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Abstract. Visual tracking of a deformable object is a challenging problem, as the
target object frequently changes its attributes like shape, posture, color and so
on. In this work, we propose a model-free tracker using clustering to track a target
object which poses deformations and rotations. Clustering is applied to segment the
tracked object into several independent components and the discriminative parts
are tracked to locate the object. The proposed technique segments the target object
into independent components using data clustering techniques and then tracks by
finding corresponding clusters. Particle filters method is incorporated to improve
the accuracy of the proposed technique. Experiments are carried out with several
standard data sets, and results demonstrate comparable performance to the state-
of-the-art visual tracking methods.
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1 INTRODUCTION

Visual object tracking (VOT) has numerous applications in surveillance, intelligent
transportation systems, sports broadcasting, robotics and so on. Single object track-
ing is a base case and, usually, extended to track multiple objects in a scene. Video
analysis is affected by the video quality, scene environment attributes (illumination,
noise, shadow and jitter), spatio-temporal attributes and behavioral change of in-
trinsic properties of a target object (such as shape, color and size). The uncertain
behavior of the intrinsic properties over the length of a video sequence is deformation
of the object.

Single object tracking has defined a work-flow for general VOT cases. The gen-
eral strategy considers detection of the target region (target object), representation
of the target object and activity of the target object. An effective VOT technique is
efficient and wise combination of the aforementioned. A brief description of each of
the stated component work-flow is worth mentioning. The target region is selected
as a preliminary geometric shape such as a quadrilateral or ellipse; these shapes
provide with a benefit of handling few parameters and a disadvantage of redundant
information besides the target object. Specific contours are used to avoid the inef-
fective data for demarcation of the target object precisely, but it burdens with many
parameters to track along. Adaptive selection of the target region can be an effective
way to track deformed objects, but it might come with an associated computational
cost.

Second challenge is representation of the target object. The simplest represen-
tation is the pixels of target regions as color values. The basic RGB color values
are vulnerable to the underlying challenges of video analysis, thus they are not
invariant representation of the target object. Histogram of colors is an effective
representation for alternating color change in the target region. Expensive features
which are invariant to color, rotations and motion are some other choices for the
target object representation. Well known features are edges, HAAR-like features,
SIFT and SURF features, HoG features, etc. Motion representation of the target
object relates its motion within vicinity of the current locality. However, a super
fast object can disturb the tracking results drastically. Alternatively, one can model
the motion from the initial frames of the video which can, later, be used to predict
the location of the target object. Probabilistic Gaussian motion model, Kalman
filters and particle filters, optical flow trackers, etc., are commonly used motion
models.

In the end, prediction of the target object is required to conclude one step
of tracking. Prediction may be as simple as template matching and can extend
to complex sophisticated discriminative classifiers. Tracking of deformable objects
is a situation, where the object alternatively changes color, shape and scale with
motion. These variations make it hard to track deformable objects optimally, as
a general case. In this work, we propose a spatio-temporal representation of target
object and an optimal method to model the activity of the target object. The spatial
representation of the target object is segmented using data clustering techniques,
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and the temporal representation is given by solving the clustering correspondence
problem. Moreover, particle filtering technique is used to model the activity of the
target object.

This paper is organized as follows. Section 2 presents the relevant literature
survey. In Section 3, we explain our proposed method. Section 4 articulates the
evaluation setup used to cross examine and describe our experiments to test the
performance of our proposed method, and presents the obtained results with discus-
sion. Conclusion and possible future directions are briefed in Section 5.

2 RELATED WORK

The single object tracking problem is an active research area, and persuasive lit-
erature is available for study. Comprehensive evaluations and contemplative dis-
cussions, with summaries of most of the interesting techniques, are aggregated in
literature for interested users [26, 28, 25]. Another recent review evaluating the
single object tracking techniques on different video sequences will be helpful for sur-
vey [17]. In addition to the aforementioned references, it will be beneficial to discuss
recent progress in the single object tracking domain. Structure-preserving object
tracker (SPOT) [30, 29] uses online structured SVM to learn the spatial constraints
of different parts of the objects, and it predicts from the candidate windows for ob-
ject tracking. Lucas-Kanade algorithm [19] is extended as an optimization problem
in [23] where the object’s pixels and the background segmentation are optimized
by applying likelihood of a Bayesian framework. Incremental subspace learning and
Fisher discriminant analysis techniques are combined, and a graph based combina-
tion is proposed to effectively capture the dynamic appearance of the target object
and differentiate it from the background [32]. Another graph inspired technique
used graph cut method for object segmentation, and it improved the object track-
ing results, reported in [31].

