
Computing and Informatics, Vol. 37, 2018, 635–655, doi: 10.4149/cai 2018 3 635

HIERARCHICAL SYSTEM DESIGN USING
REFINABLE RECURSIVE PETRI NET

Messaouda Bouneb

Department of Mathematic and Computer Science
El Arbi ben M’hidi University
Oum el boighi, Algeria
e-mail: bounebm.univ@gmail.com

Djamel Eddine Saidouni

Department of Computer Science
Abed Elhamid Mehri Constantine 2 University
Constantine, Algeria
e-mail: saidounid@hotmail.com

Jean Michel Ilie

Department of Computer Science
Pierre and Marie Curie University
Paris, France
e-mail: jean-michel.ilie@lip6.fr

Abstract. This paper is in the framework of the specification and verification of
concurrent dynamic systems. For this purpose we propose the model of Refinable
Recursive Petri Nets (RRPN) under a maximality semantics. In this model a notion
of undefined transitions is considered. The underlying semantics model is the Max-
imality Abstract Labeled Transition System (AMLTS). Then, the model supports
a definition of a hierarchical design methodology. The example of a cutting flame
machine is used for illustrating the approach.

Keywords: Recursive Petri nets, hierarchical design, action refinement, maximality
labeled transition system

636 M. Bouneb, D. E. Saidouni, J. M. Ilie

1 INTRODUCTION

Petri nets model is a graphical and mathematical modelling tool which is used to
specify, in clear manner, the behaviors of concurrent systems. The marking graph
associated with a given Petri net is used for checking the specified properties of the
system. Indeed, this marking graph is seen as a labeled transition system. However,
labeled transition systems are based on interleaving semantics. This later represents
parallel executions by their interleaved sequential executions. To clarify the ideas,
we consider the example of two Petri nets (Figures 1 a) and 1 b)). Figure 1 a) repre-
sents a system which can execute transitions t1 and t2 in parallel, whereas Figure 1 b)
represents a system that executes sequentially transitions t1 and t3 or transitions t2
and t4.

Figure 1. Petri nets

After generating the marking graphs of the two Petri nets, where transitions t1
and t4 are labeled by action a and transitions t2 and t3 are labeled by action b, the
two marking graphs become isomorphic. Therefore the parallel execution of action a
and action b is interpreted as their interleaved executions in time. This result is
acceptable under the assumption that the firing of each transition corresponds to
the execution of an indivisible action with null duration (structural and temporal
atomicity of actions). Nevertheless, in reality this assumption is not accepted. In
order to accept the verification results, the realization constraints should be taken
into account at both specification and semantic level. To clarify the idea, let us
consider that the transition t1 (resp. t4) consists of two sequential transitions t1−1
and t1−2 (resp. t4−1 and t4−2). Transitions t1−1 and t4−1 are labeled by action a1
whereas transitions t1−2 and t4−2 are labeled by action a2. The refined Petri nets
and their labeled transition systems are represented by Figure 2. It is clear that the
behaviors of both Petri nets are different.

Indeed, in the first system, the execution of action b can occur between the
execution of actions a1 and a2; which is not the case in the second system. Taking
into account the non atomicity of actions in a system has been deeply studied in
the literature through the definition of several semantics supporting the concept of
action refinement [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Considering such semantics
allows a hierarchical design of the systems by refining actions (actions are seen as
abstract processes). An other interest of these semantics is the characterization of
parallel executions of non instantaneous actions.

Hierarchical System Design Using Refinable Recursive Petri Net 637

Figure 2. Non structural atomicity of actions

In this context the maximality semantics, through the model of the maximal-
ity labeled transition systems, was used for the characterization of concurrent sys-
tems. This semantics was defined for process algebras and place transition Petri
nets [13, 14, 15, 16, 17]. However, the limits of Petri net model have been high-
lighted for the specification of systems with dynamic structures such as multi agent
systems. For this reason, recursive Petri nets have been defined. Dynamic behaviors
are considered through abstract transitions. Since abstract transitions represent ac-
tivities, the association of true concurrency semantics to the model becomes more
appropriate than the use of interleaving semantics. For this purpose, in [18] a max-
imality operational semantics has been proposed for recursive Petri net model. In
order to design concurrent systems, several methodologies have been proposed in
the literature, around process algebra and Petri net specification models. As an ex-
ample we can cite the lotosphere design methodology which is based on the formal
description technique Lotos. This design methodology consists in specifying firstly
the architecture of the system in terms of its observable behavior, then the spec-
ification is refined along the design trajectory until obtaining the more detailed
specification. This later takes into account all system functionalities and the en-
vironment constraints. As the model is based on the interleaving semantics, the
design methodology is not based on action refinement but on transforming a specifi-
cation, subject of refinement, to an other following some directives. An other design
methodology has been defined for hierarchical Petri nets [19]. In [20] a Petri net
approach to refining object behavioral specifications has been proposed. As for Lo-
tos, these models are based on the interleaving semantics, too. Consequently design
methodologies are not formal.

