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Abstract. Sensor Clouds have opened new opportunities for agricultural monitor-
ing. These infrastructures use Wireless Sensor Networks (WSNs) to collect data
on-field and Cloud Computing services to store and process them. Among other
applications of Sensor Clouds, frost prevention is of special interest among grapevine
producers in the Province of Mendoza – Argentina, since frost is one of the main
causes of economic loss in the province. Currently, there is a wide offer of pu-
blic cloud services that can be used in order to process data collected by Sensor
Clouds. Therefore, there is a need for tools to determine which instance is the
most appropriate in terms of execution time and economic costs for running frost
prediction applications in an isolated or cluster way. In this paper, we develop mo-
dels to estimate the performance of different Amazon EC2 instances for processing
frosts prediction applications. Finally, we obtain results that show which is the best
instance for processing these applications.

Keywords: Cloud computing, wireless sensor networks, frost prediction, virtual
clusters, sensor clouds, Amazon EC2

1 INTRODUCTION

In the Province of Mendoza, region of Cuyo, Argentina, frost is one of the main
causes of crop damage. This meteorological event causes damage in vineyards and
fruit trees, which are the main agricultural products of the province. In some cases,
like in the year 2013, frost damages affected up to 80 % of crops and resulted in the
economic emergency of the region. Currently, there are different defense methods
that can be used to minimize frost damage, the most commonly used are sprinklers,
heaters and wind turbines [26].

Defense systems are activated by frost alarms, which are provided by Frost
Alarm Systems (FAS). FAS perform on-field data acquisition and data manage-
ment. Moreover, FAS ensure production quality and guarantee crops traceability.
On the one hand, the on-field data acquisition process can be performed using tradi-
tional instruments like thermometers, weather stations or Wireless Sensor Networks
(WSNs) [1, 23]. When making a comparison of traditional measurement instruments
and weather stations, WSNs have the advantage of covering extensive areas with low
cost devices called sensor nodes. This advantage is of special interest when studying
frost due to the dependence of this phenomenon with terrain characteristics, like
presence of weeds, trees or closeness to mountains. Sometimes frost occurrence has
only been observed in a few hectares of the farm (such as those at the base of moun-
tains) while it has not been observed in other hectares of the same farm (such as
those surrounded by trees).

WSNs data management process includes data remote access, storage and data
processing. This process can be reliably and easily performed using Cloud Compu-
ting technologies [2, 10, 12, 13, 19]. The use of Cloud Computing for data manage-
ment allows to incorporate the benefits of this technology (data replication, fault
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tolerance, and resources scalability, among others) to FAS. There are two main rea-
sons for using public Clouds in order to process and store WSNs data. The first one
is the large volume of data generated by WSNs. As an example, in the region of
Cuyo there are up to 170 000 cultivated hectares that can be instrumented with at
least one sensor node per hectare. Therefore, there are 170 000 potential sensors that
can generate data, which must be processed and stored in a proper infrastructure.
The second reason is the traffic bottleneck from the WSNs to an isolated private
data center.

Nowadays, the offer of Public Cloud Services is wide (Google Compute Cloud,
Microsoft Azure, Amazon and others). One of the top providers included in that
offer is Amazon. The Elastic Compute Cloud (EC2) toolkit service [4] provides
different types of virtual machines (also called instances) for data processing and
storage. Due to the wide range of instances offered by Amazon, there is a need
for tools to identify which of these instances has better performance in terms of
execution time and economic cost when processing frost prediction applications. In
addition, these tools can provide information about a better way (single or cluster)
to run these instances in order to minimize economic costs and execution times. In
this paper, we propose a set of models constructed from empirical data that can
be used to estimate the performance and economic costs of Amazon EC2 instances,
applied for processing frost prevention applications. The proposed models allow to
predict which is the instance that can process more sensor nodes in a certain time
when the instance is working isolated. Although there are other costs associated
with the use of Amazon EC2 instances – like the data transfer ones – the target of
our study is the economic costs for WSNs data processing, taking into account that
they are more relevant than the data transfer ones.

This paper is structured as follows: Section 2 introduces Frost Monitoring Sys-
tems based in WSNs. Next, Section 3 discusses related works, while Section 4
describes our application for frost prediction. Then Section 5 presents our perfor-
mance estimation models for each Amazon EC2 instance and the methodology used
to build them. Section 6 discusses the performance of Amazon EC2 instances in
a typical use case; and Section 7, the accuracy of our models in this typical use
case. Section 8 presents experiments about the instances’ performance when they
are executed in virtual clusters. Finally, Section 9 concludes this paper and details
future works.