Since there are plenty of techniques employing variety of strategies to approach
the single object tracking problem a rational thought is to discuss the pertinent lit-
erature which follows henceforth. Mean shift is used to find best candidate windows
for the target object from the next frame by matching histograms discrimination
information from the Bhattacharya coefficients [4]. The target region is divided into
static segments of 20 × 20 pixel values, and each segment is associated with a sep-
arate Kalman filter in [22]. Later, the object tracking is performed using template
matching. A likely idea is to divide the target object in fragments of fixed size
and use the color histogram of these fragments to compare the probable matches
from candidate segments with Earth Movers Distance (EMD) [2] to track. A re-
cent work in similar regards is the representation of the segmented target object by
a superpixel per segment. A superpixel is defined by the center of mass and aver-
age HSV-values [24], and EMD is used for comparisons. The target object state is
sampled using particle filter for the segments. Key-points are used with hierarchical
clustering techniques for deformable object tracking in [21].
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Deformable object tracking has been aimed by many researches from general
to specific cases. As discussed in Section 1, the challenges put forth by change of
shape, occlusion, motion activities, and so on, recognized the deformable object
tracking as a standalone task. A nonlinear model with implicit representation of the
target object by contours and defining generative dynamical model for the motion
is presented in early literature [13]. The boundary element method is applied with
a deformable template to model the displacements, and the template is registered to
the image by energy minimization of the force field [8]. Later, the idea is extended
with the use of canny edge detector for occlusion [9]. An optical flow equation
applied on the whole image with constraints on the elastic deformation is discussed
in [12]. Deformable objects are tracked using a sliding window particle filter, where
the change in an object’s shape is captured using a modified technique of principle
component analysis [16].

Dynamic graphs are employed in tracking to represent the geometrical structure
of the target and the candidate object as nodes, and their interaction is denoted
by edges; Markov random field and spectral clustering is used to solve the target
and the candidate graph matching [3]. A recent work used the weightless neural
networks for tracking the deformable objects to a success [27]. [18] discussed a path
based tracking which overcame the limitation of core reliance on the initialization
by intelligently selecting the correct patches. [5] proposed use of hyper-graph for
guessing correspondence in deformable object in successive multiple frames, which
helped in long-term occlusions and intense deformations. Fusion of the data from
multiple sensors used with a multiple Kalman filters tracking technique to improve
visual tracking is presented in [15].

In comparison to existing techniques, we propose the use of clustering, an un-
supervised technique, to segment the target object into parts, and use these parts
wisely to track the object. We keep with us the discriminative parts of the reference
(target) object, and estimate the location of matching parts in the vicinity of the
object in the previous frame. Moreover, particle filtering is incorporated into the
method to make it more robust to the tracking challenges. We shall discuss the
formal details of our methodology in coming sections.

3 OUR METHODOLOGY

Formally defining the single object tracking problem: given a sequence of N images
I1, I2, . . . , IN , and an initializing bounding box ground truth region bg = b1 in I1
containing the object to be tracked, we aim at predicting the bounding boxes b2, . . . ,
bN that contain the target object in remaining frames of the sequence I2, . . . , IN ,
respectively. The detail of our clustering and particle filter based tracking method
TUC (tracking using clustering) is provided in the remainder of this section. We
call the target object to be tracked as tracked object or reference object, and the
estimated object as the predicted object alternatively.
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3.1 Clustering for Object Segmentation

Data clustering discovers groups of similar patterns in data and its application for
image segmentation is quite intuitive. In our first step, we obtain k segments of bg,
the initially provided ground truth region in I1, using k-means clustering method.
K-means is chosen for its efficiency and simplicity. Note that although clustering
is expensive for large data yet applying it to a usually small region like bg is not
computationally expensive. These k segments of bg become the reference segments
that will be compared with the segments of test regions in next frames to estimate
the tracked object’s location.