Since in [18] a true concurrency semantics has been defined for recursive Petri
net, it seems interesting to define a design methodology based on refining abstract
transitions. Thus, in this paper we extend the model of recursive Petri net by
considering refinable transitions. The model will be named Refinable Recursive Petri
net. The proposed model is based on the maximality semantics. As for recursive
Petri net, dynamic behaviors are considered through abstract transitions. These
abstract transitions can be used for a hierarchical system design. Indeed, at a level
of abstraction, the details of abstract behavior of a transition may be hidden. They

638 M. Bouneb, D. E. Saidouni, J. M. Ilie

will be exhibited in a further level of abstraction. In the first step, details of abstract
transitions behaviors are undefined. These behaviors are gradually introduced along
the design trajectory. In this manner, system components are integrated gradually;
the initial specification is then the most abstract. This remark leads us to label
abstract transitions, the behaviors of which are undefined, by the symbol ⊥. As
an example, let us consider the systems of Figure 1 where transitions t1 and t4
are abstract transitions, at this level the difference between the systems may not
be seen. The labeled transition systems associated with the two Petri nets are
given by Figures 3 a) and 3 b), respectively. To consider the details of refinement of
abstract transitions, it is necessary to define relations on behaviors that consider the
indefinite character of abstract transitions interstates. It is clear that two undefined
transitions may become different after their refinement.

Figure 3. Interleaving approach for recursive Petri nets

Figure 4. Refinement of abstract transitions

2 REFINABLE RECURSIVE PETRI NETS

A refinable recursive Petri net is a recursive Petri net on which all transitions are
labeled by actions and abstract transitions may be labeled by ⊥ (the abstract tran-
sitions the behaviors of which are undefined).

Hierarchical System Design Using Refinable Recursive Petri Net 639

Formal Definitions

Definition 1. A refinable recursive Petri net is 9-uple R = (P, T, I,W−,W+,Ω, γ,
K, λ) such that:

• P is a finite set of places.

• T is a finite set of transitions such that: T = Tel ∪ Tab and Tel ∩ Tab = ∅. Tel
denotes elementary transitions and Tab denotes the abstract transitions, knowing
that: Tab = Tabd ∪Tabi and Tabd ∩Tabi = ∅. The set of abstract transitions where
behavior is defined are noted Tabd and the set of abstract transitions where
behavior is indefinite are noted Tabi.

• I = Ic ∪ Ip is a finite set of indexes, indicates the cut steps and preemptions.
I ⊂ N.

• W− : P × T −→ N is the matrix of precondition.

• W+ : P × [Tel ∪ (Tab × I) −→ N] is the matrix of post-condition.

• Ω : Tab −→ NP is a function which associates to each abstract transition an or-
dinary marking (starting marking).

• γ is a family indexed by the set of termination Ic. Each set is specified as an
effective representation of semi linear set of final markings (markings of termi-
nation on which the standard operations like union, intersection, projection and
complementation, member test are applicable).

• K : Tel × Tab −→ Ip is a partial function of control preemption.

• λ : T −→ L∪ {⊥} such that ⊥ is the undefined label. λ is the labeling function
which associates to each transition an action name. L ranged over by a, b, . . .
In practice the transition label is the name of an action.

– ∀t ∈ Tabd, λ (t) ∈ L.

– ∀t ∈ Tabi, λ (t) = ⊥

Definition 2. Let R1 =
(
P1, T1, I1,W

−
1 ,W

+
1 ,Ω1, γ1, K1, λ1

)
and R2 = (P2, T2, I2,

W−
2 ,W

+
2 ,Ω2, γ2, K2, λ2) be two refinable recursive Petri nets such that:

• t ∈ Tabd1 is an abstract transition, knowing that Tabd1 ⊂ Tab1 ⊂ T1.

• Ict is the indexes set of the cuts of transition t.

• Ipt is the indexes set of preemption of transition t.

• v ∈ NP is the start marking of transition t.

• γt = {γi/i ∈ Ict} is the termination set of transition t.

Then ρ (t, R1, R2, Ict, Ipt, v, γt) =
(
P3, T3, I3,W

−
3 ,W

+
3 ,Ω3, γ3, K3, λ3

)
is the refin-

able recursive Petri net obtained after the refinement of t in R1 by R2, such that:

• P3 = P1 ∪ P2.

640 M. Bouneb, D. E. Saidouni, J. M. Ilie

• T3 = Tel3 ∪ Tab3 such that:

– Tel3 = Tel1 ∪ Tel2.
– Tab3 = Tabd3 ∪ Tabi3 with:

∗ Tabd3 = T ′abd1 ∪ Tabd2 with T ′abd1 = Tabd1 ∪ {t}.
∗ Tabi3 = T ′abi1 ∪ Tabi2 with T ′abi1 = Tabi1 − {t}.

• I3 = Ic3 ∪ Ip3 such that:

– Ic3 = I ′c1 ∪ Ic2 with I ′c1 = Ic1 ∪ Ict.
– Ip3 = I ′p1 ∪ Ipt.

• W−
3 : P3 × T3 −→ N such that t′ ∈ T3:

W−
3 (p′, t′) =

{
W−

1 (p′, t′) , if p′ ∈ P1, t
′ ∈ T1,

W−
2 (p′, t′) , if p′ ∈ P2, t

′ ∈ T2.

• W+
3 : P3 × [Tel3 ∪ (Tabd3 × I3) ∪ Tabi3] −→ N such that: ∀t′ ∈ T3:

W+
3 (p′, t′, i′) =

{
W+

1 (p′, t′, i′) , if p′ ∈ P1, t
′ ∈ T1,

W+
2 (p′, t′, i′) , if p′ ∈ P2, t

′ ∈ T2.

• Ω3 : Tabd3 −→ NP such that ∀t′ ∈ Tabd3:

Ω3 (t′) =

Ω1 (t′) , if t′ ∈ Tabd1,
Ω2 (t′) , if t′ ∈ Tabd2,
v, if t′ = t.

