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Abstract. With the coming up of plethora of web applications and technologies like
sensors, 10T, cloud computing, etc., the data generation resources have increased
exponentially. Stream processing requires real time analytics of data in motion and
that too in a single pass. This paper proposes a framework for hourly analysis of
streamed data using Bloom filter, a probabilistic data structure where hashing is
done by using a combination of double hashing and partition hashing; leading to
less inter-hash function collision and decreased computational overhead. When size
of incoming data is not known, use of Static Bloom filter leads to high collision rate
if data flow is too much, and wastage of storage space if data is less. In such cases it
is difficult to determine the optimal Bloom filter parameters (m, k) in advance, thus
a target threshold for false positives (fp) cannot be guaranteed. To accommodate
the growing data size, one of the major requirements in Bloom filter is that filter size
m should grow dynamically. For predicting the array size of Bloom filter Kalman
filter has been used. It has been experimentally proved that proposed Adaptable
Bloom Filter (ATBF) efficiently performs peak hour analysis, server utilization and
reduces the time and space required for querying dynamic datasets.
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1 INTRODUCTION

In today’s world, data is considered as one of the most valuable assets. It has
been acknowledged by data scientists that timely and accurate analysis of available
data helps in creating more opportunities by taking right decision at right time
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in ever changing business environments [I]. With the coming up of plethora of
web applications and technologies like IoT [2], cloud computing [3], etc., the data
generation resources are increasing exponentially. This change is leading to a shift
in paradigm from existing relational data base based systems to systems which can
efficiently accommodate Big data. Initially Big data [H] refereed to the collection
of huge amount of unstructured data (volume and variety) only. But, with the rise
in continuous data generation resources like traffic data, climate data, stock market
data, etc., term velocity was introduced in Big data. Streamed data arriving from
various resources requires fast processing and storage framework for handling huge
amount of data. Storing entire data requires lot of memory and usage of fixed size
data structures will require a lot of time for analysis [5]. Further, in case of streams,
continuous analysis of data is required before storing it [6] [7].

Streaming data analytics [8] focuses on reducing time and space complexity of
incoming data before storing it on disk. The important issue in stream processing
is that data diminishes with time so data must be processed in a particular time
window in single pass.

In many applications, fast and real time processing is required to make timely
decisions accurately [9] for example in finance sector, the analysis of stock market
streaming data is an essential tool for predicting stock price of the companies and real
time fraud detection in a short time span. In dynamic recommender applications,
processing of streamed data is necessary for referral of products according to interest
of user and promotion of new products in the market [I0]. In network applications,
managing data streams for system monitoring can be time-varying, volatile and
unpredictable since tasks to be managed include accessing the server’s utilizations
in particular time frame, tracking the number of unique visitors on a network in
a particular time, identifying common users between two time slots, or calculating
maximum number of hits on network in particular span of time. Results of network
analysis can help to predict the resource usage over network, identify rush hours in
network, management of network resources on the time slot basis and detect attacks
like DoS and DDosS.

Fast matching of arbitrary identifiers to the values of incoming data and real
time response are the basic requirements for majority of streaming data applications.
Given millions or even billions of data elements, developing efficient solutions for
storing, updating, and querying them becomes increasingly important especially
when data is available for a short span.

Using traditional data base approaches which include performing filtering and
analysis after storing the data is not efficient for the real time processing of streamed
data. Since the size of incoming data is unpredictable, data structures used for
the storage of data should be dynamically adjustable, but changing size in each
iteration may lead to the extra computational overhead. Thus, some adaptive
storage mechanism is required which performs predictive analysis to determine
size of data structures being used. Provisions should also be available for adjust-
ments on the basis of previous incoming data or on the basis of real time data
flow.
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Above mentioned issues clearly indicate that efficient storage and searching tech-
niques are required for processing streaming data. Various solutions proposed by
researchers in this domain utilize probabilistic techniques to reduce information pro-
cessing and analytics cost. This paper proposes the use of Bloom filter [I1], a prob-
abilistic data structure [I2] which can store the elements of a set in a space-efficient
manner by using hashing principles with a small error in querying process. Presently
Bloom filter is widely used in many networking and security algorithms like authen-
tication, tracebacking, IP tracebacking, string matching, reply protection, etc. It is
also used in fields as diverse as accounting, monitoring, load balancing, policy en-
forcement, routing, clustering, security and even in many database applications [I3].
There are number of variants of Bloom filter which have been successfully used in
different application domain [I4].

The prime focus of the proposed framework is to efficiently query the incoming
data within the limited time domain. To deal with instream data and store the
information for a short time the proposed framework uses a Scalable Bloom filter [15]
with Ageing Bloom filter properties, i.e. evicting data after fixed time interval. In
the proposed framework Kalman filter [I6] is used to make scalable Bloom filters
adaptive in terms of size and reduce the computational overhead of adding extra
filters at run time. Further, query complexity of dynamic data has also been reduced.
The proposed Bloom filter is named as Adaptable Bloom Filter (ATBF) and it
has been experimentally proved that the proposed filter outperforms the existing
Scalable Bloom filter when dealing with in-stream data.

The plan of this paper is as follows: Section [2] provides the literature survey of
the Bloom filter and its variants. In Section [3] proposed approach is discussed in
detail. Section {| provides experimental results and compares existing approach with
the proposed approach. Finally, Section [ concludes the paper.