3.1.1 Number of Clusters

Number of clusters k is an input parameter for k-means. We tested different values
for k and empirically fixed it to 15 being a good tradeoff between accuracy and
efficiency. Figure 1 shows the segments of an object discovered using different values
of k.

Original k =5 k =10

k =15 k =20 k =25

k =30 k =35 k =40

Figure 1. Segments of the object using different number of clusters, k ∈ {5, 10, . . . , 40}

3.1.2 Feature Selection

Feature selection can be regarded as the most important part in any computer vision,
machine learning and pattern recognition algorithm in general, and in a tracking
method in particular. We segment the object using pixel location, gray intensity,
and x- and y-directional gradient values. The separation of salient segments in
Figure 1 justifies the suitability of using these features.
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3.2 Selecting Discriminative Segments

In practice, the target object’s neighborhood may contain textures that are similar
to the target object itself and can hinder the tracker’s accuracy. Considering the fact
that the far regions has less to add to this obstruction, we select the segments of the
reference object that are most discriminative from the immediate background. We
take four neighboring regions up, down, left and right of the object having same size
as the object, and segment each of these regions with same k value (Figure 2). The
segments of the reference object bg that have high similarity with the segments from
neighboring regions are removed and not used as reference segments. Thus, we ob-
tain the set of most discriminative segments of the reference object, Sg. We removed
the top 25 % most similar segments to the background in our experimentation.

Frame #1

Figure 2. The four background boxes around the tracked object are shown that are used
to calculate discriminative segments of the object

3.3 Object Tracking Using Segments

Once we have the discriminative segments of the reference object from the frame I1,
the next step is to locate and track the object in subsequent frames I2, . . . , IN . For
this, we pick the region bn in frame In where n ∈ {2, 3, . . . , N} in sequence, using the
immediate previous frame’s region information, i.e., the location, width and height
of the bounding box in frame In−1. A realistic assumption which will be relieved
later is that the object is not moving too fast from In−1 to In, and we get some
part of the object in bn to estimate the object’s location in In. However, such fast
motion situations are handled by incorporating particle filter in our method. Detail
of using particle filter is presented in Section 3.5.
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Thus clustering is applied on region bn to obtain the set of k segments Sn, and
these segments in Sn are then compared with the reference segments in Sg. This
comparison, however, demands to solve the segments correspondence problem, which
is discussed in detail in Section 3.4. The segments correspondence problem enables
us to compute the amount of translation between two corresponding segments by
using centroids of the segments. As different pairs of corresponding segments suggest
different translation values, we take the median of these translation values and
predict the translated location of the bounding box in In. Hence, the change in
locations of the corresponding segments in Sn and Sg helps us estimate the distance
the object has traveled.

3.4 Finding Corresponding Segments

Finding correct corresponding segments in the set of current segments Sn and the
set of reference segments Sg is of key importance in our method, and we are able to
solve this correspondence problem pretty accurately. Different regional properties of
the segments are compared to calculate their similarity. These regional properties
include area, eccentricity, Euler number, mean intensity and normalized intensity
range of a segment. Area is the number of pixels in a region. Area is computed as
actual number of pixels in a segment. Eccentricity specifies the eccentricity of the
ellipse that has the same second-moments as the region, analogically it represents
how circular the region is. Eccentricity is computed as a ratio of the distance between
the foci of the ellipse and its major axis length. A line segment has 1 eccentricity
and a circle has 0 eccentricity. Euler number specifies the number of objects in the
region minus the number of holes in those objects. Mean intensity is the average
intensity value of a region, and normalized intensity range of a region is defined as:

(MaxIntensity−MinIntensity)

255
.

Euclidean distances between each pair of segments is calculated based on these
regional properties.

dist(si, sj) =
√∑

(ui − vj)2, ∀si ∈ Sn, sj ∈ Sg, (1)

where ui and vj represent the vectors of the regional properties of segments si and sj,
respectively.