• γ3 = γ′1 ∪ γ2 such that: γ′1 = γ1 ∪ γt.
• K3 : Tel3 × Tabd3 −→ Ip3 such that: ∀t1 ∈ Tel3, t2 ∈ Tabd3:

K3 (t1, t2) =

K1 (t1, t2) , if t1 ∈ Tel1 and t2 ∈ Tabd1,
K2 (t1, t2) if t1 ∈ Tel2 and t2 ∈ Tabd2,
i, such that i ∈ (N− (I1 ∪ I2)) .

• λ3 : T3 −→ L ∪ {⊥}: such that ∀t′ ∈ T3:

λ3 (t′) =

λ1 (t′) , if t′ ∈ T ′abi1 ∪ T ′abd1,
λ2 (t′) , if t′ ∈ T2,
a, otherwise with a ∈ L.

Hierarchical System Design Using Refinable Recursive Petri Net 641

3 MAXIMALITY-BASED LABELED TRANSITION SYSTEMS

A maximality-based labeled transitions system is a graph labeled on both states
and transitions. Each state is labeled by a set of event names. Each event name
identifies the start of execution of an action which occured before this state. This
action is said to be potentially under execution in this state. A transition between
two states si and sj is labeled by a 3-uple (G, a, x) (noted Gax) where x is the event
name identifying the start of execution of the action a and G identifies the set of
event names representing the causes of the action a. Elements of G belong to state si.
Occurence of this transition terminates actions identified by G, thus, the set of event
names corresponding to state sj is that of si from which the set G is substructed
and the event name x is added. The formal definition of a maximality-based labeled
transition system is given in Definition 3.

Formal Definitions

Definition 3. Let H be a countable set of event names. 2H denotes the set of
part-set of H.

A maximality-based labeled transitions system of supportH is a fivefold (η, ϕ, µ,
ξ, θ) with: η = 〈S,TR, α, β, S0〉 is a system of transitions such that:

• S is the set of states in which the system may be found, this set can be finite or
infinite.

• TR is the set of transitions indicating the change of states which the system can
do; this set can be finite or infinite.

• α and β are two applications of TR in S such that for any transition tr ∈ TR
we have: α (tr) is the origin of the transition tr and β (tr) its goal.

• S0 is the initial state of the transition system η.

• (η, ϕ) is a system of transitions labeled by the function ϕ on an alphabet L,
called support of (η, ϕ). (ϕ : TR −→ L) such that L ranged over by a, b, . . . In
practice a transition label is a name of an action.

• θ : S −→ 2H is a function which associates to each state a finite set of maximal
event names. With the assumption that θ (S0) = ∅.
• µ : TR −→ 2H is a function which associates to each transition a finite set of

event names corresponding to the actions which began their execution and their
terminations cause the execution of this transition.

• ξ : TR −→ H is a function which associates to each transition the event name
identifying its occurrence.

With the condition that for each transition tr ∈ TR µ (tr) ⊆ θ (α (tr)), ξ (tr) /∈
θ (α (tr))− µ (tr) and θ (β (tr)) = (θ (α (tr))− µ (tr)) ∪ {ξ (tr)}.

642 M. Bouneb, D. E. Saidouni, J. M. Ilie

Notation 1. Let mlts = (η, ϕ, µ, ξ, θ) be a maximality-based labeled transitions
system such that η = 〈S, TR, α, β, S0〉. tr ∈ TR is a transition such that α (tr) = s,
β (tr) = s′, ϕ (tr) = a, µ (tr) = E and ξ (tr) = x. The transition tr will be noted

s Eax−→ s′.

Definition 4. Let mlts1 = (η1, ϕ1, µ1, ξ1, θ1) and mlts2 = (η2, ϕ2, µ2, ξ2, θ2) be two
maximality labeled transition systems with: η1 = (S1, TR1, α1, β1, s01) and η2 =
(S2, TR2, α2, β2, s02). mlts1 and mlts2 are isomorphic if there exists a bijection
h : S1 −→ S2 such that: ∀s, s′ ∈ S1/s = α1 (tr) and s′ = β1 (tr) then: tr ∈ TR1 ⇐⇒
tr′ ∈ TR2 with:

• α2 (tr′) = h (s) and β2 (t) = h (s′).

• θ1 (s) = θ2 (h (s)) and θ1 (s′) = θ2 (h (s′)).

• ϕ1 (tr) = ϕ2 (tr′).

• µ1 (tr) = µ2 (tr′).

• ξ1 (tr) = ξ2 (tr′).

Definition 5. An abstract maximality labeled transition system amlts = (η, ϕ, µ, ξ,
θ) is a MLTS labeled by function ϕ on the alphabet L∪{⊥}. ϕ : TR −→ L∪{⊥} /⊥
denotes an undefined labeling.

Definition 6. An abstract maximality labeled transition system amlts = η, ϕ, µ, ξ,
θ) is said ⊥-free if and only if ∀tr ∈ TR : ϕ (tr) 6= ⊥. A ⊥-free abstract maximality
labeled transition system is a maximality labeled transition system.

Definition 7. The isomorphism on maximality labeled transition systems is ex-
tended to abstract maximality labeled transition system by extending the function
ϕ to L ∪ {⊥}.

4 MAXIMALITY SEMANTICS FOR PETRI NET

In this section we recall the maximality approach of place transition Petri nets, pro-
posed in [14, 16]. We introduce through simple example useful notations and func-
tions for the definition of marking graph associated to a Petri net in a maximality-
based approach.

