
Computing and Informatics, Vol. 37, 2018, 673–692, doi: 10.4149/cai 2018 3 673

SMART DOCUMENT-CENTRIC PROCESSING
OF HUMAN ORIENTED INFORMATION FLOWS

Magdalena Godlewska

Institute of Informatics
Faculty of Mathematics, Physics and Informatics
University of Gdansk
Wita Stwosza 57, 80-308 Gdansk, Poland
e-mail: maggod@inf.ug.edu.pl

Abstract. Usually people prefer to focus on creative rather than repetitive and
schematic work patterns. Still, they must spend a lot of time complying with
the procedures, selecting the information they receive and repeatedly restoring the
previous state of work. This paper proposes the Mobile INteractive Document ar-
chitecture (MIND) – a document-centric uniform interface to provide both effective
communication of content and coordination of activities performed on documents.
MIND documents are proactive, capable of initiating process activities, interact-
ing with individuals on their personal devices and migrating on their own between
collaborators. Each MIND document is a mobile agent that has built-in migra-
tion policy to control its own workflow and services enabling proper processing of
contained information. The architecture supports users in the implementation of
procedures, and selection of services needed to work on the document. A Personal
Document-Agent (PDA) is a further development of MIND aimed at preserving
continuity of state of individuals’ work to support their creativity and comfort of
their daily work.

Keywords: Human-computer interaction, electronic documents, multi-agent sys-
tems, collaborative work, workflow management, task coordination, knowledge-
based organization

Mathematics Subject Classification 2010: 68-M10, 68-M11, 68-M12, 68-M14,
68-U35



674 M. Godlewska

1 INTRODUCTION

Despite of the intensive development of artificial intelligence and machine learning,
people are still the key intellectual resource in almost all areas of life. Yet, sup-
porting people’s interaction with various knowledge resources would contribute to
their productivity and well-being, and help them to focus their activities on creative
work, and to put less effort to perform simple, structured tasks.

Working in a group, as well as individually, humans perform certain processes.
In an organization of many people, in particular in a knowledge-based organiza-
tion [1], a collaboration process is often implementation of the established procedure.
Moreover, collaboration with other workers, in accordance with the organizational
procedures, enables converting knowledge of individuals to a collective organization
knowledge. The purpose of the knowledge-based organization is to implement the
knowledge process, in which the human mind is an important element.

There are several problems that hinder effective collaboration, in particular:

1. The worker needs to know the organizational procedures, which are often very
confusing. Especially in procedures that are rarely performed, it could take
a long time before the worker finds out to whom a particular document should
be sent.

2. Collaborators perform procedures manually, and can make mistakes such as
sending (receiving) some information several times to (from) a wrong person.
This leads to information overload phenomenon, that often leaves the worker
confused and unable to make a decision [2].

3. Workflow process automation often requires large amounts of work to define the
entire process before performing. Moreover, this is often infeasible as the process
flow often depends on individual decisions made during its performance.

4. Documents usually play a passive role in the process, which means that they are
opened, filled, sent, etc. They generally do not give any support to users, or do
that only in a very limited form.

Also in individual work, there are some problems affecting the efficiency of the
performed tasks:

5. A user is the only one person who knows his devices and applications installed
on them. Nowadays, this is a problem because users use multiple devices to
continually perform the same task at work and home including PCs, tablets and
smartphones which must be synchronized. A question arises how to synchronize
entire systems, not just separate files.

6. A user needs to install the same or similar applications and configure peripherals
for each device or OS.

7. Even if a person uses cloud services, like as Google Drive or One Drive, he has to
find the right documents and recreate the state of his recent work after changing
a device or rebooting its operating system.



Smart Document-Centric Processing of Information 675

8. A user enacts his own accustomed processes while working or resting, which are
not supported in any way.

This paper presents the Mobile INteractive Document architecture (MIND) [3]
and a special workflow enactment application, a Local Workflow Engine (LWE) [4],
enabling a loosely-coupled agent system, capable of coping with the above points.

The MIND architecture is a model of a document-centric uniform interface to
provide both effective communication of content and coordination of activities per-
formed on documents. MIND documents are proactive, i.e. they are capable of
initiating process activities, interacting with individual workers on their personal
devices and migrating on their own between collaborators. Thus, each MIND doc-
ument is a mobile agent, called a document-agent. Document-agents have built-in
migration policy to control their own workflow and services to properly process
contained information. Section 3 provides a more detailed overview of the MIND
architecture.

The migration path of a document-agent contains all information and status
of the workflow process to perform it locally on users’ devices. A document is
transferred between users in a serialized form via an available protocol – the MIND
architecture does not impose any specific implementation of that. The choice of
a concrete protocol depends on the requirements of the organization, in particu-
lar on security levels, a number of employees, a comfort of use, etc. In virtual
knowledge-based organizations, email can be used as basic medium for exchanging
digital documents of any kind. Implementation of the document transfer protocol
is discussed in Section 7.

The LWE application mention before is installed on each worker’s device parti-
cipating in the process. It has a workflow enactment capability, i.e. a functionality
to activate document-agents and switch documents between the activity and transi-
tion phases of the workflow. All LWEs participating in the process, and performing
independently, form together both a technologically independent loosely-coupled
agent system and a distributed workflow enactment service. Section 4 outlines
generic functionality of LWE and the idea of a distributed workflow enactment ser-
vice.

