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Abstract. In this paper, we investigate the relationship between the concept lattice
and quotient space by granularity. A new framework of knowledge representation
– granular quotient space – is constructed and it demonstrates that concept lattice
classing is linked to quotient space. The covering of the formal context is firstly given
based on this granule, then the granular concept lattice model and its construction
are discussed on the sub-context which is formed by the granular classification
set. We analyze knowledge reduction and give the description of granular entropy
techniques, including some novel formulas. Lastly, a concept lattice constructing
algorithm is proposed based on multi-granular feature selection in quotient space.
Examples and experiments show that the algorithm can obtain a minimal reduct
and is much more efficient than classical incremental concept formation methods.
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1 INTRODUCTION TO THE FIELD

FCA (Formal Concept Analysis) is usually called concept lattice. It is a mathemat-
ical framework for discovery and design of concept hierarchies from an information
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system called a formal context [10]. All concepts in a formal context form a con-
cept lattice and can be depicted by the Hasse diagram, where each node expresses
a formal concept. The concept lattice is the core structure of data in formal concept
analysis, from which a set of objects and a set of attributes are uniquely reflected
from each other and the relations between the generalized concept and the spe-
cialized concept are described. Formal concept analysis is an important theory for
data analysis and knowledge discovery [8, 4, 6, 14, 21, 3]. Many researchers have
done some research about the concept lattice and granular computing. Wu [11]
introduced attribute granules in formal contexts. The mathematical structure of at-
tribute granules was investigated. Based on the theory of concept lattice and fuzzy
concept lattice, Zhang et al. [20] established a mathematical model of a concept
granular computing system. And various variable threshold concept lattices and
fuzzy concept lattices were then investigated. For this research, concept granules,
sufficiency information granules and necessity information granules which were used
to express different relations between a set of objects and a set of attributes were
proposed. Approaches to construct sufficiency and necessity information granules
were also shown. Wu et al. [12] proposed a granular consistent set and a granular
reduct in the formal context. Discernibility matrices and Boolean functions were,
respectively, employed to determine granular consistent sets and calculate granular
reducts in formal contexts. Based on granular computing theory, Zhang et al. [19]
proposed a new formal concept analysis method with various granularity levels of
attributes. Many theorems and relationships among the concept lattices and its sub-
lattices generated from formal context with various granularity levels of attributes
were analyzed in detail. Yao et al. [15] proposed a framework for studying a par-
ticular class of set-theoretic approaches to granular computing. They thought that
a granule was a subset of a universal set, a granular structure was a family of sub-
sets of the universal set, and the relationship between granules was the standard
set-inclusion relation. Qiu et al. [7] introduced extent-intent and intent-extent op-
erators between two complete lattices and established a mathematical model for
concept granular computing system. They proved that the set of all concepts in this
system was a lattice with the greatest element and the least element. This frame-
work included formal concept lattices from formal contexts, L fuzzy concept lattices
from L fuzzy formal contexts and three kinds of variable threshold concept lattices.
Other studies for the extension of concept lattice models for granular computing are
also underway [5, 9, 17, 22].

2 RELATED WORK

The basic idea of the quotient space mainly describes a class of problems through
a triple [16, 18], such as (X, fa, T ), where X represents the universe, fa represents
the set of attributes in the universe, T is the topological structure of X and repre-
sents relationships between members in the universe. The solution of the problem
can be regarded as discussing the universe X, the attributes and related structures.
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Given a special size, i.e. when a special equivalence relation is confirmed, we would
get a corresponding quotient set [X]. Then we can define the triples ([X], [fa], [T ])
as the quotient space which relates with R, where [fa] and [T ] correspond respec-
tively to quotient attribute function of quotient set X and quotient structure. If we
combine different quotient sets with the corresponding quotient spaces, we will get
the world of different sizes for the problem. The purpose of quotient space theory is
to study the relationship of the quotient spaces, the decomposition, comprehension
and combination of the quotient space, and the reasoning between and within the
quotient spaces. In this theoretical system, granulation, computing and processing
are the basic problems.

In the concept lattice (definition in Section 4), thanks to X ⊆ U , B∗ ⊆ U ,
B ⊆ A, X∗ ⊆ A, so X,B∗, B and X∗ are part of the whole, they can be regarded as
the visual granules of formal context (U,A, I). Therefore, it shows that the concept
lattice is closely related to the visual granules X, B, X∗, B∗. This is the important
reason when the concept lattice is seen as the granular computing. As the results of
the current research, the concept lattice combined with the quotient space has not
yet been reported.