2 RELATED WORK
2.1 Standard Bloom Filter

The Bloom Filter (BF) [I1], a space efficient probabilistic data structure, is used
to represent a set S of n elements. It consists of an array of m bits, denoted by
BF[1,2,...,m], initially all set to 0. To describe the elements in the set, the filter
uses k independent hash functions hi, hs, ..., h; with their value ranging between
1 to m assuming that these hash functions independently map each element in the
universe to a random number uniformly over the range. For each element x € S; the
bits BF[h;(x)] are set to 1 for 1 < i < k. Given an item y, its membership is checked
by examining the BF whether the bits at positions hi(y); ha(y); .. .; hi(y) are set
to 1. If all h;(y) (1 < i < k) are set to 1, then y is considered to be part of S. If
not, then y is definitely not a member of S. The accuracy of a Bloom filter depends
on the filter size m, the number of hash functions k, and the number of elements n.
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User can predefine false positives (f,) according to application’s requirement.

fp=(1—eFnm)t (1)
2.2 Scalable Bloom Filter

In some applications like in-stream data coming from sensors, network traffic, etc.,
the data is generated dynamically and size of the data set being generated cannot be
determined a priori. When size of incoming data is not known, use of static Bloom
filter will either lead to high collision rate or result in wastage of storage space. In
such cases it is difficult to determine the optimal Bloom filter parameters (m, k)
in advance, so a target false positives threshold cannot be guaranteed. In order to
accommodate the growing data size, one of the major requirements in Bloom filter
is that filter size m should grow dynamically.

Dynamic and scalable Bloom filters deal with the scalability problem by adding
bit arrays of varying sizes as the incoming data increases. In Dynamic Bloom Filter
(DBF), an array of size same as that of initial array, i.e. an array of m bits, is
added repeatedly to accommodate the ever rising data, once the threshold or the
fill capacity of the existing DBF exceeds. But this addition in DBF causes the
significant increase in error rate. In scalable Bloom filter, a variable size array
is added whenever the defined threshold is crossed, with an extra parameter p to
maintain the error rate in defined bound.

Scalable Bloom Filter (SBF) [15][17] is a BF variant that can adapt dynamically
to the number of incoming elements, with an assured maximum false positives fz?.
In addition to the initial array of size my, SBF includes two additional parameters:
expected growth rate (s) and the error probability tightening ratio (p) (0 < p < 1);
insert operation in SBF for an element x using k hash functions and parameters s and
pis given by Insert(SBF[], x5, hi(x), ), s, p). When mq = logy(fJ)~" exceeds the
defined threshold, a new array m; = mg + log, p~! is added and error probability
for new filter f, = flp. Size of additional i array m; is:

m; = logy(fy) ™" = mo +1i x logy p~". (2)

For flexible growth in SBF size, exponential growth factor s is added, generating
i individual filters of size mg, mos, mos?, ..., mes""t. When the fill ratio ¢, for one
filter exceeds the defined threshold, another filter is added to it with a well defined
growth parameter s. Elements stored in i*" filter are approximately:

N; = mps'(In(ty,)). (3)

At a given time, error probabilities of all ¢ individual filters (0 <4 < (i — 1)) is
1?7 fgp, fg 2 fgpi’l. The compounded error probability for the SBF is:

)

£ =1=TL (=10, (4)

=1
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Query process in SBF is accomplished by testing the presence of query element
in each filter, starting from active filter to oldest filter. At the time of query, if N be
the total incoming elements and Ny be the elements in mg, total number of arrays
added in Bloom filter. Search complexity for the worst case analysis is:

O(k(|log(N/No +1)]) +1). (5)

It has been experimentally verified that computational overhead of SBF surges
as the size of SBF grows with the increase in incoming data set.

2.3 Ageing Bloom Filter

Some network applications require high-speed processing of packets. For this pur-
pose, Bloom filters array should reside in a fast and small memory. In such cases,
due to the limited memory size, the stale data in the Bloom filter should be deleted
to make space for the new data.

To accommodate such type of issues, number of solutions are proposed by do-
main experts, one of these is using only one buffer [I§], i.e. allocating a buffer for
insertion of elements coming from a particular network stream. For each new ele-
ment, the buffer can be checked, and the element may be identified as distinct if
it is not found in the buffer, and duplicate otherwise. When the buffer reaches its
fill ratio, whole data is evicted from the buffer, i.e. buffer is reset to original value.
Search time complexity and false positive rate in this case is determined for a partic-
ular interval, same as that of the Bloom filter. Another solution proposed for aging
scheme using similar concept is double buffering [I9]. In this approach, concept of
buffering is used but with two filters. Initially data is filled in the first filter and once
the threshold exceeded, data is filled in the next filter but as soon as the threshold
of the second Bloom filter is crossed, data is evicted from the first filter and this
process continues. Advantage of this approach is that we can store data for more
time by using double memory than by simple buffering approach. Example of aging
Bloom filter includes techniques like A? buffering where one buffer is divided into
two parts and then double buffering is performed. One of the short comings of this
approach is that size of the filter used is static, and rough prediction of size of the
filter required may affect the accuracy of membership query.