Consider the example of the marked Petri net of Figure 5. With the launch of
the transition t1, it is clear that the firings of transitions t2 and t3 are conditioned by
the end of the action related to t1. To capture this causal dependence between firings
of transitions, we consider that tokens produced by the firing of the transition t1
are bound to this transition, namely the token in place p2 and the token in place p3
(Figure 6 b)). We can see that, in the initial state, the token in p1 is not bound to
any transition; this token is called free in this state, then the marked Petri net of
Figure 6 a). In the case when t2 would be fired, it could be argued that the action
associated with the firing of t1 has finished its execution. As a result, the token in p3

Hierarchical System Design Using Refinable Recursive Petri Net 643

Figure 5. Marked Petri net

will become free. Resulting marking after the firing of the transition t2 is given in
Figure 6 c).

Figure 6. Free and bound tokens in a marking

To distinguish between free and bound tokens in a place, we can imagine that
a place is composed of two separated parts. The left part contains free tokens while
the right one will contain bound tokens. In a place, the number of free tokens will be
denoted by FT , while bound tokens set will be noted BT . So each place is marked
by (FT ,BT). Hence, we obtain the succession of markings of Figure 6. Each bound
token identifies an action that is eventually being executed (this token corresponds
to a maximal event). Also each transition of marking graph corresponds to the start
of execution of an action which is identified by an event name. Since a weight of
an edge linking a transition to a place may be grater than one, a firing transition
may produce more than one bound token, the bound token is identified by a tuple
(n, t, x) where n is a number of instance of a bound token, t is a firing transition
producing this bound token and x is an event name identifying the transition firing
in time. Note that the firing condition of a transition is only conditioned by the
number of free and bound tokens in places.

644 M. Bouneb, D. E. Saidouni, J. M. Ilie

Preliminary Definitions

A Petri net is a tuple (P, T,W) where:

• P : is a finite set of places.

• T : is a finite set of transition such that P ∩ T = ∅.
• W : (P × T) ∪ (T × P) −→ N is the weight function.

Let (P, T,W) be a Petri net with a marking M :

• The set of maximal event names in M is the set of all event names identify-
ing bound tokens in the marking M . Formally, the function δ will be used
to calculate this set, it can be defined as: δ : M −→ PR (H). δ (M) =
∪p∈P {x1, x2, .., xm} such that M (p) = (FT ,BT) with: BT = {(n1, t1, x1) , . . . ,
(nm, tm, xm)}.
• Let X ⊂ H be a finite set of event names. The operation of transforming bound

tokens defined by X to free tokens in the marking M is defined by the inductive
function makefree as follows:

– makefree ({x1, x2, . . . , xn} ,M) = makefree({x2, . . . , xn} ,makefree({x1} ,
M))

– makefree ({x} ,M) = M ′ such that for all p ∈ P , if M (p) = (FT ,BT) then:

∗ If there is (n, t, x) ∈ BT then M ′ (p) = (FT + n,BT − {(n, t, x)}) (con-
version of n bound tokens identified by the event name x to free tokens).
∗ Otherwise, M ′ (p) = M (p).

• |M (p) |= FT +
∑m

i=1 ni such that M (p) = (FT ,BT) with BT = {(n1, t1, x1) ,
. . . , (nm, tm, xm)}.
• Let t be a transition of T ; t is said to be enabled by the marking M iff |M (p) |≥
W (p, t) for all p ∈ P . The set of all transitions enabled by the marking M will
be noted enabled(M).

• The marking M is said minimal for the firing of the transition t iff | M (p) |=
W (p, t) for all p ∈ P .

• Let M1 and M2 be two markings of the Petri net (P, T,W). M1 ⊆ M2 iff
∀p ∈ P , if M1 (p) = (FT 1,BT 1) and M2 (p) = (FT 2,BT 2) then FT 1 ≥ FT 2

and BT 1 ⊆ BT 2 such that the relation ⊆ is extended to bound tokens sets as
follows: BT 1 ⊆ BT 2 iff ∀ (n1, t, x) ∈ BT 1,∃ (n2, t, x) ∈ BT 2 such that n1 ≤ n2.

• Let M1 and M2 be two markings of the Petri net (P, T,W) such that M1 ⊆M2.
The difference M2−M1 is a marking M3 (M2 −M1 = M3) such that for all p ∈ P ,
if M1 (p) = (FT 1,BT 1) and M2 (p) = (FT 2,BT 2) then M3 (p) = (FT 3,BT 3)
with FT 3 = FT 2 − FT 1 and ∀ (n1, t, x) ∈ BT 1, (n2, t, x) ∈ BT 2, if n1 6= n2

then (n2 − n1, t, x) ∈ BT 3.

• get : 2H −→ H/ for any elt ∈ 2H, get (elt) ∈ elt is the function which associates
to any transition an events name.

Hierarchical System Design Using Refinable Recursive Petri Net 645

• Given a marking M , a transition t and an event name x /∈ δ (M), occur (t, x,M)
= M ′ such that for all p ∈ P , if M (p) = (FT ,BT) then M ′ (p) = (FT ,BT ′)
with BT ′ = BT ∪ {W (t, p) , t, x} if W (t, p) 6= 0 and BT ′ = BT , otherwise.
Hence, M ′ is the resulting marking obtained by the addition of bound tokens
related to the firing of transition t to the marking M .

• λ : T −→ L is a function which associates to any transition an action name,
such that L ranged over by a, b, In practice a transition label is a name of
an action.