3 PAPER OBJECTIVE

Quotient space and concept lattice are generally regarded as important researches
on granular computing because they all can be described by abstract granules. Our
objective is to provide an approach to organizing information for constructing con-
cept lattice, complementing granular computing-based direct search. Our research
will provide a way for formulization on granular computing.

This paper is organized as follows. In Section 4, we study the concept repre-
sentation mechanisms involved in the lattice model of granular computing. They
directly produce the granular quotient space. Section 5 gives the description of
granular entropy techniques, including some novel formulas. It can be used to com-
pute the minimal reduct. Section 6 explains the results of empirical study to apply
proposed algorithm of constructing concept lattice. Sections 7 describes our future
works and draw conclusions.

4 CONCEPT LATTICE AND QUOTIENT SPACE

Now, we first introduce the definition of the formal concept analysis [2].
A formal context is a triple (U,A, I), where U = {u1, u2, . . . , un}. U is called the

universe of discourse, a nonempty and finite set of objects. A = {a1, a2, . . . , am} is
a nonempty and finite set of attributes, and I ⊆ U×A is a binary relation between U
and A with (x, a) ∈ I indicating that the object x owns the attribute a.

For X ⊆ U and B ⊆ A, let us define a pair of operators “∗”: X∗ = {a ∈ A|∀x ∈
X, (x, a) ∈ I}, B∗ = {x ∈ U |∀a ∈ B, (x, a) ∈ I}. That is, X∗ is the maximal family
of the attributes that all the objects in X have in common and B∗ is the maximal
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family of the objects shared by all the attributes in B.

Definition 1 ([2]). Let (U,A, I) be a formal context. For X ⊆ U and B ⊆ A, the
ordered pair (X,B) is called a formal concept (or simply a concept) if it satisfies
X∗ = B and B∗ = X. Here, X∗ and B∗ are termed, respectively, as the extent and
the intent of the formal concept (X,B). The set of all formal concepts of (U,A, I)
is denoted by κ(U,A, I).

The fundamental theorem of FCA states that the set of all formal concepts
on a given context with the ordering (X1, B1) ≤ (X2, B2) if and only if X1 ⊆ X2

is a complete lattice called the concept lattice, in which the infima and suprema

are given by
∧

i∈J(Xi, Yi) =
(⋂

i∈J Xi,
((⋃

i∈J Yi
)∗)∗)

=
(⋂

i∈J Xi,
(⋂

i∈J Xi

)∗)
),∨

i∈J(Xi, Yi) =
(((⋃

i∈J Xi

)∗)∗
,
⋂
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=
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)∗)
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⋂
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We have following definition, when the attribute of concept lattice is not binary
attributes (0, 1) but the multi-valued attributes.

Definition 2 ([27, 26, 28]). A quadruple (U,A, V, f) is called an information sys-
tem, where:

• U is a non-empty finite set of objects;

• A is a non-empty finite set of attributes;

• V =
⋃

a∈A Va, where Va is a value-universe of the attribute a;

• f : U ×A→ V is an information function, such that for all a ∈ A and x ∈ U it
holds that f(x, a) ∈ Va.

If f is a total function, i.e. f(x, a) is defined for all x ∈ U and a ∈ A, then the
information system is called complete; otherwise it is called incomplete.

We can study the so-called concept knowledge system if the power sets of objects
and attributes meet some relations in the information system.

Definition 3 (Concept knowledge system [6]). A concept knowledge system can be
defined as a four-tuple: (U,A, L,H). Here U is a finite nonempty object set. A is
a finite nonempty attribute set. P (U) is the power set of U . P (A) is the power set
of A. X1, X2 ⊆ U ;B1, B2 ⊆ A.

• L : P (U) −→ P (A) is called extension-intension operator if L satisfies (L1)
L(∅) = A; L(U) = ∅; (L2)L (X1

⋃
X2) = L(X1)

⋂
L(X2). L(X) is a common

attributes set of X.

• H : P (A) −→ P (U) is called intension-extension operator if H satisfies (H1)
H(∅) = U ; H(A) = ∅; (H2)H (B1

⋃
B2) = H(B1)

⋂
H(B2). H(B) is a common

objects set of B.