In the LWE-based MIND system, workers perform activities on documents inde-
pendently, using their personal devices, and yet collaborate on achieving a common
goal. It is possible owing to a migration policy embedded in each document. This
policy defines for each document a workflow process composed of specific document-
flow patterns [5] that provide process-wide coordination. The document-flow pat-
terns are a result of analysis of the coordination patterns proposed by van der
Aaalst [6]. This shows that a relatively small and well defined set of collaboration
patterns contains building blocks of arbitrary complex workflow processes in real or-
ganizations. Thus, document-flow patterns proposed in this paper, which are based
on these collaborations patterns enable modelling and coordination of any workflow
process with MIND documents. Moreover, the proposed distributed workflow en-
actment service allows defining dynamically the workflow process during its actual



676 M. Godlewska

execution. Section 5 discusses briefly the document-flow patterns and shows how to
modify a workflow dynamically.

The proposed solution allows for significant reduction of the problems with group
and individual work mentioned above. Points 1–4 present the problems for which
the MIND architecture was developed. The system enabling group work through
performing of knowledge processes has been implemented and validated as a part
of the MENAID (Methods and Tools for Next Generation Document Engineering)
project [7] – Section 7 presents the results of this work. An attempt to solve the
problems introduced in points 5–8 is based on a concept to apply the model of the
MIND architecture to improve individual work on different devices, with a Personal
Document-Agent (PDA) outlined in Section 6.

Section 2 opens this paper by reviewing work related to the presented research,
while Section 8 concludes the paper and introduces the possibilities of further de-
velopment of the presented solutions.

2 RELATED WORK

The idea of an active document is not new. Already in 1996, the Multivalent Docu-
ment architecture MVD [8] was presented and it was the first significant step in the
document-based processing. MVD allowed for treating the document as an object
the content of which can be manipulated dynamically. It introduced active func-
tionality with dynamically loaded objects called behaviors. The MIND embedded
services are similar to the concept of behaviors, however MIND introduces also local
and external services, to manipulate a document content, but are not components
of documents. This gives documents more flexibility, adjusting them to exploit local
resources of visiting devices and to easily add a new functionality.

The Placeless Documents [9] extend document functionality with active proper-
ties that can not only allow to manipulate a document content, but also can manage
of a document structure and its workflow. These are also the main features of the
MIND architecture. However, the Placeless Documents are reactive, i.e., they re-
spond to external events, while MIND documents are proactive – they initiate their
own behavior as they have their own embedded functionality (services).

It is worth mentioning the document-agent MobiDoc platform [10] as the concept
of a proactive document, capable of travelling between computers under its own
control. This platform was closely related to the particular technology, thus lacked
forward compatibility, and, consequently was difficult to implement in a large-scale.
The idea of a document-agent is very interesting, as openness and technological
independence are very important features of modern systems. In the LWE-based
MIND system, a technological independence is one of its priorities. In a special case,
when each user has a different operating system, each LWE may be implemented
in a different technology. The document transfer protocol can be also adapted to
the requirements of implementation. It gives the opportunity to create an agent
platform with all benefits of multi-agent systems, but without a need to implement



Smart Document-Centric Processing of Information 677

a full-size agent platform that depends on the chosen technology, has to be updated
regularly and requires additional skills from administrators.

Among more recent solutions that allow agents to perform a workflow is WADE
(Workflow and Agents Development Environment) [11] agent platform based on
JADE (Java Agent DEvelopment framework) [12]. WADE agents embed a micro-
workflow engine, capable of executing workflows compiled before launching a work-
flow. Performing activities may be delegated by one agent to another and in principle
it is not related to agent mobility. This solution follows a classic central workflow
enactment philosophy, and differs from it only in decentralization of a global pro-
cess state into a process states controlled by micro-workflow engines running inside
agents. This solution makes the WADE platform different from the MIND archi-
tecture. In MIND, a workflow object specified formally with XPDL (XML Process
Definition Language) [13] is bundled with a document and contains its internal state
of which it is of full control. Then, a workflow is enacted outside of agents by lo-
cal workflow engines (LWEs). More details on the concept of distributed workflow
enactment can be found in Section 4. The advantage of such a solution is that
a respective XPDL file may be modified during process execution. Moreover, MIND
document-agent is the only communication interface, which makes it technologically
independent in a loosely coupled and heterogeneous distributed system.

There are some interesting solutions, such as AMODIT [14], that use elements of
artificial intelligence to improve workflow processes. The main concept is to analyse
the content of the documents and previous decisions, in order to suggest the next
steps of the workflow. The mentioned system is a commercial product based on
a client-server model, which does not exhibit openness, technological independence
and multi-agent approach, as the MIND architecture does. The idea of adopting
a Multi-Agent System and machine learning to support cooperation based on doc-
uments was introduced in [15]. The presented idea was based on the analysis of the
documents and users’ behaviors, omitting the problem of process definition. The
MIND architecture, allowing for the dynamic modification of the process, opens the
possibility of learning the flow of the processes and behavior of users.

One of the problems in individual work, mentioned in point 7, is saving a state
of a recent work. This problem occurs, for example, when the system needs to be
rebooted. The user often loses the information about all documents or applications
opened before. Sometimes, it can be really frustrating. Users of the Mac OS receive
the greatest support on this issue. They can simply decide if they want to re-
open applications in the same state they left them before logging out [16]. It is
also possible, although not so easy, in Linux systems (e.g. Ubuntu). There is the
dconf-editor, where the auto-save-session check box may be selected. The
dconf-editor is not preinstalled by default, so even in experienced users may have
a problem using it. Finally, in the Windows systems it is not possible to re-open
active programs on reboot without installing an external application. There is only
the possibility to automatically re-open any Explorer windows that were opened
before rebooting. There is a list of external applications that enable to restore
programs or folders after system reboot, e.g. Cache My Work [17] or SmartClose [18].