2.4 Partition Hashing

Partitioning hashing is a technique where small portion of large table is uniquely
allocated to each hash function such that hash key I; generated by hash function ¢,
is randomly distributed over a small part of the array, i.e., each hash function is
allocated to a sub part of an array [20]. In Bloom filter, an array of m bits is
partitioned into k disjoint arrays of size 1y = 7* bits and k hash functions are used
corresponding to each part. For an element u; € U, hash functions are calculated
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as:
Ki(u;) = €1 (w;) + i X lo(u;) mod 9. (6)
Each hash function r;(.) changes bit in " array where i|]1 < i < k. Two
independent hash functions ¢;(z) and f3(x) are used to generate k hash functions
such that Vi|i < k. To get best results of this schema, ¢ should be prime; so size of
array and number of buckets should be choosen in such a way that 7* returns a prime
number. This technique leads to less inter-hash function collision, further usage of
only two hash functions to generate all £ hash functions decreases the computational
overhead [20].

2.5 Approximate Counting in Streaming Data

Besides the batch processing infrastructure of map/reduce, Big data analytics re-
quire techniques where streamed data is processed in near real time in single pass
for some specific applications.

Approximate counting problem and solution for large data sets was defined in
1981 by J.S. Moore in the Journal of Algorithms [21], and later many solutions
were proposed using approximate counting in massive data sets. Two solutions
are considered: Counter-based algorithms which include Frequent majority [22],
LossyCounting [23], SpaceSaving [24] and Sketch based algorithms like Count-Min
Sketch [25], Count Sketch [26], etc.

Manku et al. [23] proposed lossy counting algorithm, which divides large data
into B; buckets and calculates the frequency of different type of elements. Count
is maintained in bucket counters Cp; for only those elements which cross a defined
threshold. For adding a new bucket B,,, counter of previous bucket, i.e. Cp, ,, is
used as base. Random decrement of all counters on the extreme sides is done after
the calculations are performed on each bucket.

To answer frequency queries and reduce computational complexity, a sketch
data structure named CountMin Sketch (CMS) was proposed by Muthukrishnan
and Cormode in 2003 and later improved in 2005 [25]. This data structure is based
on probabilistic techniques which are used to answer various types of queries on
streaming data. It is a histogram which stores elements and their associated counts.
Major difference between Bloom filter and CMS is that Bloom filter effectively rep-
resents sets, whereas the CMS considers multisets instead of storing a single bit to
answer a query, the count min sketch maintains a count of all object. It is called
a ‘sketch’ because it is a smaller summarization of a larger data set. The probabilistic
component of CMS provides more accurate results compared to proposed sketching
algorithm solutions as it has less space complexity and decreased computational
cost.

2.6 Kalman Filter

Kalman filter (KF) is a linear system model derived from stochastic process, mak-
ing it ideal for systems which are continuously changing. In KF recursive approach
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is used where a common model is formulated and all future calculations are per-
formed on the same equations without any modification. It is easy to implement
and requires less memory since it does not keep record of old data except the pre-
vious state. Further, less computational cost makes it suitable for real time prob-
lems.

Notaions || Description

Tr Posteriori state estimate

T, Priori state estimate

13,; Priori estimated error

Pk Posteriori state estimate

K Kalman gain

Uk Measurement noise

R Co-variance for measurement noise
W Process noise

g, Control signal

Q Co-variance for process noise
Zk Measured value

A, B,H Constants according to process

Table 1. Nomenclature for Kalman filter

Kalman filter is a powerfull mathematical tool mainly used for stochastic esti-
mation from noisy sensor data or data streams occurring at regular intervals. The
basic assumption of Kalman filter is that system should be continuous and can be
modeled as a normally distributed random process X, with mean p and variance o
(the error covariance), i.e. X ~ N(u, o) [16]. Kalman filter addresses the problem of
estimation of state x;, of a discrete-time controlled process on the basic of previous
state xy_1 using following equation:

T = Axp_1 + B +wi_y (7)
with a measured value 2, for k" state given by:
2z = H.xp + v ()
where Pr(w) ~ N(0,Q) and Pr(v) ~ N(0, R).
2.6.1 Discrete Kalman Filter

Kalman filter is a set of mathematical equations that build a predictor-corrector type
estimator model to optimally minimize the estimated error covariance. It provides
an estimate of a process for k™ state by using a feedback control model. In this, filter
first estimates the value for k" state based on the current information of the process
and then obtains feedback from some measured value, i.e. noisy input. Based on
the error in estimated value, Kalman gain is calculated which helps in minimizing
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error in further iterations. The algorithm converges to the near optimal result after
few iterations.

Kalman filter is divided in two groups: time update equations and measurement
update equations. The time update equations help in projecting the priori current
state value () and priori error covariance estimates (Pk’ ) for the next step. The
time update equations act as predictor equations for estimation model [27].

f; = A.2p + B.uy, (9)
P = AP AT +Q. (10)

The measurement update equations provide feedback to the time update equa-
tions for incorporating new measurement in priori estimate to obtain an improved
posteriori estimate. The measurement update equations are also known as corrector
equations.