Further, it meets (LH) : H(L(X)) ⊇ X,L(H(B)) ⊇ B.
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Definition 4 ([6]). Let (U,A, L,H) be a concept knowledge system, X ⊆ U and
B ⊆ A. The pair (X,B) is called a concept, which is known as the granular concept
if X = H(B), B = L(X). =(U,A, L,H) = {(X,B)|H(B) = X,L(X) = B} is the
set of all granular concepts.

The concept knowledge system is an extension of general information system.
It shows that any object set and any attribute set can be constituted as a concept
information granule and even a concept by iteratively computing. This process
describes the procedure of human cognition step by step.

Definition 5 ([6]). Let (U,A, L,H) be the concept knowledge system, X ⊆ U and
B ⊆ A, the pair (X,B) is called a concept information granule if X ⊆ H(B), B ⊆
L(X).

Theorem 1 ([6]). Let (U,A, L,H) be a concept knowledge system. The knowledge
system generated by formal context (U,A, I) is the same as (U,A, L,H).

We can set up a problem space for the objective of our study. The aim of representing
a problem at different granularities is to enable the computer to solve the same
problem at different granularity hierarchically.

Definition 6 (Quotient space [18]). Let (X, fa, T ) be a problem space. Suppose
that X represents the universe with the finest granular size. There is a coarse-
granular universe denoted by [X] that forms a new problem space ([X], [fa], [T ]).
([X], [fa], [T ]) is called a quotient space of (X, fa, T ).

Quotient space theory is a new kind of mathematical tool to deal with problems
based on different grain sizes. The problem here is with a triple (X, f, T ), where X
is a set of objects, known as the universe, f is a function of X for the universe. f(u)
said attribute values u related problems when u ∈ X. The function f(u) generally
depends on the specific situation. T is made up of a subset of the universe X. It
forms the topological structure [31]. For example, a given problem (X, f, T ), R is
equivalence relation on X. So get the division [X] = {X1, X2, . . . , Xn} of R about X,
coupled with the topological T , we can get the quotient space ([X], [f ], [T ]). The
[f ] is the function of [X] as the universe. For Xi ∈ [X], function value [f ](Xi) is
determined by values that f acts each element in the X, and the determination
method to different problem may be different. [T ] is the quotient topology. Its
generation method is as follows:

• Let p : X → [X] be a function from X to [X], makes for x ∈ X, if x ∈ Xi, then
p(x) = Xi. [T ] = {Y |Y ⊆ [X] and p−1(Y ) ∈ T}. Here p−1(Y ) said the original
image set of Y about p. It can be proved that [T ] is the topology on [X] [31],
called [T ] the quotient topology on [X]. Due to the element in the [X] is the
equivalence class, so the quotient space ([X], [f ], [T ]) is closely related to the
equivalence relation. Equivalence class is the part of X, can be seen as intuitive
grains of problems (X, f, T ). It is natural that [X] is determined by the intuitive
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grain. So the structure of the quotient space ([X], [f ], [T ]) embodies the grain to
approximate the problems (X, f, T ). Since the different equivalence relation for
different quotient space, so one of the most important aspects of the quotient
space theory is the relation between quotient spaces, such as all the quotient
space corresponding equivalent relations on X, and contain relations between
equivalent relation form a lattice [30, 23].

Definition 7. Let G be a visual granule of the universe. If there is space
〈U, Form(U)〉 and n-formula (n ≥ 1), ϕ ∈ Form(U), such that G = |ϕ|, then
G can be described in granular space 〈< U,Form(U)〉.

Theorem 2 (Formal context to quotient space). Let (U,A, L,H) be a concept
knowledge system generated by formal context (U,A, I), X ⊆ U and B ⊆ A. Then
([U ], I, [A]) constitutes quotient space. Granule L(X)(⊆ A) and H(B)(⊆ U) can be
described in the quotient space.

Proof. Since I ⊆ U × A, we can obtain B = L(X) ⊆ A for ∀X ⊆ U , that
is, X∗ = B,B∗ = X. There exists X∗ = B = L(X). So, I is f . ([U ], I, [A])
constitutes the quotient space. For ([U ], I, [A]), [U ] corresponds to granular space
〈[U ],Form([U ])〉, where Form([U ]) is the set of logical formulas on [U ].