678 M. Godlewska

Restoring applications after a system reboots solves the problem on just one
operating system. Currently, users would like to work on many devices, e.g. to start
work in the office, continue it on the way home, and end at home. On each device,
users would have to recreate a state of their current work. Google Drive [19] or
One Drive [20] cloud based solutions could be very useful for sharing files through
different devices, but they cannot ensure continuing work at the point where it
previously has been interrupted.

The MIND architecture allows for implementation of a Personal Document-
Agent (PDA), which can store a global state of the work, interact with a user, op-
erating systems and services. This solution differs from the idea of Virtual Personal
Assistant (VPA), like Apple Siri [21], Google Assistant [22] or Amazon Alexa [23],
which are based on interaction with a user. The latter act as local applications or
web services and they support a user in everyday duties, e.g. by turning on an alarm,
checking the weather, reminding a meeting or making purchases. PDA proposed in
this paper is a smart middleware between operating systems and applications rather
than a yet another application like VPA (it can, however, use VPA as a local or ex-
ternal service).

3 THE MIND ARCHITECTURE

Traditionally, electronic documents have been static objects downloaded from a ser-
ver or sent by an email. MIND allows static documents to be converted into a set
of dynamic components that can migrate between collaborative workers according
to their migration policy.

The concept of the MIND document lifecycle is illustrated in Figure 1.

document
templates

repository

migration policy

services

hub
document

final
document

other policies

document-agent

document-agent

document-agent

Figure 1. The MIND document lifecycle [4]

A hub document is formed on the basis of document templates that includes
migration policy, which specifies steps of the knowledge process and services that
will be performed on different parts of a document during the process. The hub
document that contains static elements (e.g. XML files), is unmarshalled to mobile
objects called document-agents, which perform their mission in a distributed agent



Smart Document-Centric Processing of Information 679

system. Each document-agent migrates across an organization and interacts with
its workers.

hub-document

users path

services

parts

ID

ID ID

Figure 2. Components of a MIND document-agent

The hub document contains five components, outlined in Figure 2:

hub-document, a headline of the MIND document. It contains its ID and other
related information necessary to identify a document-agent with a given process.

users, containing data about users who participate in a process.

parts, containing information about constituent documents, which are actual doc-
uments on which work will be performed, e.g. PDF files, MSOffice documents,
HTML forms, etc. Such constituent documents are parts of the MIND docu-
ment, which does not mean that they always migrate with document-agents.
Sometimes, a part can describe an external location of a constituent document.

services, containing information on a document functionality available during
a process. Three types of services are possible: embedded, transferred together
with a document-agent, local which may be acquired by a document-agent from
a local user’s device, and external, to be called on remote hosts by a user’s system
at the request of an arriving document-agent. Services provide document-agent
functionality and make it proactive as it was mentioned in Section 2.

path, defining migration policy (workflow) of each part of a document. It specifies
steps of a process and activities that should be performed at each step of a pro-
cess. The other components refer to the path and are distributed according to
the path during a process.

The presented document-agent model complies with the Belief-Desire-Intention
(BDI) definition of an agent [24]. BDI is an agent architecture that reflects model of
human practical reasoning, developed by Bratman [25]. The main goal of the MIND
architecture is to support users in making reasonable decisions, so BDI model fits



680 M. Godlewska

well to document-agents, because it represents the natural knowledge processes of
a human mind.

A model considers beliefs as a knowledge about the world, desires as goals
of an agent and future-directed intentions, which are composed of plans, as an
important and irreducible concept. Particularly, for the MIND document-agents:

• the world is a knowledge-based organization, in which users have devices and
applications that can be an environment for agents and these devices are from
time to time connected to a network enabling migration or communication of
agents.

• beliefs are components of document-agents: hub-document, users, parts and
services. An agent does not need to know all users or services of an organization.
It is enough for the agent to know a subset of the world that is needed to
perform a designated process. Especially, during a process, a document-agent
can “discover” the world, i.e., add users, parts or services.

• desires are represented by the path component that reflects steps of a knowledge
process striving to achieve an organization’s goal.

• intentions are related to the agent’s autonomy. In the Bratman’s model, plans
are initially only partially conceived, with details being filled in as they progress.
The MIND document-agent autonomously follows its path, which can be modi-
fied dynamically during the process. It is also able to designate the services
needed to perform the appropriate action on a constituent document.

Although MIND meets requirements of the BDI model, it is not its direct im-
plementation, as in the latter, agents do not have any specific mechanisms to learn
from past behavior and adapt to new situations. The MIND document collects all
information about its performance, which can be an appropriate training set to teach
agents to perform a process better in future, for example negotiation [26].

4 DISTRIBUTED WORKFLOW ENACTMENT

A key feature of the MIND architecture is physical distribution of business process
activities, performed dynamically on a system of independent personal devices. The
MIND documents have built-in process definition and functionality (the respec-
tive path and embedding service components mentioned in the previous section).
This makes them document-agents, which are autonomous and mobile. Especially,
they are independent of any particular platform supporting workflow enactment and
they are capable of launching individual activities onto various users’ devices, which
maintain process coordination across an organization.