2 FROST ALARM SYSTEMS BASED ON WSNS

In this section, we provide an introduction of technologies used to perform data
acquisition and management in FAS based on WSNs.

2.1 Data Acquisition with WSN

As shown in Figure 1, sensor nodes are composed of a micro-controller, memory,
different sensors (e.g. temperature and humidity), battery and a radio module.
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Sensor nodes can be interconnected into networks called WSNs, interacting among
them. WSNs are used to study the environment and to acquire different variables
related to weather, like temperature, humidity, pressure, solar radiation and others.

Figure 1. Sensor node based on Arduino Pro 328 board and ZigBee transceiver

Figure 2 illustrates a WSN for frost prediction that is deployed in a farm in the
south of Mendoza, Argentina. In this WSN, data are acquired by source nodes and
sent via ZigBee to a special node (known as sink). The sink node is connected to
a personal computer (PC) or embedded system. The join of both sink node and PC
is also called base station. This base station coordinates all operations of the WSN
and transmits the information collected by sensor nodes to the final user, through
the Internet.

WSN sensor nodes must meet requirements such as autonomy, low power con-
sumption, low cost, robustness and reliability. Unlike traditional wireless net-
works, WSN nodes use communication protocols specifically designed for working
with scarce energy and hardware resources. Some of these protocols are IEEE
802.15.4 [17], 6lowPAN [5] and ZigBee [29]. These ones are not compatible with
TCP/IP networks, therefore, Base Station must include a gateway, which acts as
translator between WSNs and the Internet communication protocols.

2.2 Data Management

Data collected by FAS through WSNs are used to provide solutions to frost preven-
tion damage in crops [24, 27, 28]. Data management process starts when WSN data
are sent to the Internet, then they are stored and processed into Public Clouds in
order to obtain useful information for predicting frost. Next subsections cover the
details of different technologies used to WSN data management.
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Figure 2. WSN for frost prediction in Mendoza, Argentina

2.2.1 Traditional Technologies

Generally, the use of single machines like typical PCs or mainframes is enough to
process low volumes of non-critical WSN data. A typical case of single machine
use is when low volumes of data (in the order of kilobytes) are sent from the base
station (which is deployed in the field) to remote machines. Data transmission can
be achieved using different technologies like TCP sockets [11], RSS services [25] and
others. Next, the outside-WSN machine stores the data and proceeds to run the
processing application.

Although this technology is suitable for processing WSN data, it presents some
problems for processing large volume of data, scaling to a large number of WSN
nodes and ensuring availability 24 hours a day – 365 days a year. A possible solu-
tion to solve these issues is using powerful servers, mainframes and clusters in ap-
propriate data center infrastructures. However, this solution generates prohibitive
economic costs, at least for associations of small farmers. Since the use of tradi-
tional technologies is not always suitable, different authors propose the use of Cloud
Computing services for processing WSN data [2, 10, 12, 13, 19].

2.2.2 Cloud Computing

Cloud Computing is a paradigm for application development and for the use of
computing and storage resources [6]. Through the use of virtualization techniques
and web services, hardware resources and applications can be dynamically provided
to the user.

Foster et al. [7] define Cloud Computing as “A large-scale distributed computing
paradigm that is driven by economies of scale, in which a pool of abstracted, vir-
tualized, dynamically-scalable, managed computing power, storage, platforms, and
services are delivered on demand to external customers over the Internet”. One of
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the main advantages of Clouds is resources scalability. In this way, Clouds can solve
the computational and storage requirements of the applications. Cloud providers
offer their services according to three fundamental models which are described below.

Infrastructure as a Service (IaaS)

Where “service” means resource. Through infrastructure services, users can access
to virtualized high-performance computing (HPC) resources (CPUs and storage de-
vices, among others). The service provider delivers resources to a client in accor-
dance with the specific requirement, such as CPU type and power, memory, storage,
and operating system among other. Amazon EC2 [4] can be cited as an example of
IaaS, being a set of Cloud services which allow to run applications on custom vir-
tual machines (VM) deployed in Amazon data center servers. Amazon offers various
types of VMs with different processing power and memory capability.