Tk Zi’;-l-Kk.(Zk—H“f),;), (11)
P HT
K= —H*— (12)
H.P;.HT + R
P, =(1—-Ky.H)P;. (13)

Wiener filter deals with static data only; Kalman filter, a generalization of
Wiener Filter [28] allows dynamic data with noisy parameters as input. Predic-
tor model based on polynomial regression [29] uses combination of number of linear
regression models which increases the computational complexity of calculations for
each prediction manifolds. Extended Kalman Filter (EKF) [30] is an extension of
Kalman filter, where at each step non-linear system is transferred to linear system
by calculating first and second order derivative. Generally, EKF are considered for
multi-class problems.

Simplicity of Kalman filter in implementation, less memory requirement and
support for dynamic environment makes it a wonderful candidate for predicting the
size of Bloom filter in streaming data.

3 ADAPTABLE BLOOM FILTER (ATBF)

To perform timely analysis on streaming data, an adaptive data structure is required
which performs analysis in one pass with minimum computational complexity and
less storage overhead. For a stream of network data S : (z1,xa,...,x,) over a time
based window of h time slots i.e. T : ({1, s, . . ., t1), this paper addresses the following
points:

e Analysis of network traffic for a particular time slot.

e Predicting amount of in-coming data in the next slot.



Streamed Data Analysis Using Adaptable Bloom Filter 701

e Allocation of memory for the next time slot based on prediction in the present
time slot.

Proposed model is hybrid of two types of Bloom filters: scalable Bloom filter (for
dynamic data input) and ageing Bloom filter (store data for particular time interval
only). In the proposed framework, an efficient learning model is propounded for
a time slot based analysis of network traffic using a novel technique called Adaptable
Bloom Filter (ATBF), a variant of scalable Bloom filter. Figure [I| provides the basic
framework and coming section elaborate the proposed framework along with its
phases.

Proposed Framework-ATBF
Input PHASE ‘ Hashing PHASE Storage and Query PHASE
- : : )
= H P H Hiw}
E s : Parlm:mng : e "2 ?.\‘
E 5"3;‘:"9 oy ) Double : Predimions*> H3 i :
g ) Fiashing i — —_—
[ . .
a : : :
P E i i
% E E N Approximate. K}:I
= H H elements
Figure 1. Proposed framework
3.1 Input and Hashing Phase
A stream of data S = (1,29, ...,,) coming from any resource like sensor, social

networking websites, network data and mobile data, etc., is assumed to be the input
for the proposed framework. It is assumed that data is available only for limited
time and hence it has to be processed in the single pass in the defined time frame.
Data may be in varied formats like IP address for network data, website names,
email address, etc.

In the proposed scheme, the format of the incoming data is not an issue as all
the inputs irrespective of the format (numeric, alphanumeric, text) are hashed using
a combination of double hashing and partition hashing. Two independent hash
functions hs(x) and ho(x) are used to generate k hash functions such that each hash
function has a disjoint range of p = m/k (p must be prime for efficient hashing)
consecutive bit locations (bucket) instead of having one shared array of m bits, i.e.,
partitioning hashing is used, where m is size of array, k is number of hash functions
and p is prime number denoting the buckets in an array. Vili < k

gi(x) = {h1(x) + i x ha(z)} mod p. (14)
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To achieve uniformity in maintaining bucket for each hash function at runtime,
a parameter o has been introduced, with initial value ¢® = p. For each element
x €S (Vili <k)
H!(x) = (hi(z) + (i — 1)ho(z)) mod o”. (15)

(3

Corresponding to ;' slice added in i slot of ATBF, new o7 is defined to synchronize
bucket size for each hash function. ®(z) function returns an optimal number p s.t.
p < ®(p > x and p is prime).

3.2 Storage

After hashing is done for each incoming element, i.e. Va; € S, next task is to store
the data in the array for a defined time slot say one hour or two hours. For each
time slot, i.e. t; € T, a Bloom filter (AT BF;[]) is maintained to store the elements
for that particular time slot.

Selection of initial size of the Bloom filter for each slot in every iteration is
critical task because it affects time and query complexity. For the very first it-
eration, an array of size mg is allocated and for further time slots size of Bloom
filter is decided based on data received in the previous slot. Initial array size for
each time slot ¢ is decided on the basis of number of elements accommodated
in previous slot t;_1, using an array called Learning Array (LA) which keep the
track of size of Bloom filter in each slot. The intent of providing an additional
counting array is to reduce the slice addition overhead at the run time. The
size of the array required for the next time slot is predicted through Kalman fil-
ter and each slot is provided the required slices at the beginning in the form
of a single array instead of multiple chunks called slices. This process helps in
adjusting the size of ATBF;[] to accommodate the dynamic input and reduces
search time since query is done on single array instead of slices where we tra-
verse from latest to oldest slice one by one. To maintain the uniformity in the
partition hashing, size of slice is decided on the basis of ¢() function. Inser-
tion is performed by setting all hash indexed values one in the active slice of fil-
ter.

After t time slots when maximum number of time slot for which data records are
maintained is reached, insertion is performed in first slot, i.e. AT BF}[], by evicting
its old data. The proposed model works in round robin manner, i.e., slots after h
hours perform insertion on same array during next iteration, i.e., (t; + 0 X h) <> t;
where 0 € Z. After completion of insertion in each time slot InsertLA() function
is invoked to update the values for performing size estimation for next time slot
(Algorithm [T)).