A standard WfMC Workflow enactment service [27] interprets the process de-
scription and controls sequencing of activities through one or more cooperating
workflow engines. Even if workflow engines are distributed, workflow enactment
is centralized in most of the implementations, because control data must be avail-
able to all engines. Contrary to that, in the MIND architecture, all data needed



Smart Document-Centric Processing of Information 681

for workflow enactment are embedded in documents, and allow for implementation
of a really distributed workflow enactment service, consisting of Local Workflow
Engines (LWEs).

The idea of the distributed workflow enactment service built on top of LWEs is
illustrated in Figure 3.

protocol
MIND

protocol
MIND

LWE

LWE LWE

Figure 3. Distributed workflow enactment service based on LWEs

Each LWE is independent of other LWEs, so it can be implemented in any
technology and adapted to requirements of particular devices, especially mobile
devices such as tablets and smartphones.

A MIND document-agent is sent in a static, serialized form via any network
protocol available, enabling transmitting a document-size data. For example, it can
be a FIPA MTP standard protocol [28], ordinary HTTP protocol, or just email pro-
tocols such as SMTP or IMAP. Section 7 outlines several possible implementations
of transport layer for the MIND documents.

The initial state of workflow enactment is when LWE downloads a serialized doc-
ument on a local device and activates it, which means unmarshalling and launching
its embedded functionality. The activated document-agent begins its mission by
obtaining the path component and determining the current activity that should be
performed in this particular step of the process. The document-agent contains all
data needed to determine the state of the workflow process locally. Thereafter, the
document-agent may interact with users, their local systems and some external ser-
vices. If the next activity is intended for another user, the document is serialized
again, packed and sent to the next user via a network protocol.

All workflow process data are brought to LWE by a document. So document-
agents are the only means of communication between LWEs in a distributed system.
Since LWEs can be implemented in different technologies, they can be adapted to
various hardware.

5 DOCUMENT-FLOW PATTERNS

To run the appropriate activity in a workflow process locally, a MIND document-
agent must contain not only a process definition, but also its current execution
state. This state contains an ID of a current activity assigned to a given user,



682 M. Godlewska

stored in an external XPDL attribute. But it is not enough in many situations
in a process. In order to define all attributes that form a process state, a set of
document-flow patterns has been defined. These attributes, namely current activity,
counter, sentinel, finish and semaphore are implemented as internal variables of the
MIND document and operated by a handling LWE as described below.

Based on the work of van der Aaalst [6] and characteristics of a distributed sys-
tem three categories of the document-flow patters have been identified: distributed
state patterns, coupled state patterns, and embedded state patterns [4].

5.1 Distributed State Patterns

These patterns describe situations in which a next activity or activities can be
determined solely on the state of the current activity. Four patterns of this type
have been distinguished:

Document sequencer involves a user transferring a document to another user.
The document may be transferred in its entirety in one package or if it is too
large for a transport layer protocols, it may be partitioned into several packages.
If the document is partitioned into smaller pieces, the numbering of packages
is entered and the last package is marked with the sentinel attribute. Thanks
to that, a recipient knows if all packages of the document have been already
received, even if they come in a different order.

Document splitter creates identical copies of a document or partitions it into
separate fragments. Whether the document would be copied or decomposed
depends on the functionality of the document provided by services. The resulting
documents get new document IDs and they are transferred to respective users
specified in a migration policy. They are modified parallelly while executing
different activities. For each document, ID of an activity that would be executed
on it in the next step is set as a current activity attribute value.

Depending on conditions defined in the workflow process, the splitter produces
a different number of copied/fragmented documents. This number is stored
in the counter attribute. If the splitter has n outgoing branches, the counter
assumes a value from 1 to n: 1, if only one branch was chosen and n, if all
branches were chosen.

Document merger complements the document splitter pattern and merges all
received documents in one. Of course, it may involve various document func-
tionality, depending on whether the preceding splitter has been cloning or de-
composing. But before merging, all expected documents must be delivered. The
LWE client on the basis of path component of the first received document (the
value of the counter attribute) determines a number of expected documents that
have to be merged.

Document iterator enables repeated execution of some sequence of activities con-
trolled by a condition specified in a respective document migration policy. Many



Smart Document-Centric Processing of Information 683

workflow languages allow for creating unstructured loop with more than one en-
try or exit point, that do not need any specific looping operators [6]. In this
case, the value of the one boolean finish attribute brought by document to logic
gateway can decide, whether a workflow should continue a loop or exit from it.

5.2 Coupled State Patterns

Sometimes completion of an activity performed by one user may require a notifi-
cation on a state of some activity performed by another user somewhere in an or-
ganization. That involves a notion of asynchronous signals, sent between different
parts of a workflow process. Three document-flow patterns of this kind have been
distinguished: deferred choice, milestone and cancel activity.

Milestone and deferred choice are used to deal with situations when the cur-
rent activity of one user has to be blocked until a signal notifying on some
external event has been received from another worker. Both patterns require
the semaphore attribute and embedded functionality to handle it. Initial value
of the semaphore is closed, so if a signal from another worker has not been re-
ceived, the current activity is blocked. Upon receiving a signal, a waiting activity
is resumed. Milestone just blocks some activity of one user by another. Thus,
a signal does not have to have any specific value. Deferred choice is used when
sending a given document has to be postponed until the user gets information
to whom it should be sent. Thus, a signal should have a value identifying a next
user, e.g. the user’s ID.