Platform as a Service (PaaS)

Where “service” means platform-level functionality. These services provide Applica-
tion Programming Interfaces (APIs) and standard development kits (SDKs) in order
to allow users to develop and implement their own applications for Clouds. Some
examples of these platforms are Google App Engine [8] and Windows Azure [22].

Software as a Service (SaaS)

Where “service” means application. The SaaS Cloud providers deliver applications
that can be accessed by an end user through an Internet connection and a standard
web browser. Furthermore, the applications can be developed with Platform Services
and executed with Infrastructure Services. Among other SaaS, we can cite Google
Drive [9] and SAP Business Suite1.

3 RELATED WORKS

In the last six years, different authors have proposed the use of Cloud technologies
for managing WSNs resources. In [18] Lee et al. describe concepts of Cloud like vir-
tualized resources, SaaS, pay-per-use price model; and apply them to create a Cloud
infrastructure capable of integrating devices with sensing capabilities. This infras-
tructure is called Tangible Cloud and uses Amazon EC2 instances in order to process
data from sensor nodes [19]. In the paper, the authors demonstrate that the plat-
form solves (through resources scalability) the computational power requirements of
environmental monitoring and modeling applications.

Another work proposed by Ahmed and Gregory [2] introduces an integration
framework between WSN and Cloud Computing. The main objective of the pro-
posed framework is to “facilitate the shift of data from WSN to the Cloud Computing

1 http://go.sap.com/solution/cloud.html

http://go.sap.com/solution/cloud.html
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environment”. In addition, the authors suggest that the join of Cloud Computing
with sensor networks allows the possibility of WSNs data storage in publics do-
mains. Then different users and applications can access to the sensors’ information,
resulting in a better data usage.

Aneka is another platform to integrate WSN into Clouds [10]. Aneka uses re-
sources of Private and Public Clouds in order to provide support to applications of
smart environments, including health-care, transportation, monitoring and others.

Regarding the use of Clouds in agricultural environments, Hirafuji et al. [12] de-
veloped an Ambient Sensor Cloud System for High-throughput Phenotyping. This
platform allows the storage and access to data collected by means of sensor nodes
using Twitter Cloud services. The main goal of the system is to provide a simple and
economical solution to solve the access and storage of large datasets from various
sensor nodes. Hori et al. [13] present a commercial solution to storage and pro-
cess WSNs data. The platform allows the integration with business management,
production history, traceability and good agricultural practice systems provided as
a SaaS model.

In [20] Mazurek and Fukuda present MASS, a library for multi-agent spatial
simulation and parallelizing temperature prediction programs. The authors propose
the use of MASS for the processing of sensor data “on the fly”. This library allows
the parallelization of frost prediction models, which is necessary in order to min-
imize the execution times of frost prediction methods. MASS can work in Cloud
Computing in multi-core instances and virtual clusters. The authors implement the
library and a frost prediction method based on Artificial Neural Networks, Predic-
tion Polynomials and Inverse Distance Weighting. Finally, they prove that MASS
parallelism improves the performance of frost prediction methods by 55 %.

Dinh and Kim present in [21] an efficient interactive model designed for providing
WSNs services to multiple applications on Sensor Clouds. The model proposed by
Dinh and Kim has three main goals: providing on-demand WSN services to different
applications at the same time, minimizing the number of requests sent to physical
sensor nodes, and optimizing energy consumption on WSN nodes. This model could
be applied in agriculture because one of the main issues of agricultural WSNs is the
minimization of battery consumption on sensor nodes.

Based on the works studied in this section, it can be concluded that Cloud is
a promising technology for solving the management and processing of data in WSN’s
based FAS. Although most of the studied works use Amazon EC2, to the best of
our knowledge, there are no works oriented to model the performance and economic
cost of Amazon EC2 instances when they are processing agricultural monitoring
applications.

4 FROST PREDICTION APPLICATION

In this section, the frost prediction application (FPA) is introduced. The main
objective of this application is to compute the minimum temperature reached during
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the night. Then, according to this temperature value, frost occurrence on the farm
can be predicted. The section is organized as follows. In Subsection 4.1, we present
the method for frost prediction used in our application. Next, in Subsection 4.2 the
application implementation is detailed.