In addition to this distance calculation of regions, overlap of each pair of seg-
ments is also computed using Jaccard index as follows:

o(si, sj) =
|si ∩ sj|
|si ∪ sj|

, ∀si ∈ Sn, sj ∈ Sg. (2)
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Finally, the similarity of two segments si ∈ Sn and sj ∈ Sg is computed as:

sim(si, sj) = α · o(si, sj) + β · 1

dist(si, sj)
. (3)

We fixed α and β values to be 0.25 and 0.75, respectively, based on empirical
results. Section 4.5 shows the impact of various combinations of α and β value on
the quantified results.

The correspondence solving method returns matching segments in Sn and Sg

along with the confidence weights based on similarities of the corresponding seg-
ments. Since there exist low similarity pairs of segments, we pick the top 75 % of
the segment matches based on these confidence weights, and use them for tracking.

3.5 Incorporating Particle Filter

Particle filtering is used to approximate the intractable distributions for sample gen-
eration techniques. It starts by generating a random set of particles and it estimates
states and observations for the next time step. It overcomes the limitation of un-
normalized and non-gaussian distributions and generate samples using the weighted
previous observations. It is interesting to initialize the particles and weights updat-
ing strategy, what is a domain specific gimmick.

We incorporate particle filtering into our clustering based tracking method to
improve its robustness and to behave well with less accurate clustering. P particles
are sampled from a 2-d Gaussian distribution centered at the center of the target
object in previous frame, with covariance matrix V . Initial weight to every particle
is assigned based on two measures. First, the sum of distances of a particle p to all
the centers of the reference object’s segments cgi ; call it wd

p. Second, the correlation
of the reference window bg and the same sized window centered at the particle bp;
call it wr

p.

wd
p =

k∑
i=1

dist(p, cgi ), (4)

wr
p = corr(bp, bg), (5)

wd
p and wr

p are normalized by their total sum values and then combined to find initial
weight of the particle p as:

wp =
1

wd
p

· exp(wr
p), (6)

wp is normalized to sum to 1. The estimate for object’s motion in current frame is
computed using clustering as described in the previous steps of this section. Next
step is to move every particle using this estimated amount of motion. Instead of
using the single motion value, we sample P motion values from a 2-d Gaussian
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distribution centered at the estimated amount of motion, and having covariance Vd.
Updated weights are calculated again using particles’ distance from reference centers
and correlation with the reference window. Finally, particle with the maximum
weight is picked as center of the target object’s new location. Figure 3 gives a small
demo of our tracking method by showing the object, the estimated bounding box
and the particles.

Figure 3. Tracked object (the person moving straight) and particles are shown in 16 con-
secutive frames from top-left to bottom-right (person crossing data set). Successful occlu-
sion handling is also visible.

3.6 Scale Estimation

The estimation of change in scale of the tracked object is assisted by the nature of
our clustering based procedure. Corresponding segments or clusters of the true ob-
ject bg and the predicted object bn are identified, as described in Section 3.4, and the
sizes of these corresponding segments in Sg and Sn are compared. The ratio of their
sizes gives an estimate of the scale-change factor δscale. As different corresponding
segments give different estimate values, δscale is set to be the median of these values.

δscale = median

(
|sci |
|scj|

)
, ∀sci ∈ Sn, s

c
j ∈ Sg. (7)

The superscript c indicates that these are the corresponding segments of the current
and ground truth segments, Sn and Sg, respectively. |.| is the size of the segment
calculated as count of pixels in the segment, also known as area. δscale is used
to get the updated width wn and height hn of the predicted bounding box bn.
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[wn, hn] =
√
δscale · [wg, hg], (8)

where wg and hg are the width and height of the ground truth bounding box bg,
respectively.

The steps of our methodology are summarized in Algorithm 1.

Algorithm 1 TUC – Tracking Using C lustering

Require: I1, . . . , IN {image sequence}, b1 {bounding box in I1}
1: k ← 15 {initialize number of clusters}
2: P ← 200 {initialize number of particles}
3: F1 ← computeFeatures(b1) {features of ground truth bg}
4: Sg ← kmeans(F1, k) {segments of the object bg}
5: Sd

g ← findDiscriminativeSegments(Sg, I1) {discriminative reference segments,
Section 3.2}

6: for n = 2 to N do
7: Pxy ← generateParticles(c0n, V, P ) {Section 3.5 and Equation (11)}
8: wp ← assignWeights(Pxy)
9: Pxy ← resample(Pxy, wp)