5 MAXIMALITY SEMANTICS FOR REFINABLE
RECURSIVE PETRI NETS

All definitions remain valid for refinable recursive Petri net. Other notations and
functions will be given for the definition of the operational maximality semantics.
The proposed approach and the interest of hierarchical design are illustrated through
simple examples. Since abstract transitions behaviors are introduced gradually,
conflict, sequencing and parallelism relations linking an abstract transition to other
transitions are extended to transitions of refinement Petri nets.

Figure 7. Start and end of undefined abstract transition

Consider the refinable recursive Petri net of Figure 7 a) in which t2 is an abstract
transition with an undefined behavior. The firing of this transition is caused by the
end of the execution of the action associated to the transition t1. Since the behavior
of this transition is undefined, it will be fired as an elementary transition labeled
by ⊥. For this fact the generation of the marking graph for this net consists in
the generation of the marking graph for classical Petri nets. Note that the event x
identifies the beginning of the execution of an undefined process ⊥.

Consider now the behavior of the process associated to the transition t2 is mod-
eled by the Petri net of Figure 8 a). The firing of this abstract transition starts the
execution of its associated thread. The ordinary marking defined by the semilinear
set will be prolonged to the marking of the instance of the Petri net son, this is
interpreted by the addition of a token in the place p5. The passing from the Petri

646 M. Bouneb, D. E. Saidouni, J. M. Ilie

Figure 8. Refinement of the abstract transition t2

net father to the Petri net son is made through the firing of a virtual transition
called admitted. The firing of the transition admitted is causally dependent on the
action a, the start of execution of the action admitted(b) is identified by the event
x. This firing is similar to the firing of an elementary transition, it is followed by
the deposition of a token related to this action in the right part of the place p5.

After the generation of a linked token in the place p5, any transition that can be
fired from this thread will be immediately executed. But it is necessary to take into
account the satisfaction of the predicate of terminationγ1 = {|M (p8) |≥ 1}. This
condition will be satisfied, when the transition t6 or exclusively the transition t7
deposits at least a token in the right part of the place p8. When this predicate
becomes true, a transition called finished will be fired, it makes the return to the
father thread, indeed this transition represents the cut step of the son thread τ .
Generally, a transition finished is regarded as an elementary transition. Its firing
causes the emersion of the tokens defined by the post condition of the abstract
transition in the right part of all places which belong to the post set of this one. Just
after the end of the execution of abstract transition, the firing of the transition t3 can
happen. Figure 8 b) represents the maximality labeled transitions system generated
from this Petri net. Note that the event x identifies the action admitted(b) as well
as the start of the execution of the thread itself, thus it can be re-used within this
thread. Once the thread is finished, this event name can be re-used in the father
thread.

5.1 Comparison of Abstract MLTS

Definition 8. Let sys1 and sys2 be two systems such that: [| sys1 |]{mlts} is not ⊥-

free and [| sys2 |]{mlts} is not ⊥-free. If [| sys1 |]{mlts} and [| sys2 |]{mlts} are abstractly

isomorphs ; [| ρ (sys1) |]{mlts} and [| ρ (sys2) |]{mlts} are abstractly isomorphs such

Hierarchical System Design Using Refinable Recursive Petri Net 647

as: ρ is the process of refinement of an abstract transition [||]{mlts} is the process
which interprets a Petri net to an abstract maximality labeled transition system.

A proposition of equality is said decidable if we can demonstrate this proposition
or prove its negation. By definition two systems are equal if they have the same
semantics representation. In the example of Figure 9, the two Petri nets seem that
describe the same system, their amlts are abstractly isomorph (Figure 9 c)). But
this does not mean that their refined systems stay equal.

Figure 9. Comparison of two recursive Petri nets

Figure 10. Case of equality after refinement

When we refine the two occurrences of the abstract transitions t1 in sys1, t1
in sys2 by the Petri net of Figure 10 a), we get two abstract isomorph maximality
labeled transition systems given by the Figure 10 b). In this case, both systems are
equal. However, if we refine the transition t1 in sys1 by the Petri net of Figure 11 a)
and we refine the transition t1 in sys2 by the Petri net of Figure 11 b), we get two
maximality labeled transition systems, which are not isomorphs at this level.

5.2 Maximality Operational Semantics for Refinable Recursive Petri Nets

Preliminary Definitions

• T HR: is the set of all threads.

• We call thread any configuration of the form:
(
THi, (Mi)

Ni

ref(Ti)

)
such that:

– Mi is the father marking.

– THi is the set of the son threads where each thread is identified by a event
name.

– ref (Ti) is the Petri net corresponding to this thread, it describes the behavior
of abstract transition Ti.

648 M. Bouneb, D. E. Saidouni, J. M. Ilie

Figure 11. Case of inequality after refinement

– Ni is the event’s name which identifies this thread.

– The initial configuration noted (∅, (M0)
x0
R) is built from an initial marking

M0 of the principal Petri net R.

• Let the labeled refinable recursive Petri net R = (P, T, I,W−,W+,Ω, γ,K, λ)
provided with a marking M :

– ψ : T HR → 2H. The function which determines the events names in a
thread is recursively defined by:

∗ ψ
(
∅, (M)NR

)
= δ (M).

∗ ψ
(
TH, (M)NR

)
= (∪ni=1ψ (thi)) ∪ δ (M) with TH = {th1, th2, .., thn}.

– ∀
(
TH, (M)NR

)
∈ T HR. X ⊂ H is a finished set of events names.

clean
(
X,
(
TH, (M)NR

))
is recursively defined by:

∗ clean
(
X,
(
∅, (M)NR

))
=
(
∅, (makefree (X,M))NR

)
.