4.1 Frost Prediction Method

The application was developed using the frost prediction method (FPM) belonging
to Snyder and Melo-Abreu [26], which is based on Allen’s equation [3]. The FPM
predicts the minimum temperature that will occur in nights without both clouds
and cold fronts. Therefore, it is only suitable to predict radiation frosts.

In order to carry out the prediction, the method takes temperature, humidity
and dew point from days on which radiation frosts occurred. These days must
belong to the month in which the prediction is performed (regardless the year). In
this paper, we use data from a historical ten-year dataset. In addition, FPM needs
the temperature, humidity and dew point recorded two hours after sunset in the
prediction day.

Formally, the minimum temperature is calculated by the following linear regre-
ssion (LR) equation:

Tp = sT ∗ To + sD ∗D0 + i (1)

where Tp is the minimum temperature to be predicted. To is the temperature and
D0 dew point, both recorded the same day of the prediction two hours after sunset.
Finally, i is the LR intercept, sT temperature slope and sD dew point slope. The
values of sT and i are calculated from the Equations (2) and (3), respectively.

sT =

∑
(Th0 − T̄h0)(Tm − T̄m)∑

(Th0 − T̄h0)2
, (2)

i =

∑
Tm − sT

∑
Th0

n
(3)

where Th0 are historical temperatures recorded two hours after sunset, Tm minimum
temperatures that occurred in the night, and n is the number of historical data.
Finally, T̄h0 and T̄m account for the average data temperatures.

The slope sD is calculated by using the Equation 4.

sD =

∑
(Dh0 − D̄h0)(R− R̄)∑

(Dh0 − D̄h0)2
(4)

where Dh0 are historical dew points two hour after sunset and R the residuals. The
parameters D̄h0 and R̄ are the average of Dh0 and R, respectively. Finally, the
residual is calculated with the expression: R = Tm − sT ∗ To + i.
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4.2 Application Implementation

In order to develop the FPA, we have implemented the Snyder and Melo-Abreu [26]
FPM, using Java and MySQL. MySQL was used to store the data collected by
sensor nodes and the results obtained after running the FPM. The application was
executed using Amazon EC2 instances.

The integration of WSN data with Cloud infrastructures was performed with
a WSN – Cloud integration platform called Sensor Cirrus [14, 15, 16]. Sensor Cirrus
manages the WSN data using Cloud services and includes the developed FPA for
data processing.

Figure 3 illustrates a scheme corresponding to the implemented FPA. The in-
formation collected by WSN sensors on the field is stored in a proper database, as
it is seen in process (1). Next, in process (2), the application performs a query to
catch a sample of fifty days in which the radiation frost has happened. This sample
includes all the collected data (temperature, humidity, solar radiation, and wind
speed, among others) by the WSNs. Then in process (3) the application retrieves
only the FPM input data (To, Do, etc.) from the sample of fifty days. Finally, in
process (4) the FPM is executed on Amazon EC2 instances, providing the minimum
temperature that would occur the following night (5). Process (4) can be performed
using a single Amazon EC2 instance to process the FPM or using several instances
working in parallel on a cluster of virtual machines.

Figure 3. Frost prediction application
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Figure 4 illustrates the processing of FPA on a virtual cluster. Within the FPA,
processing tasks are distributed equitably on each virtual cluster node. Each job
consists of processing a sensor node, therefore in each instance the same number
of sensor nodes is processed. Hence, for processing 1 000 sensor nodes in a cluster
of 4 instances, the master node of the cluster sends data from 250 sensor nodes
to each slave node. Then those data are processed in order to determine the frost
occurrence probability.

Figure 4. Processing of FPA on a cluster of Amazon EC2 instances

5 PERFORMANCE ESTIMATION MODELS

In this section, we present our models to estimate the performance of EC2 instances
for processing FPA. The methodology used to construct the models is the following:
first, we execute the FPA in each instance to obtain empirical results of performance
metrics, specifically execution time and economic cost. Then we use polynomial ex-
pressions and empirical results in order to generate the performance models. Finally,
we draw conclusions about the accuracy of the proposed models.

5.1 FPA Execution

The execution consists of running the FPA in different Amazon EC2 instances and
measuring the execution time. In order to obtain the average value of the execution
time, the procedure is repeated four times for different number of sensor nodes
(from 10 to 1 000) in each instance. Finally, we use the average execution time and
the Amazon’s pricing list to calculate the economic cost required to execute the
application.