Cancelling pattern. Implementation of this pattern depends on which process ac-
tivities should be cancelled. If a particular activity should be cancelled, a can-
cellation signal is sent only to LWE responsible for its execution. The decision
on cancelling the activity is immediate for a receiving device or does not make
sense any more if a document has been sent to another user. More problematic
situation is to cancel a document (one part of the MIND document), because
it requires a designation of its location. It is possible to search for a document
in all places indicated by the workflow, but this solution is expensive and can
be unreliable. Another solution is to chase a document that can leave a trail
in each visited LWE. It is worth mentioning that a document flow takes hours,
even days, rather than seconds, so it would be a reasonable solution. For exam-
ple, the Intel’s Email Service Level Agreement defines the acceptable time frame
for replying to emails in 24 hours [29]. Using an external “ground control” ser-
vice [5], which introduces the ability to track document-agents globally, allows
for simplification of a document cancellation.

The cancelling pattern does not need any additional attributes to enable can-
cellation. In principle, every activity or every document can be cancelled. The
cancel attribute is added after the cancellation to indicate this fact, which may
be needed for further analysis of a process.



684 M. Godlewska

5.3 Embedded State Patterns

Performing an activity by some user may require a subprocess delegated to some-
one else with activities not specified originally in a migration policy of an arriving
document. States of such a subprocess are embedded in a state of a current activity
referring to that subprocess. Two types of subprocess can be distinguished: internal
and external.

Internal subprocess. If a current user is authorized to extend an original mi-
gration policy of a document with new activities, they constitute an internal
subprocess. Neither a structure of the internal subflow nor identity of added
users have to be known earlier to a workflow originator (designer).

This is a key pattern in the MIND architecture. Internal subprocesses can
be added during the workflow execution. It allows for defining a relatively
small initial workflow and its dynamic expansion during execution. The activity
assigned to the user is converted into a subprocess activity. The main advantage
of editing a process during its execution is that it can be built ad hoc of small
pieces. Each worker can define a fragment (subprocess) of a workflow, i.e. each
user can be a document originator.

External subprocess. A performed activity may call some external subprocess
whose structure is unknown for both, a workflow designer and a performer of
a current activity. The external subprocess is often performed outside of an or-
ganization.

6 A PERSONAL DOCUMENT-AGENT

A special case of an iterator is recursion, which means the ability of some activity
to invoke itself during its execution [6]. For documents, it is a situation in which
a user performs the same activity several times on different devices. From the
perspective of an entire process, this is still one activity, but from the perspective of
a document-agent, executing conditions on different devices can vary significantly.
This situation requires creating a subprocess with one input and one output, in
which a document will be transferred between user’s devices and edited until the
end of work.

A
finish
?

NO YES

Ai

Figure 4. A recursive document-flow pattern



Smart Document-Centric Processing of Information 685

Figure 4 presents a recursive pattern as a subprocess added to the activity A,
being a certain task that a user has to perform on a document part. In many
cases, a user does not perform this task at once. Thus, the document has some
intermediary states between receiving and sending. It can be opened, edited, saved
and closed many times during one activity. LWE can put to sleep and next wake up
a document-agent as many times as needed, including the restoration of necessary
services. This is a typical behavior of the MIND document and does not require
any subprocess. A subprocess would be needed if one activity would have to be
performed on different devices of the same user. It is a common situation, as many
people have several devices at their disposal. Each activity Ai is an ith copy of the
activity A started before adding the subprocess and each one expresses the same
task A. After performing a certain stage of the task represented by Ai, the user
decides, if a work is completed. If not, it may happen that it would be continued
on another device as Ai+1.

A document-agent, when interacting with LWE, can recognize on which device
it currently resides. Thus, it can dynamically adjust to various execution contexts
provided by devices. It may have a certain performance strategy for a given device,
which it can consult with users by negotiating with their device [30].

The recursive pattern proposed in Figure 4 can been exploited by the concept
of a Personal Document-Agent presented in Figure 5.

LWE

OS
x

LWE

OS
y

LWE

OS
z

local
state

local
state

local
state

global
state

PDA

user processed
documents

services

Figure 5. PDA as a middleware between user and his OSs

Assume that everything users do on their devices is the implementation of their
personal process, and LWE has been installed on each of them. The special MIND
document does not implement a path assigned in advance, but follows users to



686 M. Godlewska

support their work. This is a process that is being built ad hoc. In a personal
process, a state of work is often more important than the sequence of activities
performed. A user interrupts it at a certain point and after some time wants to
resume it in the same point where it was interrupted. This is not a problem of
just one device. Most operating systems allow for putting them into a sleeping or
hibernating mode. Incidentally, the system is not able to wake up and then the
state of work would be lost. It would be much more useful to provide a prospect for
continuing work from the sleeping/hibernating point, but on another device.

PDA collects the data about tasks performed by the user, as snapshots of a state
of work. Next, PDA distributes the obtained data into two sets: data important
for the work on local operating system (a local state) and data that express the
state of performing a certain task (a global state). This distribution is supported
by the MIND service component (see Section 3). The local state contains informa-
tion about local services that users used in their latest work, while the global state
registers the use of external and embedded services. But not only, the global state
also includes mappings between corresponding applications on different devices, for
example, Adobe Acrobat Reader on PC with the Windows OS would correspond to
Google PDF Viewer on a tablet with the Android OS. It also can indicate discrep-
ancies, for example an AutoCAD application would be only available on a computer
at work.