∗ clean
(
X,
(
TH, (M)NR

))
=

(
∪ni=1clean (X, thi) , (makefree (X,M))NR

)
with TH = {th1, th2, . . . , thn}.

– ∀
(
TH, (M)NR

)
∈ T HR, t ∈ T is sensitized by this thread if and only if:

∗ ∀p ∈ P :|M (p) |≥ w (p, t) or

∗ ∃th i =
(

TH i, (Mi)
Ni

ref (Ti)

)
∈ TH such that: | Mi (p) |≥ w (p, t) for all

p ∈ ref (Ti) (p).

– The function cutstep : T HR× γ → boolean is defined as follows:

∀thi =
(

TH i, (Mi)
Ni

ref (Ti)

)
∈ T HR, ∀γi ∈ γ

Hierarchical System Design Using Refinable Recursive Petri Net 649

then{
true, if ∀p ∈ ref (Ti) (p) ,Mi (p) ≥ n with γi = {|M (p) |≥ n/n ∈ N} ,
false, otherwise.

• TH | t > TH ′ means that the execution of the transition t from TH leads to
TH ′.

• A sequence TH0t1TH1t2 . . . is an occurrence sequence iff THi−1 | ti > THi for
i ≥ 1. A sequence σ = t1t2 . . . is a transition sequence starting with TH0 iff
there is an occurrence sequence TH 0t1TH 1t2 If a finite sequence t1t2 . . . tn
leads from TH to TH ′, we write TH | t1t2 . . . tn > TH ′.

Semantics Rules

The operational semantics of labeled refinable recursive Petri net allowing the gen-
eration of a maximality labeled transitions system is defined by the following rules:

1.
For M1 a marking, t ∈ enabled (M1) with t ∈ Tel ∪ Tabi(

TH 1, (M1)
N
R

)
Eλ(t)x−→

(
TH1, (M2)

N
R

) such that:

∀M3 ∈ min (M1, t):

• E = δ (M3) ,M4 = makefree (E,M1 −M3)

• M2 = occur (t, x,M4) such that:

– ∀p ∈ P if M4 (p) = (FT 4,BT 4) then: M2 (p) = (FT 4,BT 2) with

BT 2 =

{
BT 4 ∪ {(w (t, p, i) , λ (t) , x)} , if w (t, p, i) 6= 0,

BT 4, otherwise.

• x = get
(
H−

(
ψ
(
clean

(
E,
(
TH1, (M1)

N
R

)))))
.

2.
For M1 a marking , Ti ∈ enabled (M1) ∧ Ti ∈ Tabd(

TH 1, (M1)
N
R

)
Eadmitted(λ(Ti))x−→

(
TH 2, (M2)

N
R

) such that:

∀M3 ∈ min (M1, Ti):

• E = δ (M3) ,M4 = makefree (E,M1 −M3).

• ∀p ∈ P : M2 (p) = M4 (p).

• TH 2 = TH1 ∪
{(
∅, (M0)

{x}
ref (Ti)

)}
such that:

(
(M0)

{x}
ref(Ti)

)
(p) =

{
(0, {(Ω (Ti) (p) , admitted (λ (Ti)) , x)}) , if Ω (Ti) (p) 6= 0

(0, ∅) , otherwise.

• x = get
(
H− ψ

(
clean

(
E,
(

TH 1, (M1)
N
R

))))
.

650 M. Bouneb, D. E. Saidouni, J. M. Ilie

3.
th i,∃γi ∈ γ/cutstep (thi, γi)(

TH 1, (M1)
N
R

)
{x}finished(λ(Ti))x−→

(
TH 2, (M2)

N
R

) such that:

∀th i ∈ TH 1/thi =
(

TH i, (Mi)
Ni

ref (Ti)

)
, Ni = {x}:

• M2 = occur (finished (Ti) , {x} ,M1).

• ∀p ∈ P : if M2 (p) = (FT 2,BT 2) then

BT 2 =

{
BT 1 ∪ {(w (t, p, i) , finished (λ (Ti)) , x)} , if w (t, p, i) 6= 0,

BT 1, otherwise.

• TH 2 = TH1 − {th i}.

4.
M1,M1 ∈ enabled (t) , t ∈ Tel ∧K (t, Ti) ∈ Ip(

TH1, (M1)
N
R

)
Eλ(t)x−→

(
TH 2, (M2)

N
R

) such that:

∀th i ∈ TH 1/th i =
(

TH i, (Mi)
Ni

ref (Ti)

)
, ∀M3 ∈ min (M1, t):

• E = δ (M3) ,M4 = makefree (E,M1 −M3).

• M2 = occur (occur (t, E,M3) , finished (λ (Ti)) , Ni).

• ∀p ∈ P : ifM2 (p) = (FT 2,BT 1) then, M2 (p) = (FT 4,BT 2) with:

BT 2 =

BT 4 ∪ {(w (t, p, i) , t, x)} , if w (t, p, i) 6= 0,

BT 4 ∪ {(w (Ti, p, i) , finished (λ (Ti)) , Ni)} , if w (t, p, i) 6= 0,

BT 4, otherwise.

• TH 2 = TH1 − {th i}.
• x = get

(
H−

(
ψ
(

clean
(
E,
(

TH 1, (M1)
N
R

)))
− ψ (th i)

))
.