Table 1 details the four instances to be modelled. Each row in Table 1 represents
a different instance type, i.e., m1.small, m1.large, m1.xlarge and c3.xlarge. Each



Performance Models for Frost Prediction in Public Cloud Infrastructures 825

column of the same table indicates the instance characteristics, i.e., number of virtual
CPUs (vCPUs), Amazon EC2 Compute Unit (ECU), Memory (expressed in GBytes)
and Instance Pricing. Regarding the Amazon’s pricing model used in our work, we
use the “on demand” pricing model. It is worthy of remark that in this paper we
do not make an analysis of the accuracy of the minimum temperature predicted by
the FPA. However, based on agronomists’ experience, we can affirm that an error of
+/−1.5 Celsius degrees is an acceptable error value to predict frost, and the used
FPM meets this requirement.

Amazon vCPUs ECU Memory Pricing
EC2 Instance [GBytes] on demand [US$]

m1.small 1 1 1.7 0.047
m1.large 2 4 7.5 0.190
m1.xlarge 4 8 15 0.379
c3.xlarge 4 14 7.5 0.239

Table 1. Tested Amazon EC2 instances

The application execution allows to obtain empirical performance results in each
EC2 instance. This execution was performed using the Screen window manager2 in
each tested Amazon EC2 instances. Screen multiplexes a physical terminal between
several virtual terminals. Thanks to Screen, a process executed in a virtual terminal
can be run completely and independently of any other terminal process executed in
the same physical machine. In this work, we use Screen because it allows to avoid
the influence of the SSH connection in the FPA execution, since we have noticed
that the SSH connection affects the execution of the application. In some cases,
SSH connection delays increase the execution time of frost prediction application;
while in others, an interruption in SSH connection halts the application execution.
Figure 5 illustrates the empirical results obtained from the FPA execution on each
instance. Particularly, Figure 5 a) shows the execution time versus the number of
processed sensor nodes, and Figure 5 b) details the economic cost versus the number
of processed sensor nodes.

In Figure 5 a), it can be observed that m1.large is the instance that has achieved
the shortest execution time for the frost prediction application. In other words, when
processing up to 200 sensor nodes, the m1.large instance performance is noticeable.
For more than that number of sensors, the m1.large performance becomes similar
to the m1.xlarge and c3.xlarge performances. Furthermore, results show that for
multiprocessor machines, like m1.large and c3.xlarge, the processing times decrease
for 30 and 40 sensor nodes, respectively. Regarding the observed decrease, the one
in m1.large instance is lower (about 9 % over the previous calculation) than the one
in c3.xlarge instance (20 % compared to the previous point).

Analysis of hardware features of such instances (m1.large and c3.xlarge) shows
that they have:

2 https://www.gnu.org/software/screen/

https://www.gnu.org/software/screen/
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a) Execution times b) Execution costs

Figure 5. Empirical results

1. two and four vCPUs, respectively, and

2. the same RAM memory (7.5 GBytes).

It can therefore be concluded that the decrease of processing times could be due to
the load balancing between processors and the access to shared resources such as
memory, and buses, among others.

Figure 5 b) shows the empirical economic costs. It can be verified that economic
costs are the same from 10 to 400 nodes. Since Amazon sets the pricing of instances
per hour of use, the cost is the same provided the processing time is less or equal
than one hour. In a like manner, for processing times longer than one hour but
shorter than two hours (for example 800 to 1000 nodes), the cost value is similarly
doubled and so on.

5.2 Performance Estimation Models

In this subsection, we introduce the proposed models in order to estimate each ins-
tance performance when running the FPA in single way. These models are obtained
through polynomials up to second degree of the form:

t = ax2 + bx + c

where x is the number of sensor nodes processed and t is the estimated execution
time. The values of the coefficients a, b and c for each scenario are shown in Table 2.
These coefficients are obtained by statistical approximation using polynomials (up
to second degree) applied to results obtained in Subsection 5.1.

In order to evaluate the proposed models we calculate the execution time and
economic cost for each instance. Figure 6 shows a comparison of the empirical
execution times and the ones predicted with our performance models for each tested
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Amazon EC2 Instance a b c

m1.small 1.84 × 10−6 1.78 × 10−1 1.80
m1.large 6.02 × 10−6 6.50 × 10−2 9.98 × 10−1

m1.xlarge 1.40 × 10−5 8.24 × 10−2 2.25
c3.xlarge 1.66 × 10−5 6.73 × 10−2 2.59

Table 2. Coefficients of theoretical model of each instance

instance. Figure 7 illustrates the comparison between empirical and theoretical
economic costs for the same instances.