10: Fn ← computeFeatures(b0n) {b0n is the box in current frame using previous
frame’s box information}

11: Sn ← kmeans(Fn, k)
12: MATCHES ← findCorrespondingSegments(Sn, S

d
g ) {Section 3.4}

13: txy ← estimateTranslation(MATCHES) {Section 3.3}
14: t′ ← generateRandomSpeeds(txy, Vd, P ){Section 3.5 and Equation (12)}
15: Pxy ← Pxy + txy + t′ {move the particles with estimated and random speeds}
16: wp ← assignWeights(Pxy)
17: cn ← max(wp, Pxy) {estimated center of the object}
18: b0n ← boundingBox(cn)
19: δscale ← estimateScale(b0n, bg) {Section 3.6}
20: bn ← scale(b0n, δscale)
21: return bn {predicted bounding box in In}
22: end for

4 EXPERIMENTAL EVALUATION

We compare our method with state-of-the-art tracking methods on standard data
sets using a popular evaluation measure. Our experimental setup and obtained
results are discussed in this section.
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4.1 Data Sets

Experimental evaluation of our tracking method is carried out on nine standard
publicly available data sets.1 The video sequences in these data sets contain different
visual tracking challenges like deformation, in-plane rotation, out-of-plane rotation,
scale change, occlusions, etc. Figure 4 shows the first frames of these video sequences
and the target object to be tracked.

Figure 4. First frame and the ground truth bounding box are shown for each of the nine
video sequences used in experimental evaluation. The video sequences from top-left to
bottom-right are ball, car2, car chase, cup on table, gym, mountain bike, person, person
crossing and person occlusion.

4.2 Evaluation Measure

Many measures exist in literature for quantitative evaluation of tracking methods.
The center-error measure expresses the distance between the centroid of the pre-
dicted box and the centroid of the ground truth. This measure is not bounded and
ignores the scale and the aspect ratio of the bounding boxes. We have selected the
commonly used overlap measure:

o(bn, bg) =
|bn ∩ bg|
|bn ∪ bg|

, (9)

where bn refers to the predicted bounding box and bg refers to the ground truth
bounding box. This measure is bounded between 0 and 1, penalizes translation

1 http://www.gnebehay.com/cmt/

http://www.gnebehay.com/cmt/
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and scale alterations, and is popularly known to be a better indicator for per-frame
success [20].

In order to find an overall score for a sequence, a threshold τ is applied on Equa-
tion (9) to find true positives (TP). True positive rate (or recall) is then reported
for all sequences.

recall =
TP

TP + FN
. (10)

The value of recall gives the percentage of frames that are tracked correctly, i.e.
when o ≥ τ .

Results are computed for three different values of τ , i.e., 0.25, 0.50 and 0.75.
These threshold values are suggested by [20] with an interpretation as low, medium
and high requirements on accuracy.

4.3 Comparison Methods

A comparison of our approach is performed with the state-of-the-art tracking ap-
proaches. The comparison methods include CMT (Consensus-based Matching and
Tracking [20, 21]), STRUCK (Structured output Tracking [10]), TLD (Tracking-
Learning-Detection [14]), LM (LearnMatch [11]), FT (Fragments-based Track-
ing [2]), HT (HoughTrack [6]) and SB (Semi-supervised online Boosting [7]).

4.4 Parameters Setting

Required parameters of our method were set once and then used for all of the data
sets consistently. The setting was guided by initial experimental results.

The number of clusters parameter k which becomes the number of tracked seg-
ments is set to be 15. Number of particles P is set to be 200. Covariance matrix V
for initial random Gaussian particles is set to be

V =

[
7 1
1 7

]
, (11)

and covariance matrix for random motions of the particles Vd is set to be

Vd =

[
2 1.5

1.5 2

]
. (12)

Covariance matrix V is used to generate initial random Gaussian particles. The
shape of the target object (width and height of the bounding box) and the dominant
direction of motion can help in determining this spread to be more in one direction
or other (we fixed to 1 and 7 in our experiments). V controls the spread of particles
and can be learned through some initial frames or adapted incrementally (not done
in the current work). In the case of Vd, the covariance matrix of random motions,
the values are small and almost identical for both horizontal and vertical directions
(1.5 and 2).
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Sequence τ CMT STR TLD FT LM HT SB TUC