6 CASE STUDY

As an example, we consider a flame cutting machine used to fabricate pieces for
vehicles: this machine consists of: the reading head, the blowtorches and the tem-
plate which is a diagram dimensioning pieces. It has a movable table on which the
template is located, and then transmits it as a dimensional information. The read
information is transmitted to blowtorches controller, as a result the blowtorches cut
the piece from metal sheet according to that as defined on the template. Because
some external events may cause errors (modification of table position) during the
cutting process, in such a case the following actions are immediately produced:

• Displaying output indicating the occurrence of a problem using a lamp.

• The blowtorches will be stopped.

• The table is reported in its initial position.

Hierarchical System Design Using Refinable Recursive Petri Net 651

The assessment of this system is done by verifying some properties, expressed in
CTL logic, using the formal verification environment FOCOVE (Formal Concurrent
Verification Environment).

Step 01: In this first step we abstractly model the system tasks. Consequently
tasks considering behaviors are not yet known. In the specification of Fig-
ure 12 a), transitions t2 and t3 are associated respectively to fabricate and main-
tain processes. These transitions are labeled by “bottom” since their behaviors
are unknown.

Figure 12. Modelling of flame cutting machine in step 01

The abstract maximality labeled transition system corresponding to this refin-
able recursive Petri net is shown by Figure 12 b).

Verification

Using the CTL logic in the context of the maximality semantics where actions
represent activities has been studied in [16]. Actions are considered as atomic
propositions. Then an action name a in a formula associated to a given state
means that action a may be in execution at this state. At this level of abstraction
we can, for example, verify that always after each execution of the undefined
process related to the transition fabricate we can launch this process again. This
property is expressed in CTL logic as follows: AG(⊥ => ⊥).

Following the semantics of CTL formula in the context of the maximality seman-
tics, the formula AG(⊥ => ⊥) means that a not well known activity at a given
state leads to the execution of this activity again. Following the refinement
process, this activity will be specified in the following refinement steps.

Step 02: In this step we label the abstract transition t2 by the action fabricate,
so now we will give details of this abstract transition. This is done by refin-
ing the transition t2 in Petri net R1 by the process described in Petri net R2.
ρ (t2, R1, R2, {0} , {1} , 〈p4〉 , {γ0 = {M/ |M (p6) |> 1}}) = R3

The abstract maximality labeled transition system of this refinable recursive
Petri net is shown by Figure 14.

652 M. Bouneb, D. E. Saidouni, J. M. Ilie

Figure 13. Modelling of flame cutting machine in step 02

Verification

• After each execution of process “fabricate” we can again lunch it.

AG (finished (fabricate) =⇒ admitted (fabricate)) .

• When a problem of cutting appears, the undefined process ⊥ corresponding
to the transition maintain will be automatically launched.

AF (signaler =⇒ EX⊥) .

• When a problem of cutting appears, the process fabricate will be preempted.

AG (signaler =⇒ finished (fabricate)) .

Figure 14. Abstract maximality labeled transition system in step 2

Step 03: Now we give details of the process corresponding to the abstract transi-
tion t3, it will be labeled by the action maintain.

ρ (t3, R3, R4, {2} , ∅, 〈p7〉 , {γ2 = {M/ |M (p9) |> 1}}) = R5.

The maximality labeled transition system obtained by applying the proposed
approach consists of 12 states and 19 transitions. Due to its size it cannot be
depicted in this paper.

Hierarchical System Design Using Refinable Recursive Petri Net 653

Figure 15. Modelling of flame cutting machine in step 03

Verification

All proprieties which are verified in step 2 are still to be verified in this step 3.
In addition we can verify other properties like:

• When an error will occur while the process fabricate is running the flame
cutting will be stopped.

AG ((signaler and finished (fabricate)) =⇒ EG stop-torche)

7 CONCLUSION

In this paper, we have proposed a new approach to modelling concurrent systems by
defining a new model named refinable recursive Petri nets, which permits a hierar-
chical design, so the functionalities and features of systems can be added gradually.
Also we have proposed an operational method for generating a maximality labeled
transition system associated to the refinable recursive Petri nets. This will make
it possible to benefit from the developed results of verification around the model
of maximality labeled transition systems. For this fact, the properties related to
the good performance of a system specified by a refinable recursive Petri net can
be checked on its corresponding maximality labeled transition system. It should be
noted that the structure of the maximality labeled transition system represents, in
a natural way, the parallel execution of actions, as well as the parallel execution of
threads.

REFERENCES

[1] Aceto, L.—Hennessy, M.: Adding Action Refinement to Finite Process Algebra.
In: Albert, J. L., Monien, B., Artalejo, M. R. (Eds.): Automata, Languages and
Programming (ICALP ’91). Springer, Lecture Notes in Computer Science, Vol. 510,
1991, pp. 506–519.

654 M. Bouneb, D. E. Saidouni, J. M. Ilie

[2] Andrews, D.—Groote, J.—Middelburg, C. (Eds.): Semantics of Specification
Languages (SoSL). Springer, London, Workshops in Computing, 1993.

[3] Best, E.—Devillers, R.—Kiehn, A.—Pomello, L.: Concurrent Bisimulations
in Petri Nets. Acta Informatica, Vol. 28, 1991, pp. 231–264, doi: 10.1007/BF01178506.

[4] Boudol, G.—Castellani, I.: Concurrency and Atomicity. Theoretical Computer
Science, Vol. 59, 1988, No. 1-2, pp. 25–84, doi: 10.1016/0304-3975(88)90096-5.

[5] Courtiat, J. P.—Saidouni, D. E.: Action Refinement in LOTOS. In: Dan-
thine, A., Leduc, G., Wolpe, P. (Eds.): Protocol Specification, Testing and Verifi-
cation (PSTV ’93). North-Holland, 1994, pp. 341–354.