Specifically, Figure 6 shows that execution times calculated through the pro-
posed model differ in seconds or few minutes (depending on the instance) from the
ones obtained through experiments. Then the proposed models are able predict the
results with a reasonably good accuracy.

Regarding economic cost, a particular case is when execution times are close to
an hour. In this situation, if the execution time calculated by the model is longer
than one hour, the costs predicted by the model will be twice those empirical ones.
This is because the price of EC2 instances is fixed per hour of use, as it is here
in above explained. Likewise, if the model predicts less time than one hour, the
corresponding calculated cost would be half of the empirical costs. However, when
the proposed model is used, this situation does not happen, so we can say that the
accuracy of the models regarding economic cost is suitable.

6 INSTANCE PERFORMANCE IN TYPICAL USE CASE

In order to select the instance with the best performance for running FPAs, we
present in this section a comparison of a typical use case of frost prediction. The
typical use case consists of WSNs deployed in different farms in the Province of
Mendoza. The prediction is made for one day of July because this month belongs
to the frost season, which begins in April and ends in October.

The FPA runs in a single instance of the Cloud and predicts the minimum
temperature, allowing the agronomist’s alert. Finally, the agronomist decides if the
guard procedure against frosts must be conducted. Frost guard procedure consists
in moving the staff to the farm and wait for the specialist’s decision – based on data
collected in real time – to activate proper defense systems, like heaters, sprinklers
or wind turbines.

Data Processing time constraint is another aspect to take into consideration.
Frost prediction application can only be launched after the measurement of T0 tem-
perature, which is obtained on the day of the prediction, specifically two hours after
sunset. During the month of July in Mendoza province, the sunset takes place at
7.00 pm approximately, then T0 temperature must be taken at 9.00 pm. Additio-
nally, because of logistics, the frost defense system requires estate farm staff to be
alerted before 10.00 pm. According to the above-mentioned reasons, the maximum
execution time allowed for the application must be less or equal to one hour.
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a) M1.small instance b) M1.large instance

c) M1.xlarge instance d) C3.xlarge instance

Figure 6. Execution times comparison in tested Amazon EC2 instances

Table 3 shows the execution cost and the number of nodes processed by each
EC2 instance model, for one hour predicted by the proposed performance models.

Amazon EC2 Instance Nodes Economic Cost [US$]

m1.small 324 0.047
m1.large 841 0.190
m1.xlarge 632 0.379
c3.xlarge 722 0.239

Table 3. Processed sensor nodes in one hour predicted by performance models

Results demonstrate that the instance m1.large is the most suitable machine
for this application type. The reason is because the m1.large is the machine that
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a) M1.small instance b) M1.large instance

c) M1.xlarge instance d) C3.xlarge instance

Figure 7. Economic costs comparison in tested Amazon EC2 instances

can process the largest number of sensor nodes in one hour and its economic cost is
smaller than those belonging to the m1.xlarge and c3.xlarge instances. Therefore,
results presented in Table 3 suggest that m1.small instance can be used in parallel
for processing more sensor nodes at a lower economic cost than what the m1.large
machine is able to. Thus, the need to conduct more experiments in order to study
the model accuracy of this instance in the typical use case becomes apparent.

7 ACCURACY OF MODELS FOR TYPICAL USE CASE

Execution times and costs are predicted by the proposed models through statis-
tical approaches, hence it is necessary to perform experiments with the purpose
of studying the accuracy of these models for a specific number of sensor nodes.
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This section discusses the theoretical performance model accuracy of m1.small and
m1.large instances for the typical use case presented in Section 6.

This section is organized as follows. Subsection 7.1 details the execution of
the FPA for the number of sensor nodes that can be processed in each instance in
one hour. Next, Subsection 7.2 presents a comparison between the execution times
obtained in Subsection 7.1 and the ones predicted through theoretical models. The
main objective of the comparison is to calculate the errors of the models for the
typical use case. Then, based on these errors, we can correct the number of sensor
nodes that can be processed in one hour. Finally, in Subsection 7.3 the FPA is
executed for the corrected number of sensor nodes in each instance.