One of the major issues in SBF is how to measure the defined threshold for ad-
dition of the new slice. Number of solutions have been proposed for this issue which
include 50 % percent rule, i.e., threshold is reached, when the maximum number of
one’s which a Bloom filter can accommodate reaches 50 % of its original capacity;
but how to find that a filter is 50 % occupied is again a tedious task.
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One of the options is to maintain a counter which increment every time an el-
ement is added or the number of one’s in filter have to be counted after regular
intervals. Another method is to keep the track of false positives after every insertion
to check whether the results are within the desired false positive rate or not, but
these solutions lead to extra computational overhead as one needs to continuously
check when a filter gets saturated and such operations will definitely dilute the very
purpose of using Bloom filter.

Proposed scheme addresses the issue of finding threshold for addition of new
filter by the usage of buckets generated through partition hashing. Instead of cal-
culating the threshold of the entire array, a function named CheckFp(), which uses
standard threshold calculation technique, is used to find the threshold value of the
randomly chosen bucket. Such technique limits the threshold calculation to a single
bucket instead of entire array, reducing the overall computation time. To avoid call-
ing CheckFp() after every iteration, a function Random() has been defined which
returns a random value through which CheckFp() function is called, leading to fur-
ther optimization of the entire process.

For experimental analysis, data is considered for varying time slots, e.g., one
time slot is equal to four or six hours, i.e., all the hashed data of first time slot
is added to the array ATBF};, data of second time slot moves to array ATBF
and size of ATBF 5 is determined by LA, based on the traffic in ¢; time slot. The
proposed approach is flexible enough to accommodate n time slots, with each time
slot represented by one array. Based on data stored in these Bloom filters, i.e.
ATBF;.,,, further analysis like peak hour analysis, detecting approximate number
of users in each time slot and server utilization are performed.

3.3 Query Process in ATBF

To query the occurrence of a particular element in a time window, Query() function
is used.

Query(LA[),p, Q, T, .=V H;) in ATBF checks each Bloom filter, i.e. ATBF,|Vt; €
T from latest array to oldest array, and in each Bloom filter all slices (if added),
i.e. from r to 1, are checked corresponding to the queried element. Query process is
made fast by calculating hash functions at the run time, i.e. for a particular query,
all hash functions are not computed in advance, each hash function is calculated
and comparison is performed in defined bucket of hash function. If bit at hash
index is one then next hash function is computed and comparison is performed
otherwise query process terminates. Query process terminates as soon as first zero
is encountered in a bucket and thus time is saved as remaining hash functions for
other buckets are not calculated. The query process is terminated successfully if
element is found, i.e. all ones are returned (Algorithm [2)).
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Algorithm 1 Insertion procedure in ATBF
1. procedure INSERT(ATBF|],p, S, T,.=F H;) > Insert x; € S for t; € T in ATBF;
array

2: for Vi|i <T do

3: LA[[)]] < InsertLA().

4: ri 1

5: 0" < ¢((LAJi] x p)/k) > Return optimal prime number according to
variable size of filter

6: ATBF[r] + SizeOf (o™ x k) > Assign initial size to i*" filter

7: OSlice 1

8: end for

9: for Vz; € S do

10: while ¢, ==t; do >

11: if t, ATBF;[r] > thresVal then

12: o' ¢((s" 7t x p)/k)

13: rer+1

14: SizeOf(ATBF;[r] < o™ x k)

15: CSlice ++

16: else

17: for Vz|z < k do

18: h.(z;) < H,(x;)

19: ATBF;[r](h.(z;)) < HIGH

20: end for

21: end if

22: if Random() == TRUFE then

23: CheckFp(ATBFr])

24: end if

25: end while

26: [nsertLA(FRLA[i], Cllice)

27: end for

28: end procedure

Lemma 1. The worst case query time complexity in proposed model for filter with
h time slots, assuming r slices in each slot with & hash functions is always less then

O(rhk).

Proof. Searching starts with hashing of the query element y, i.e. Vily € Q, h¥_, (y) +
HY_ | (y) and corresponding hash indexes are checked for value zero. Query process
begins from the latest time slot to the oldest one, i.e. ty1 and same is followed in
search from slices s,4,; in Bloom filter. During search operation when hash indexed
value 0 is encountered, searching for that particular array is terminated and previous
slice is not searched. In such case, number of evaluated for unsuccessful query, i.e.
not finding the element queried, is always less than k& hash functions. For a Bloom
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Algorithm 2 Querying in proposed framework

1: procedure QUERY (LA[], p, Q, T,'=F H,)
2 for V Query elments(y)|y € @ do
3 for V Time slots(¢)|t € T do
4 for | =(ATBF,[]...1) do
5: if (ATBF,[I](:=%h;(y)) == 1) then
6 ELEMENT FOUND

7 end if

8 end for

9: end for

10: ELEMENT NOT FOUND

11: end for

12: end procedure

filter with r slices, it will be always less than O(rk). Thus, for h time slots from ¢;_j,
having r slices each, the worst case query complexity is always less than O(rhk). O

3.4 Learning Array (LA)

Since the amount of incoming data will keep on varying in every time slot, the size of
array will change. Calculating the threshold after every addition and providing new
slice accordingly in every time slot at run time requires lot of computation which
can be saved if record of size of array, i.e. a counter Cl;.., is maintained which keeps
the count of number of slices added in a particular ATBF;; in a particular time slot.
Initially a constant size Bloom filter my is allocated for the first time slot and if
the incoming data increases, more slices are added and counter cg;. is incremented.
To make proposed framework adaptive, a Learning Array LA[value][c] is initially
added. The main role of LA is to record the array size of ATBF; after filling of
data in each time slot. This helps in predicting the array size required in the next
time slot.