PDA also uses the part component to enable users interaction with the doc-
uments they have recently worked on. It keeps information not only about open
documents, but also about specific places in these documents, if it is possible for
a given format. Thanks to this, users changing the device, are redirected to the
exact place in document.

Interaction between PDA and a user could evolve in time. PDA can use many
services to cooperate with a user, including voice communication. However, turning
on too many services at the beginning, would overload the system and a user might
not be able to use so many of them. Instead, PDA should be kept as small as possible
and should be able to collect data about the user’s habits to better support the
latter. For this purpose, various solutions are currently being adopted by the Author,
such as machine learning to automatically built document migration, strategies or
emotion recognition of its local user [31]. For example, let imagine the situation,
that PDA “knows” a user named Bob. PDA knows, that Bob never works on Friday
evenings. If he turns on the computer, he usually watches movies or plays video
games. He gets angry when anything reminds him of work. Therefore, PDA would
ask Bob what to turn on for him: his recently acquired video game or a Netflix
service, and only one exception would be allowed – when the tight deadline to
complete task is about to expire. Then Bob would accept the suggestion to continue
his work instead. In such a case, PDA would readily recreate the state of his recent
work.

PDA can collect some other data, not only a status of work. It is practical to
collect data about peripheral devices, so as not to have to configure them for each
device separately and to communicate with them faster and easier.



Smart Document-Centric Processing of Information 687

7 CASE STUDY AND VALIDATION

The MIND architecture was created to facilitate knowledge management in com-
plex knowledge processes, in which a flow of electronic documents and extracting
knowledge from them are crucial. Coordination of document workflows may be often
enforced by law, especially when related procedures are implemented manually by
workers – as it takes place in court trials, crash investigations or complex medical
cases.

The first case study was a judicial proceeding system. A real judicial case in the
form of complete files could reach an enormous size. The purpose of this exercise was
to consult with court workers (judges, attorneys, counsellors, judicial officers, etc.)
to verify the usefulness of the proposed document-flow patterns and their required
functionality. In court trials, there are many constituent documents that have spec-
ified structure and workflows are precisely defined by legal procedures. So, using
MIND-like documents would be essential to redirect attention of all stakeholders in-
volved to the content of a court trial, rather then concentrating on complying with
the legal rules governing it. A feasibility study of the MIND architecture was carried
out in cooperation with lawyers and a company providing software for courts. This
allowed for developing the MIND document model and defining the document-flow
patterns.

The second case study involved the issue of evaluation of students in a typical
university grading process. It allowed to test the validation of implementing the
MIND architecture in a real environment, using the document-patterns.

A worker of Registrar’s Office forms a grade roster hub document, and transfers
it to a Course Leader. A Course Leader runs his own subprocess of collecting
credits from instructors during the entire semester; structure and implementation
of that subprocess is irrelevant to the Registrar’s Office. While the Registrar’s
Office may use an online grade system for one-time roster submission and approval,
a Course Leader is responsible for all subprocesses of collecting credits and has
modification, control and cancellation permissions. Instructors receive only a class
roster of their student’s groups, which can be filled out at any time, before a specified
deadline.

Several prototype applications were implemented to validate the MIND archi-
tecture and demonstrate its implementability in the context of the above mentioned
case study. The main task of the implementation was to create an environment for
document-agents: for their actions on users’ devices and for transferring between
devices. It was common for all prototypes to use XML [32] for MIND document im-
plementation. The path component that describes the document workflow has been
specified in XPDL. XML files can be easily transformed to other formats, tailored
to the specific technology.

The first implemented prototype [3] used the JADE. Document-agents extended
the JADE MobileAgent class and LWE was a component of a JADE container. The
transport layer was built on top of the JADE IMTP protocol. However, users were
hesitant to use this prototype as difficult to configure and maintain, subscribing too



688 M. Godlewska

much to the specific technology, and requiring troublesome inclusion of additional
ports, often blocked by intermediary firewalls.

Further prototypes used email, and standard email’s protocols, as a transport
layer, with LWE implemented simply as a lightweight email client. Email is the most
popular computer mediated communication in the workplace, as a simple textual
form combined with a possibility to disseminate attachments in any format. This
solution did not require additional skills from users and could support asynchronous
work. LWE was implemented in several leading technologies: as a Java desktop
application for PCs and laptops, and for mobile platforms: iOS, Windows Phone
and Android [33]. These implementations used, however, different available libraries
for email messaging, serialization and compression of documents, and XML data
binding. LWE prototypes were tested simultaneously, while performing one process,
so they formed a really heterogeneous system.

Installation of LWE on each device is recommended to take full advantage of
a distributed system. The implementability of LWE was proven by prototypes im-
plemented for various platforms. They were lightweight standalone applications and
there was no need to configure any servers or databases. With email protocols used
as the underlying transport layer, the configuration proceeded in the same way as
the configuration of a typical email client. Alternatively, LWE could be provided as
a Web service – especially in cases, when a user has a device for which LWE has not
been implemented yet. Also, a user may play a marginal role in the process or just
want to refuse installation of LWE.

This system based on email worked satisfactorily and has been considered by
users as friendly. The Course Leader was free to implement his evaluation process
in any way and course instructors could perform their activities using their personal
mobile devices in any time, even if they were out of their campus network. The
grading process involved both scheduled and unpredictable events, such as project
assessment or homework collection for the former, and grade correction or disci-
plinary actions in a case of academic misconduct. These events were effectively
handled with document-flow patters outlined in Section 5. The users’ satisfaction
was also influenced by: a simplicity of use, configuration, and easiness of the LWE
application, as well as the ability to work without a permanent internet connection.