7.1 FPA Execution for Best Instances

This subsection details the results obtained through the execution of the FPA in
m1.small and m1.large instances. These instances are selected because they can
process more sensor nodes than the m1.xlarge and c3.xlarge instances, in an isolated
way (m1.large) or parallel way (m1.small) at lower prices. The experiments are
conducted in each instance (running single) for the number of sensor nodes that can
be processed in one hour, predicted by theoretical performance models. In order to
obtain the average value of execution time, the FPA is executed four times in each
Amazon EC2 instance.

Table 4 presents the average execution times obtained by the execution of the
FPA in each instance.

Amazon EC2 Instance Nodes Average Execution Time [min]

m1.small 324 48.77
m1.large 841 53.30

Table 4. Empirical execution times obtained for typical use case

7.2 Comparison of Models and Experimental Results

In order to determine the error of the proposed models, Table 5 shows a comparison
between the empirical execution time and theoretical execution time obtained in
the m1.small and m1.large instances. Column two details the number of sensor
nodes processed in each instance, columns three and four show the execution times
predicted with theoretical models and experiments, respectively. Finally, column
five presents the error percentage observed between empirical results and theoretical
models for each instance.

Experiments conducted in m1.small instance detailed in row two of Table 5 show
that the error between the theoretical time and empirical time is 18.83 %. Results of
experiments conducted in m1.large instance showed in row three of Table 5 present
an error of 11.16 % between the empirical time and theoretical execution time.
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Amazon Nodes Theoretical Execution Empirical Execution Error
EC2 Instance Time [min] Time [min] [%]

m1.small 324 60 48.77 18.83
m1.large 841 60 53.30 11.16

Table 5. Comparison between empirical and predicted execution times for typical use case

7.3 Execution of FPA for Theoretical Corrected Results

Errors observed in our models allow the correction of the number of sensor nodes
that can process each instance in one hour (typical use case). Table 6 shows the
corrected number of sensor nodes that can be processed in m1.small and m1.large
instances in a typical use case. Column two of Table 6 presents the predicted
number of sensor nodes, Column three details the corrected number of sensor nodes
and Column shows four errors used for correcting the number of sensor nodes.

Amazon Predicted Number Corrected Number Error
EC2 Instance of Sensor Nodes of Sensor Nodes [%]

m1.small 324 385 18.83
m1.large 841 934 11.16

Table 6. Correction of processed sensor nodes for typical use case

Once the number of sensor nodes to process in an hour is corrected, we conduct
the execution of FPA for those values. Table 7 shows execution times obtained
through experiments conducted in m1.small and m1.large instances for corrected
sensor nodes.

Amazon Processed Sensor Empirical Execution
EC2 Instance Nodes Times [min]

m1.small 385 54.88
m1.large 934 58.40

Table 7. Processed sensor nodes for typical use case

Row two of Table 7 presents the number of experiments conducted in m1.small
instance. Results show that this machine can process 385 sensor nodes in 54.88
minutes, reason why we can affirm that theoretical models have been fixed correctly
for typical use case in m1.small instance.

Row three of Table 7 details the execution times when FPA is executed consi-
dering the new number of nodes in m1.large instance. Like the m1.small instance,
the obtained execution time (58.40 min) has validated the correction made in the
theoretical model.
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8 FPA EXECUTION IN VIRTUAL CLUSTERS

Experiments conducted in Subsection 7.3 determine the Amazon EC2 instance that
can process more sensor nodes when working in an isolated way (m1.large). However,
the above mentioned experiments suggest that m1.small instances can be used in
parallel through a virtual cluster for processing larger number of sensor nodes at
lower cost than the instance m1.large. In this section, we perform experiments in
order to determine how many sensor nodes can be processed in m1.small instances
when they are executed in parallel. The execution is conducted considering a virtual
cluster for which the hour price is lower than a m1.large instance hour price.

The experimental methodology is the following: first, we consider the number
of sensor nodes that can be processed by each instance in one hour, working in
an isolated way. Then we implement a virtual cluster composed of the number of
virtual machines whose total cost is less than 0.19 US$ (an m1.large instance’s hour
price). Next, the FPA is processed in each node of the virtual cluster for the number
of sensor nodes that can process each slave node (instance) in an hour. Finally, the
run time is measured in each execution. The experiment is achieved four times in
the virtual cluster in order to obtain the average execution time.