With the help of LA an optimal size of ATBF;|| required for successive time
slots is decided. If for a time slots no slices are added, indicating unused Bloom
filter bits, then value of LA is decremented for next time slot (Algorithm [3).

To make the functioning of LA more efficient, Kalman filter is used for predicting
array size. The approximate number of elements are estimated through Algorithm 3]
and the number of slices ‘z’ added to the initial filter in a particular time slot serves
as input parameter to Kalman filter. After observing incoming data patterns for
particular ¢;, proposed model decides the optimal size required for next time slot,
i.e. t;y1, reducing the overhead of slice addition at run time for each time slot, thus
improving the search time complexity of ATBF;][].

Number of slices (s,) added to a particular time slot is recorded in LA, from this
we can compute the total size of filter required for the particular time slot, i.e. S,.
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The number of elements n, accommodated by ATBF is given by:
na ~ mos' (In(ty,)). (16)

From the approximate number of elements accommodated, the size of filter,
i.e. S,, is calculated as: .
Se =ng X k. (17)

These two estimates for the size of Bloom filter act as input for Kalman filter and
help the framework to predict the approximate size for coming time slots in further
iterations.

Since the incoming data is one dimensional, Kalman filter parameters A, B, H,
and R in Equations @ . @D . . ., . have constant values in the
proposed model. 1 is assumed to be zero because no control signal is used in the
model. S, denotes posterior estimated size and S denotes priori estimated size for
ith time slot and for I*" iteration. Thus

Time update:

Sl_ = Ol-1;
13[ = Alfl
Measurement, update:
P
Kl )
P, +R

S = 57—1 + Kz + 5“;_1)7
Pl = (1 - Kl)pl:l

where R R
2] = 5(55 + Se)

Lemma 2. Use of Kalman Filter based LA in proposed model reduces the query
complexity of ATBF in handling in-stream data compared to SBF by approximate
O(}) ie. =< O(k), where r is number of slices added and k is number of hash

functions considered.

Proof. In case of SBF, when an array crosses defined threshold a new slice is added
and insertion is performed. Assuming N, is elements in stream, let us assume
SBF needs r slices to accommodate the incoming data. Query process in SBF
is accomplished by testing the presence of query element in each filter, starting
from active filter to oldest filter. Search complexity for the worst case analysis is
O(k x r)).

In ATBF first time slot is functionally similar to SBF, but size for next time
slot can be predicted using LA and Kalman filter. Predicting size for next time
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Algorithm 3 Learning array algorithm

1: procedure INSERTLA(LA[i], j) >
2 if (j > 1) then

3 if LAJi] < j then

4 LAi][c] + +

5: end if

6 end if

7 if (j ==1) then

8 if FRLA[z] < thresml then
9: LA[i]]-=1

10: EXIT

11: end if

12: end if

13: &, < LA[i][d]

14: Sy mo Y {i % ney

15: S, « Count(ATBF[],r)
16: SetS‘f =0

17: SetP| =1

18: for (I :1to () do

19: 2= .5(5 + S‘e)

20: Time update

21: S’f = Sl—l

22: pl_ = pl,1

23: Measurefment update
24: K, = Pl]_il;iR

25: Sy =87+ Ki(z+5,)
26: Pl = (1 — Kl)f)lil

27: end for

98 LA[][] « S
29: end procedure

slot leads to decreased computational overhead as addition of new slices at run
time is not required. Further, since the size of new array is combination of initial
array and additional slices, inter-function collisions are reduced especially when
partition hashing is used. From the second time slot onwards the query com-
plexity is always less than O(rk), because from the the second array onwards the
number of new arrays added will always be less than r. In best case when no
extra slice is added in future time slots, i.e., the input data arrival rate is con-
stant, search complexity is equal to standard Bloom filter ~ O(k). Thus, for

the h time slots, search time complexity for (h — 1) slots is reduced drastically.
O
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3.5 Network Traffic Analysis for a Particular Time Slot

The standard algorithms for counting number of element in streams like CMS, prob-
ability based counter and DGIM are quite accurate but need lot of extra space and
have computational overhead. Proposed model provides a rough estimate of number
of elements using Kalman filter.

To calculate the approximate number of elements in a particular time slot ¢;,
Count;(.) is used with initial parameters like slices added in the array (r), threshold
fill ratio (f,), number of hash function (k), initial size of filter (mg) and prime num-
ber used in first filter (p). Two methods have been used to calculate the number of
elements in a particular time slot and results are verified by both methods (Algo-
rithm @ In the first method, growth parameter (s) are considered as s = 2 for slow
growing data and s = 4 for fast growing data with optimal threshold ¢, value as
50 % same as that considered in SBF [I5]. Total number of elements accommodated
by Bloom filter (NN;) is given by:

N; =~ mp2 * (.693). (18)

The second method is to calculate the total size of the Bloom filter used and
then predict the number of elements accommodated by it. Since o9 is optimal prime
for ¢** slice, i.e., size of bucket and number of buckets are equal to number of hash
functions (k), total size of an array with r slice of o bits, is given by:

Number of Slices(r) x Size of Slice(o).

