and execution time,
we kept the 2-opt algorithm in the local search step so that BLS will not be penalised
by the 3-opt slowness as shown in the comparison of Table 3.

In order to overcome this problem of slowness, BLS can be improved by intro-
ducing accelerated descent from the same neighbourhood and implementing efficient
data structures to reduce the searching time in the construction of all candidates.
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