0.25 0.98 0.30 0.40 0.31 0.14 0.15 0.30 0.90
ball 0.50 0.57 0.15 0.28 0.19 0.12 0.11 0.28 0.58

0.75 0.19 0.10 0.19 0.13 0.09 0.10 0.12 0.15

0.25 0.90 0.81 1.00 0.04 0.46 0.59 0.72 0.98
car2 0.50 0.88 0.47 1.00 0.04 0.36 0.47 0.72 0.94

0.75 0.64 0.11 0.95 0.03 0.17 0.00 0.70 0.72

0.25 0.30 0.08 0.16 0.04 0.00 0.04 0.08 0.32
carchase 0.50 0.20 0.03 0.15 0.03 0.00 0.04 0.08 0.13

0.75 0.07 0.02 0.06 0.02 0.00 0.00 0.05 0.04

0.25 0.83 1.00 0.89 1.00 0.68 1.00 0.47 1.00
cup on table 0.50 0.81 0.92 0.64 0.88 0.54 1.00 0.47 0.98

0.75 0.61 0.35 0.06 0.40 0.31 0.48 0.34 0.53

0.25 0.93 1.00 0.76 0.24 0.10 0.30 0.61 1.00
gym 0.50 0.86 0.93 0.32 0.22 0.05 0.00 0.58 0.89

0.75 0.22 0.3 0.08 0.12 0.02 0.00 0.22 0.36

0.25 0.99 0.99 0.37 0.65 0.11 0.99 0.20 1.00
mount-bike 0.50 0.98 0.93 0.36 0.63 0.08 0.40 0.17 0.88

0.75 0.48 0.23 0.16 0.18 0.04 0.03 0.08 0.27

0.25 0.95 1.00 0.92 1.00 0.75 0.49 0.52 1.00
person 0.50 0.82 0.95 0.71 0.95 0.67 0.00 0.52 0.99

0.75 0.49 0.50 0.25 0.54 0.31 0.00 0.40 0.57

0.25 0.76 0.51 0.86 0.88 0.80 0.18 0.96 0.87
person-cro 0.50 0.70 0.42 0.70 0.66 0.75 0.10 0.91 0.78

0.75 0.58 0.12 0.10 0.15 0.42 0.04 0.16 0.13

0.25 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
person-occ 0.50 0.94 0.91 0.87 0.91 0.95 0.93 0.91 0.92

0.75 0.82 0.80 0.58 0.80 0.82 0.44 0.80 0.80

0.25 0.85 0.74 0.71 0.57 0.45 0.53 0.54 0.90
Average 0.50 0.75 0.63 0.56 0.50 0.39 0.34 0.52 0.79

0.75 0.46 0.28 0.27 0.26 0.24 0.12 0.32 0.40

Table 1. Comparison of our method (last column) with existing methods on 9 video se-
quences. Recall results are reported for 0.25, 0.50 and 0.75 threshold (τ) values of overlap
with the ground truth. The top recall values are highlighted in bold and average values
are presented in italic typeface.

4.5 Results and Discussion

Figure 5 shows results of our tracking method obtained using clustering alone, and
after incorporating particle filtering and discriminative segments. Improvement in
results is visible when particle filtering is added to the simple clustering based track-
ing. Removing ambiguous segments and keeping discriminative segments only, fur-
ther improves the tracking accuracy.
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Figure 5. Comparison of our tracking method using clustering (C), and after incorporat-
ing particle filtering (CP) and discriminative segments (CPD). Overlap threshold τ = 0.50.
Combined method, i.e., clustering with particle filtering and discriminative segments
(CPD) achieves the best performance.

Table 1 presents the comparison of our proposed method (TUC) with existing
methods. Recall values for seven comparison methods are taken from [20]. Our
method attains the highest average value for low and medium accuracy require-
ments, i.e., when overlap with the ground truth bounding box is greater than or
equal to 0.25 and 0.50 threshold (τ) values, respectively. For high accuracy re-
quirement, i.e., when τ is 0.75, our method achieves the second highest average
value as CMT gets on the top. This slightly lower performance of our method
in this case is attributable to the randomness involved in the method causing
atremble movements of the bounding box sometimes. Note that this random-
ness, on the other hand, helps in keeping track of the object in other scenarios
(low and medium accuracy requirements) where other methods show lower per-
formance. After TUC and CMT, the next best results are achieved by STR and
TLD.