8 CONCLUSIONS AND FUTURE WORK

One of the main objectives for the presented MIND architecture has been its open-
ness to new policies, services and diverse applications. Some of them have already
been implemented, while others are still in the development phase.

Executability and mobility constitute the enabling services for MIND document-
agents (see Section 7). The former involves unpacking, assembling and activating
arriving document components to enable execution of the current activity, and after
that packing them back before their departure, while the latter involves transporting
them between personal devices of users to proceed with subsequent activities.



Smart Document-Centric Processing of Information 689

Next, reliability of the MIND agent system has been provided by a “ground con-
trol” external service [5] to make the distributed workflow enactment system more
useful and trustworthy. It allowed for estimation of the global state of a distributed
loosely coupled system, taking into account transport layer errors, unforeseen ac-
tions of users and process modifications. The “ground control” service together with
LWE enabled communication between a persons responsible for executing a process
and performers of a related activity. Additional permissions and rules allowed to de-
termine which participant could control the process execution and make decisions in
unforeseen or conflict situations. That also allowed for introducing the choreography
policy [5] into the process enactment.

There is also a security issue, which answers the question: what to do if a doc-
ument gets to an unauthorized person? LWE may require authentication of a user
before unpacking and activating document components – to verify if the performer
assigned to the current activity is the same person as the recipient of the document.
An interesting solution for that has been proposed in [34]; it introduced a biometric
face recognition mechanism built in MIND document-agents.

Finally, a negotiation capability was added to MIND documents to resolve pos-
sible conflicts between document-agents and user’s devices they visit to execute
a particular activity at their workflow [30].

Personal Document-Agent (PDA) presented in Section 6 is the next concept
building on the MIND architecture. It explores executability and mobility of the
MIND document-agents to improve the work of a specific user with his devices and
peripherals. Thanks to this, a user may have an impression of continuing work from
the point where it was interrupted, despite of changing the device and its location.

The MIND architecture enables dynamic modification of the workflow process.
After the workflow process is completed, the document is archived (see Figure 1),
and the data collected during it are a great base for analysis. Retracing already
completed processes allows for their optimization in accordance with the real be-
havior of users. Machine learning approaches can be used to choose the best path
or services in the process. During the process, users can assess the accuracy of the
activity, that they performed. For example, if a document got to someone’s device
unnecessarily, it could learn not to follow such a path in the future.

Acknowledgment

This work was supported in part by the National Science Centre, Poland, under
Grant No. DEC1-2011/01/B/ST6/06500.

REFERENCES

[1] Bhatt, G. D.: Organizing Knowledge in the Knowledge Development Cy-
cle. Journal of Knowledge Management, Vol. 4, 2000, No. 1, pp. 15–26, doi:
10.1108/13673270010315371.

https://doi.org/10.1108/13673270010315371


690 M. Godlewska

[2] Spira, J. B.: Overload!: How Too Much Information Is Hazardous to Your Organi-
zation. John Wiley and Sons, 2011.

[3] Godlewska, M.: Agent System for Managing Distributed Mobile Interactive Docu-
ments in Knowledge-Based Organizations. In: Nguyen, N. T. (Ed.): Transactions on
Computational Collective Intelligence VI. Springer-Verlag, Berlin, Lecture Notes in
Computer Science, Vol. 7190, 2012, pp. 121–145.

[4] Godlewska, M.—Wiszniewski, B.: Smart Email: Almost an Agent Platform. In:
Sobh, T., Elleithy, K. (Eds.): Innovations and Advances in Computing, Informat-
ics, Systems Sciences, Networking and Engineering. Springer-Verlag, Berlin, Lecture
Notes in Electrical Engineering, Vol. 313, 2015, pp. 581–589.

[5] Godlewska, M.: Reliable Document-Centric Processing and Choreography Policy
in a Loosely Coupled Email-Based System. International Journal on Advances in
Intelligent Systems, Vol. 9, 2016, No. 1-2, pp. 1–13.

[6] Russell, N.—ter Hofstede, A. H. M.—van der Aalst, W. M. P.—
Mulyar, N.: Workflow Control-Flow Patterns: A Revised View. BPM Center Re-
port BPM-06-22, 2006.

[7] MeNaID. National Science Center, Poland, Grant DEC1-2011/01/B/ST6/06500,
2012-2014. Available on: http://menaid.org.pl, 2017.

[8] Phelps, T. A.—Wilensky, R.: Toward Active, Extensible, Networked Docu-
ments: Multivalent Architecture and Applications. Digital Libraries (DL ’96), 1996,
pp. 100–108, doi: 10.1145/226931.226951.

[9] Dourish, P.—Edwards, W. K.—LaMarca, A.—Lamping, J.—Peter-
sen, K.—Salisbury, M.—Terry, D. B.—Thornton, J.: Extending Docu-
ment Management Systems with User-Specific Active Properties. ACM Transac-
tions on Information Systems (TOIS), Vol. 18, 2000, No. 2, pp. 140–170, doi:
10.1145/348751.348758.

[10] Satoh, I.: Mobile Agent-Based Compound Documents. Proceedings of the 2001
ACM Symposium on Document Engineering (DocEng ’01), ACM, 2001, pp. 76–84.