Table 8 shows the number of sensor nodes processed using the m1.small instance
on a virtual cluster. Second and third columns show the number of processed sensor
nodes and slave nodes (instances) used in parallel way, respectively. Fourth column
indicates the recorded execution time, and finally fifth column shows the resulting
economic cost of FPA executed in the virtual cluster.

Amazon Sensor Instances Executed Execution Time Economic Cost
EC2 Instance Nodes in Parallel [min] [US$]

m1.small 1 540 4 57 0.188

Table 8. Execution times of virtual cluster in a typical use case

Making a comparison with the results obtained for m1.large instance from Ta-
ble 7, the results in Table 8 indicate that m1.small cluster can process 606 more
sensor nodes than one m1.large instance in one hour at lower economic cost. This
result is obtained using four m1.small instances in parallel way. Furthermore, the
recorded average execution time is 57 minutes, which fulfills the time constraint
requirement defined in the typical use case.

9 CONCLUSIONS AND FUTURE WORKS

In this paper, we have studied the use of Amazon EC2 instances for frost predic-
tion. In the first place, we have presented an application developed to predict the
occurrence of frost based on data collected on-field by Wireless Sensor Networks.
This application has been used to generate performance models of different Amazon
EC2 instances when they were applied to process frost prediction applications. The
metrics used to evaluate the performance were execution time and economic cost.
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In order to generate the models, we have conducted experiments in four test
scenarios. Each scenario has corresponded to a different Amazon EC2 instance.
The obtained model of each instance was compared with empirical data of the frost
prediction application executions. From the results, we have concluded that the
proposed models were suitable to estimate both the execution time and the economic
cost. However, the proposed models have presented some problems when they have
been used to predict economic cost and execution time in a specific number of sensor
nodes. That was why we have performed more tests in a typical application case,
allowing us to determine the models’ errors. These experiments have been only
performed for the instances with better performance working in a single (m1.large)
or parallel way (m1.small).

Experiments conducted in a typical use case have showed that models’ error
were 18.83 % and 11.16 % for m1.small instance and m1.large instance, respectively.
Once the error of each model has been determined, the number of sensor nodes
that could be processed in the typical use case has been corrected. Then we have
performed tests to validate if the corrected number of sensor nodes were fulfilling
the time constraints of typical use case. Results have showed that the models were
fixed correctly, then m1.small and m1.large instances were able to process 385 and
934 sensor nodes, respectively, in an hour.

A typical use case has been used to determine which instance working in an
isolated way was more suitable for processing frost prediction applications. Results
have showed that the m1.small instance and m1.large were the correct instances to
use for WSNs made up by 140–385 and by 386–934 sensor nodes, respectively.

While the m1.xlarge and c3.xlarge were the instances with the best performance,
we have not observed important differences in the performance when comparing
them to the other tested instances. Moreover, if we also consider the m1.xlarge and
c3.xlarge high costs, their use is not recommended for this type of applications.

The execution of frost prediction application in individual machines have allowed
us to determine that for the case of WSNs – made up by more than 934 sensor nodes –
multiple EC2 instances were to be used in parallel way to run the application. Hence,
we have performed an experiment on a virtual cluster. The virtual cluster was
composed of four m1.small instances. These instances have been selected because
they were able to process more than 934 sensor nodes running in parallel way at
a cost lower than the best instance running in single way (m1.large) in the typical
use case.

Results of experiments on virtual clusters have showed that the m1.large cluster
can process 1 540 sensor nodes in one hour. Consequently, taking into account the
above mentioned number of WSNs sensor nodes, we can affirm that the m1.large
cluster is more suitable because it allows the processing of data from more sensor
nodes than one single m1.large instance.

In conclusion, this paper demonstrates that second degree polynomials are a sim-
ple and suitable way to estimate the performance of Amazon’s EC2 instances. Re-
garding future works: first, we are going to improve the frost prediction application
for parallel execution. Next, we will continue the validation of our models by study-
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ing the processing of the frost prediction application on virtual clusters scheduled
with algorithms based on meta-heuristics and managed by specific Cloud tools like
Star Cluster. The purpose of these future experiments is to extend the proposed
models to estimate not only how many machines are needed to optimize the execu-
tion time/economic cost relationship for frost prediction applications but also how
these machines should be managed.
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