Thus total size (t5) of AT BF; with r slices is given by:
to Y (07 x k). (19)
g=1

Bits available for insertion in ATBF are determined by threshold fill ratio (f,.). Total
available bits ¢, are:

to < ts X fr. (20)
Thus, maximum number of elements (E,) accommodated by AT BF; are:
E, + o (21)
a k N

4 OBSERVATIONS AND ANALYSIS

All the experiments have been performed on i7-3612QM CPU @ 2.10 GHz with 8 GB
of RAM. To maintain the uniformity in the results CityHash 64 bit library is used
to compute two hash functions in double hashing. In all experiments five hash
functions have been used with initial size of the filter m, as 1285 bits, slice size o®

for all the iterations is considered as 275 (s = 12 for first array in all iterations.
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Algorithm 4 Approximate number of elements in ATBF}]|
1: procedure Count;(ATBF;[],r) >
2: Method 1

3 N; < In(f,) x mqg.s"

4 Method 2

5: for g:1 tor do
6
7
8

o9 < ¢((g x p)/k)
end for
ts = > gy (09 x k)
9: Ea — %
10: end procedure

4.1 Performance Evaluation of SBF and ATBF

The performance of SBF and ATBF is compared on the basis of computational
time taken for hashing, querying and extra slice addition as the incoming data
increases. Figure [2] provides a comparative analysis on the basis of hashing com-
plexity of SBF and ATBF. In SBF, for every input, hash value is computed for
all hash functions (k) while in ATBF only two hash functions have been used

to generate k hash functions, leading to a major decrease in computational over-
head.
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Figure 2. Computational time complexity vs. number of hash functions

Query complexity and slice addition overhead for both the filters is checked on
dynamically growing environment. Both filters, i.e. SBF and ATBF, start with the
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size mg = 1285 and 5000 elements have been considered for the first iteration and
each iteration adds 1000 element to previous value.

Figure [3] depicts the analysis performed on the basis of number of slices needed
to accommodate the dynamically growing data. In SBF, filter starts with size myg
and as the number of incoming elements increases more slices are added in each
iteration. In case of ATBF, as the incoming data increases the size of ¢!, iteration
is predicted in advance, based on the elements accommodated per iteration in ¢
using Kalman filter.

Based upon the data considered for experiments, i.e. 1 000 elements increase from
previous value per iteration, in ¢, iteration only one slot is added to accommodate
additional elements in ATBF. The graph of ATBF becomes constant after the first
iteration since one slice is added in every successive iteration and no overflow of
data is registered (Figure [3]). Hence overhead of adding new slices at the run time
is reduced to a large extent in the proposed scheme.

151 -
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Figure 3. Number of slices required vs. number of iterations for dynamically growing
dataset

Figure [ depicts the comparative analysis of the worst case query complexity
for an element (when the element is not present in the set), i.e., scenario where
all slices need to be scanned. As the size of data grows in each iteration in SBF,
more slices are added to accommodate the data elements. In SBF, all slices need
to be scanned in query process which increases the query complexity many folds.
ATBF has the advantage of size adaptation from second iteration onwards. For
the first iteration the process is similar to SBF, but from the i*" iteration (where
i # 1), the size of Bloom filter is predicted on the basis of previous (i — 1) iter-
ation. The predicted size of Bloom filter is added as a single Bloom filter. So, in
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querying process only one Bloom filter needs to be scanned, thus the total cost is
O(k). As the data grows, the number of slices added are always less than SBF for
same number of elements thus search time complexity of ATBF shows a significant
improvement.

80
75k m,=1285, k=5, 0=257 S
_—"’O-”/
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=== SBF
—=— ATBF
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0 . . . . .
1 2 3 4 5 6

Number of iterations

Figure 4. The worst case query complexity vs. number of iterations

4.2 Experimental Evaluations

Two data sets from different application domains have been considered for evaluating
the performance of proposed model, one is data of pickup calls of Uber cabs [31]
and other is incoming data generated for network server. Results are represented for
first few iterations only, which can be extended to n number of iterations according
to application’s requirements.

Tables 2] and [3] provide the count of actual number of users and number of
users identified using Kalman filter. S represents the size of Bloom filter in the
current iteration by considering the previous one, initially size of Bloom filter is set
to my. Number of slices added in AT BF; is maintained by cg;.. counter. S is the
array size predicted by Kalman filter for the next iteration. Peak hours analysis is
performed by “peak hour ranking” with 1 indicating maximum and 5 as minimum
value. Peak hour rank helps in identifying changing patterns of data in current
iteration in relation to the previous iteration. Initially for all iteration, the peak
hour rank is set to a default value of —1. This ranking system helps in allocating
resources in accordance with the frequency of incoming data.
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4.2.1 Experiment 1: Uber Pickups Data Sets

Data of 14270479 trips of Uber pickups in New York City from January 2015 to
June 2015 for around 265 different locations is considered for 12 hours a day as
input. The data set is time series based having attributes like date, time, loca-
tion id and base number. A snapshot of an instance of data is shown in Fig-
ure f} In proposed model “location id” is used as insertion element in Bloom fil-
ter and attributes “Pickup_date” and “Time” are used to select the size of a time
slot.