[6] Darondeau, P.—Degano, P.: Causal Trees. In: Ausiello, G., Dezani-
Ciancaglini, M., Della Rocca, S. R. (Eds.): Automata, Languages and Program-
ming (ICALP ’89). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 372, 1989, pp. 234–248.

[7] Degano, P.—Gorrieri, R.: Atomic Refinement in Process Description Languages.
In: Tarlecki, A. (Ed.): Mathematical Foundations of Computer Science (MFCS 1991).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 520, 1991,
pp. 121–130.

[8] Devillers, R.: Maximality Preservation and the ST-Idea for Action Refinement. In:
Rozenberg, G. (Ed.): Advances in Petri Nets. Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 609, 1992, pp. 108–151, doi: 10.1007/3-540-55610-
9 170.

[9] Courtiat, J.-P.—Säıdouni, J.-E.: Relating Maximality-Based Semantics to Ac-
tion Refinement in Process Algebras. In: Hogrefe, D., Leue, S. (Eds.): IFIP
TC6/WG6.1, 7th International Conference on Formal Description Techniques
(FORTE ’94), Chapman, Hall, IFIP Conference Proceedings 6, 1994, pp. 293–308.

[10] Janssen, W.—Poel, M.—Zwiers, J.: Action Systems and Action Refinement in
the Development of Parallel Systems. In: Baeten, J. C. M., Groote, J. F. (Eds.): CON-
CUR ’91. Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 527,
1991, pp. 298–316.

[11] Saidouni, D. E.—Courtiat, J. P.: Syntactic Action Refinement in Presence
of Multiway Synchronization. Semantics of Specification Languages (SoSL), 1994,
pp. 289–330, doi: 10.1007/978-1-4471-3229-5 16.

[12] Van Glabbeek, R. J.: The Refinement Theorem for ST-Bisimulation Semantics.
IFIP Working Conference on Programming Concepts and Methods, North-Holland,
1990.

[13] Saidouni, D. E.: Maximality Semantic: Application to Actions Refinement in LO-
TOS. Ph.D. thesis, LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse Cedex
France, 1996 (in French).

[14] Saidouni, D. E.—Belala, N.—Bouneb, M.—Boudjadar, A.—Ouchène, B.:
Using Maximality-Based Labeled Transitions as Model for Petri Nets. The Interna-
tional Arab Conference on Information Technology (ACIT ’08), 2008.

[15] Saidouni, D. E.—Belala, N.—Bouneb, M.: Aggregation of Transitions in Mark-
ing Graph Generation Based on Maximality Semantics for Petri Nets. Proceedings

https://doi.org/10.1007/BF01178506
https://doi.org/10.1016/0304-3975(88)90096-5
https://doi.org/10.1007/3-540-55610-9_170
https://doi.org/10.1007/3-540-55610-9_170
https://doi.org/10.1007/978-1-4471-3229-5_16

Hierarchical System Design Using Refinable Recursive Petri Net 655

of the Second International Conference on Verification and Evaluation of Computer
and Communication Systems (VECoS ’08), 2008, pp. 6–16.

[16] Saidouni, D. E.—Belala, N.—Bouneb, M.: Using Maximality-Based Labelled
Transitions as Model for Petri Nets. The International Arab Journal of Information
Technology (IAJIT), Vol. 6, 2009, No. 5, pp. 440–446.

[17] Saidouni, D. E.—Belala, N.—Bouneb, M.: Maximality-Based Structural Oper-
ational Semantics for Petri Nets. 2nd Mediterranean Conference on Intelligent Systems
and Automation (CISA), 2009.

[18] Saidouni, D. E.—Bouneb, M.—Ilie, J. M.: Maximality Semantic for Recursive
Petri Net. Proceedings of 27th Europeen Conference on Modelling and Simulation
(ECMS ’13). 2013, pp. 544–550. ISBN 978-0-9564944-7-4, doi: 10.7148/2013-0544.

[19] Buchholz, P.: Hierarchical High Level Petri Nets for Complex System Analysis.
Computer Science IV, Dortmund university, D-44221, Dortmund Germany, 1994,
doi: 10.1007/3-540-58152-9 8.

[20] Cheung, K.-S.—Chow, P. K.-O.: A Petri-Net Approach to Refining Object Be-
havioural Specifications. Informatica, Vol. 33, 2009, No. 2, pp. 221–232.

Messaouda Bouneb received her B.Eng. degree from the University of Mentouri Con-
stantine, Algeria (2005). In February 2009, she received her M.Sc. degree in computer
science from the University of El Arbi Ben-M’hidi Oum El-Bouaghi, Algeria. Her research
domain is formal specification and verification of real-time systems using Petri nets.

Djamel Eddine Saidouni received his B.Eng. degree from the University of Mentouri
Constantine, Algeria (1990). He received his Ph.D. in theoretical computer science from
the University of Paul Sabatier, Toulouse, France (1996). His domain research is the
formal specification and verification of complex distributed and real time systems.

Jean Michel Ilie received several degrees in electronics and informatics along with his
Ph.D. thesis from the UPMC University of Paris (1990). Currently, he is a member of the
Paris Descartes University in its conference on a master higher grade (2009), he is also
Permanent Researcher of the LIP6 laboratory, UPMC. The fields of his research concern
the formal validation of complex embedded systems.

https://doi.org/10.7148/2013-0544
https://doi.org/10.1007/3-540-58152-9_8