[11] Telecom Italia. Workflows and Agents Development Environment. Available on:
http://jade.tilab.com/wade, 2017.

[12] Telecom Italia. Java Agent Development Framework. Available on: http://jade.

tilab.com, 2017.

[13] WfMC. Workflow Management Coalition: Process Definition Interface – XML Pro-
cess Definition Language (Version 2.2). Technical Report WFMC-TC-1025, 2012.

[14] AMODIT Web Site. Available on: http://amodit.com/, 2017.

[15] Enembreck, F.—Barthès, J. P.: Agents for Collaborative Filtering. Coopera-
tive Information Agents VII, 7th International Workshop Proceedings (CIA 2003),
Helsinki, Finland, August 2003, pp. 184–191, doi: 10.1007/978-3-540-45217-1 14.

[16] Apple Web Site. Automatically Re-Open Windows, Apps, and Documents on Your
Mac. Available on: https://support.apple.com/en-us/HT204005, 2018.

[17] Cache My Work Web Site. Available on: http://cachemywork.codeplex.com/,
2017.

[18] SmartClose Web Site. Available on: http://bmproductions.fixnum.org/

smartclose/index.htm, 2017.

http://menaid.org.pl
https://doi.org/10.1145/226931.226951
https://doi.org/10.1145/348751.348758
http://jade.tilab.com/wade
http://jade.tilab.com
http://jade.tilab.com
http://amodit.com/
https://doi.org/10.1007/978-3-540-45217-1_14
https://support.apple.com/en-us/HT204005
http://cachemywork.codeplex.com/
http://bmproductions.fixnum.org/smartclose/index.htm
http://bmproductions.fixnum.org/smartclose/index.htm


Smart Document-Centric Processing of Information 691

[19] Google Drive Web Site. Available on: https://www.google.com/drive/, 2017.

[20] One Drive Web Site. Available on: https://onedrive.live.com/about/pl-pl/,
2017.

[21] Apple Siri Web Site. Available on: https://www.apple.com/ios/siri/, 2017.

[22] Google Assistant Web Site. Available on: https://assistant.google.com/, 2017.

[23] Amazon Alexa Web Site. Available on: https://developer.amazon.com/alexa/,
2017.

[24] Rao, A. S.—Georgeff, M. P.: BDI Agents: From Theory to Practice. Proceed-
ings of the First International Conference on Multiagent Systems (ICMAS ’95), 1995,
pp. 312–319.

[25] Bratman, M. E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA, 1987.

[26] Kaczorek, J.—Wiszniewski, B.: Document Agents with the Intelligent Negotia-
tion Capability. Knowledge and Cognitive Science and Technologies (KCST 2015),
Proceedings of the 19th World Multiconference on Systemics, Cybernetics and Infor-
matics (WMSCI 2015), Orlando, FL, USA, July 12–15, 2015, pp. 353–358.

[27] WfMC Workflow Management Coalition: Terminology and Glossary, WfMC, Winch-
ester, UK, Technical Report WFMC-TC-1011, Issue 3.0, 1999.

[28] Foundation for Intelligent Physical Agents: FIPA Agent Message Transport Service
Specification, Geneva, Switzerland, 2000.

[29] Spira, J. B.—Burke, C.: Intel’s War on Information Overload: A Case Study.
Basex, Inc., 2009.

[30] Kaczorek, J.—Wiszniewski, B.: Augmenting Digital Documents with Negotia-
tion Capability. 13th ACM Symposium on Document Engineering (DocEng 2013),
Florence, Italy, 2013, pp. 95–98, doi: 10.1145/2494266.2494305.

[31] Landowska, A.—Szwoch, M.—Szwoch, W.: Methodology of Affective Inter-
vention Design for Intelligent Systems. Interacting with Computers, Vol. 28, 2016,
No. 6, pp. 737–759, doi: 10.1093/iwc/iwv047.

[32] Bray, T.—Paoli, J.—Sperberg-McQueen, C. M.—Maler, E.—Yer-
geau, F.: Extensible Markup Language (XML) 1.0 (Fifth Edition). World Wide
Web Consortium, Recommendation REC-Xml-20081126, 2008.

[33] Wiszniewski B.: Interactive Documents for Network Organisations. Adjacent Dig-
ital Politics, Ltd., 2013.

[34] Siciarek, J.—Smiatacz, M.—Wiszniewski, B.: For Your Eyes Only – Biometric
Protection of PDF Documents. 2013 International Conference on e-Learning, e-Busi-
ness, Enterprise Information Systems, and e-Government (EEE ’13), Las Vegas, USA,
2013, pp. 212–217.

https://www.google.com/drive/
https://onedrive.live.com/about/pl-pl/
https://www.apple.com/ios/siri/
https://assistant.google.com/
https://developer.amazon.com/alexa/
https://doi.org/10.1145/2494266.2494305
https://doi.org/10.1093/iwc/iwv047


692 M. Godlewska

Magdalena Godlewska received her M.Sc. in computer scien-
ce from University of Gdansk. She received her Ph.D. degree
from Gdansk University of Technology also in computer science.
Area of her interest, in general, is document engineering. She
got two scholarships for Ph.D. students: the first one awarded by
the Poland Pomeranian Special Economic Zone and the second
one co-financed by the European Union. She participated in
Grant “Methods and Tools of Future Document Engineering –
MENAID” – financed by the Poland National Science Centre.
She is currently working at the Institute of Informatics at the
University of Gdansk.