Dispatching_base_num Pickup_date Affiliated_base_num locationlD
1| BO2617 2015-05-17 09:47:00  BOZG17 141
2 BO2617 20150517 09:47:00 BO2G17 G5
3 BO2617 20150317 09:47:00 BOZG17 100
4 BO2617 2015-05-17 09:47:00 BO2774 30
5 | BO2617 2015-05-17 09:47:00 BO2G17 a0
6 | B0O2617 2015-05-17 09:47:00 BO2G17 228
7 BO2617 2015-05-17 09:47:00 BO2617 ¥
3 BO2617 2015-05-17 09:47:00 BO2764 74
9 BO2617 2015-05-17 09:47:00 | BO2617 249
Figure 5. An instance from data set of Uber pickups
Size of
Bloom
filter
" pre- .
No. of Initial No. of | No. of dicted Previous | Current
Iteration actual array slots users pre- | Error (In for Peak Peak
era size added dicted by | %) next hour hour
users a— y . .
(57) (Cstice) ATBF time ranking ranking
slot (in
bits)
(5)
Time Slot = 4 hours
1/1/2015
Time Slot 1 (1 to 4) hrs. 5864 1285 11 5746 2.01 28160 -1 1
Time Slot 2 (5 to 8) hrs. 2389 28160 0 2358 1.3 24 320 -1 3
Time Slot 3 (9 to 12) hrs. 2922 24 320 0 2935 —-04 20736 -1 2
2/1/2015
Time Slot 1 (1 to 4) hrs. 1765 1285 4 1732 1.9 8960 -1 3
Time Slot 2 (5 to 8) hrs. 2437 8960 2 2387 2.1 14 336 -1 2
Time Slot 3 (9 to 12) hrs. 2534 14 336 0 2456 —0.9 20736 -1 1
Time Slot = 6 hours
17172015
Time Slot 1 (1 to 6) hrs. 7314 1285 12 7287 0.4 36660 -1 1
Time Slot 2 (7 to 12) hrs. 2326 36 660 0 2342 —0.6 32256 -1 2
2/1/2015
Time Slot 1 (1 to 6) hrs. 2915 1285 7 2867 1.7 17408 -1 1
Time Slot 2 (7 to 12) hrs. 3312 17408 0 3264 1.5 17408 -1 2

Table 2. Bloom filter size prediction and Peak hour analysis for Uber pickup call for
15¢ January 2015 and 274 January 2015
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Table 2 shows the result of two days for peak time slot in Uber pickups, for date
15* January 2015 and 2"! January 2015 using two time slot ranges: four hours as
a single time slot and six hours as a single time slot, respectively.

4.2.2 Experiment 2: Incoming Data on a Network Server

Table[3 provides the results for server utilization and peak hour analysis. Experiment
is done for six time slots of one hour each. The results are simulated on network
traffic with maximum per hour capacity of server as 15000 users. Server utilization
is given by (§ x 100), where n is approximate number of users detected and N is
server capacity. The network data has IP address, date and time as its attributes.
IP address is used as primary element for insertion in proposed model.

Size of
Bloom
e No. No. of filter Server
Initial users . . Current
No. of arra of Error | pre- uti- Previous Poak
Tterationl |actual | . Y slots | PT¢” (In dicted liza- Peak hour
size dicted . . hour
users o add- %) for next | tion ranking .
(S7) by . ranking
ed time (%)
ATBF .
slot (in
bits) ()
Time slot 1 10000 1285 15 9975 0.25 51200 68.53 -1 2
Time slot 2 12000 51200 2 12145 -1 62210 82.97 -1 1
Time slot 3 9000 | 62210 0 9216 —2 46 080 61.44 -1 3
Time slot 4 6000 | 46080 0 6052 —0.8 32256 43.01 -1 5
Time slot 5 8000 32256 2 7952 0.6 41216 54.97 -1 4
Time slot 6 4000 41216 0 3924 1.9 20736 27.65 -1 6
Iteration 2
Time slot 1 9000 1285 14 8982 0.2 46 080 60.84 2 3
Time slot 2 14000 | 46080 5| 14248 —1.7 74240 98.99 1 1
Time slot 3 13000 74240 0 13184 -1 70400 92.17 3 2
Time slot 4 7000 | 70400 0 7013 -1 36352 48.09 5 4
Time slot 5 3000 36352 0 2989 0.4 21365 23.21 4 6
Time slot 6 4000 | 21365 0 3968 0.8 20736 27.65 6 5

Table 3. Hourly analysis of server utilization, the peak hour and Bloom filter size predic-
tion for next time slot for incoming data on a network

5 CONCLUSION

In-stream data analytics works by processing data in a defined time windows. To
accommodate dynamic data and query the hourly information, the proposed frame-
work uses Bloom filter with Ageing Bloom filter properties, i.e., evicting data after
fixed time interval. Partition hashing has been used which leads to less inter-hash
function collision. Further usage of double hashing where only two hash functions
are used to generate all k hash functions decreases the computational overhead.
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A learning array has been introduced which stores the size of Bloom filter required
in the next iteration and Kalman filter has been used to predict the size of Bloom
filter required for the next iteration. Results achieved clearly indicate that the pro-
posed framework performs efficiently for the peak hour analysis and server utilization
analysis.
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