Eminent performance of our method is clearly observable on sequences staging
deformable objects (e.g., gym and person). Taking discriminative and using top
75 % parts of the object that match the reference model helps in achieving these
high quality results, particularly for videos having deforming objects. We fixed the
parameters for our method, e.g. variance (as described in Section 4.4), for all pre-
sented experiments. Adapting these parameters intelligently based on the object and
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its environment information in a sequence can further improve the overall results,
and can make the method more generic in the future.

Figure 6 demonstrates the qualitative results of our method compared with the
selected techniques. The figure gives the frame number and each frame shows the
tracked object in the boundary from all 228 frames of the mountain-bike sequence.

Figure 6. Qualitative results of our proposed tracking method compared with TLD, HT
and CMT techniques (mountain-bike data set). Left column gives the frame number.

As discussed earlier, some of the values of control parameters are selected empir-
ically, based on the best combination of correctness and efficient. Table 2 shows the
recall values computed while trying different combinations of numbers of clusters
and numbers of particles value. It is evident that after a certain number of clusters
the segments become too sparse to track. Table 3 shows the recall values computed
while trying different combinations of α and β value.

Currently, k-means clustering has been applied for object’s segmentation. In
the future, other clustering methods (e.g. density based) can be tested. In addition,
more features and key-points detection and description methods can be explored
to further improve the performance and to handle full occlusions more effectively.
The method can also be extended to update the reference model at run-time and
to generalize this technique to perform better in all cases. Super-pixel algorithm [1]
(i.e. SLIC) can also be used for a fine and quick construction of the segmentation
of the target object, as it is faster and more memory efficient. Moreover, some
control parameters in this work are selected empirically, what we have considered
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Number of Clusters

Number of Particles 5 10 15 20 25

100 0.52 0.7 0.92 0.85 0.85

150 0.65 0.79 0.81 0.59 0.97

200 0.6 0.85 0.98 0.82 0.87

250 0.58 0.83 0.94 0.84 0.86

300 0.56 0.68 0.89 0.72 0.83

Table 2. Recall values for combinations of number of clusters and number of particles
experimented with the car2 video

Alpha

Beta 0.25 0.5 0.75 1

0.25 0.70 0.68 0.85 0.84

0.5 0.73 0.88 0.67 0.80

0.75 0.97 0.83 0.79 0.75

1 0.74 0.80 0.75 0.81

Table 3. Recall values for combinations of alpha and beta value experimented with the
car2 video

as sufficient for the scope of this work. An adaptive parameter learning technique
can be introduced for the further experimentation and extension of this work.

5 CONCLUSION

In this paper, we have proposed a single object tracking method, Tracking Using
Clustering (TUC) by employing data clustering and particle filter. TUC outper-
forms state-of-the-art tracking methods in deformable object tracking while achiev-
ing competitive performance in general. Data clustering is applied to segment the
target object into several unstructured parts. To reduce ambiguity, discriminative
parts of the object are selected by removing its segments similar to the neighbor-
ing background segments. Particle filtering is employed to improve the accuracy
and robustness of our method and overcome the lacking caused by the randomness
inherited by data clustering methods. Experimental results on nine standard data
sets demonstrate the effectiveness of our approach.

Acknowledgments

This work was in part supported by the Institute for Information and Communica-
tions Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. B0101-15-0525, Development of global multi-target tracking and event pre-
diction techniques based on real-time large-scale video analysis), and by the Na-
tional Strategic Project-Fine particle of the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Science and ICT (MSIT), and the Ministry



Deformable Object Tracking Using Clustering and Particle Filter 733

of Environment (ME), and the Ministry of Health and Welfare (MOHW) (NRF-
2017M3D8A1092022).

REFERENCES

[1] Achanta, R.—Shaji, A.—Smith, K.—Lucchi, A.—Fua, P.—Süsstrunk, S.:
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