If using Q to represent X, then Q(x, a) ∈ Form([U ]) for a ∈ A, x ∈ [U ], and
Q(x, a) is an atomic formula on [U ]. Q(x, a) = {x|x ∈ [U ] and 〈x, a〉 ∈ Q} =
{x|x ∈ [U ] and 〈x, a〉 ∈ I}. Let B = {ai1 , ai2 , . . . , air}, H(B) = {x|x ∈ [U ] and
〈x, a〉 ∈ I for ∀a ∈ B} = {x|x ∈ [U ] and 〈x, ai1〉 ∈ I} ∩ {x|x ∈ [U ] and 〈x, ai2〉 ∈
I} ∩ . . . ∩ {x|x ∈ [U ] and 〈x, air〉 ∈ I} = {x|x ∈ [U ] and 〈x, ai1〉 ∈ Q} ∩ {x|x ∈ [U ]
and 〈x, ai2〉 ∈ Q} ∩ . . . ∩ {x|x ∈ [U ] and 〈x, air〉 ∈ Q} = Q(x, ai1) ∩ Q(x, ai2) ∩
. . . ∩ Q(x, air) = Q(x, ai1) ∧ Q(x, ai2) ∧ . . . ∧ Q(x, air). If we let ϕ(x) = Q(x, ai1) ∧
Q(x, ai2) ∧ . . . ∧ Q(x, air), ϕ(x) ∈ Form([U ]), H(B) = ϕ(x). Therefore, granular
H(B)(⊆ U) can be described in the quotient space. Similarly, we can prove L(X).
2

The attributes set A in (U,A, V, f) can be divided into several disjoint subsets
with equivalence relation. Each subset is an equivalence class of an attribute. The
equivalence classes that constitute quotient space form a lattice.

Theorem 3. Let (U,A, V, f) be an information system, P (A) be a power set of A.
Then a quotient space can be constituted by B ∈ P (A) on A. And all quotient
spaces and containing relations between the equivalence relations form a lattice.

Proof. Note that B ∈ P (A). Then there exists a partition U/R = {[u]R|u ∈ U}
determined by B′s equivalence relation R on U . Denoted by [X]B = {[u]R|u ∈
U}. Obviously, it forms a quotient space. If another C ∈ P (A), we can see that
[X]B ∨ [Y ]C = [X]B ∩ [Y ]C , [X]B ∧ [Y ]C = [X]B ∪ [Y ]C . It is easy to know that they
satisfy the commutative, associative and absorption law. [∅]A and [U ]A are the least
element and the greatest element, respectively, so (P (A),∧,∨, [∅]A, [U ]A) is bounded
lattice. 2
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Because the quotient space is to consider both the object and the attribute, we
study the concept information granule of the quotient space and their characteristics
in this section.

For an information system (U,A, V, f), by equivalence relation R of B ⊆ A on U,
we can granulate information U/B = [B]R = [vB1 , v

B
2 , . . . , v

B
k ]R, where vBi are the

possible values of attributes, and then obtain atomic quotient space U/[{vBi }]R =
XRi
⊆ P (U), a finer quotient space.

U Time Item Location

1 Jan cosmetic Beijing
2 Feb foodstuff Beijing
3 Jan cosmetic Shanghai
4 Feb cosmetic Shanghai
5 Mar foodstuff Wuhan
6 Mar foodstuff Wuhan

Table 1. An information system

For example, in Table 1, U/(time, item) = [time, item]R = {{1, 3}, {2}, {4},
{5, 6}}, taking vB1 = {Jan, cosmetic} for B = (time, item), we obtain that
U/[{vBi }]R = U/[{Jan, cosmetic}]R = {{1, 3}}.

Theorem 4. An objects set of concept in an information system (U,A, V, f) must
be included in quotient space of equivalence relation R. An atomic quotient space
corresponds to a concept if it has not sub-quotient space.

Proof. For information system (U,A, V, f), defining the operator by equivalence
relation R on P (A) → P (U) and P (U) → P (A) can build concept knowledge
system (U,A, L,H). (X,B) is the concept if X ⊆ U and B ⊆ A satisfy L(X) = B,
H(B) = X. Obviously, X ∈ U/RB. Therefore, object set of the concept is contained
in the classification of quotient space. For XB, if there does not exist X ′B′ ⊂ XB,
it indicates that there is no B ⊂ B′, i.e. L(XB) = B,H(B) = XB, so (XB, B) is
a formal concept. 2

Example 1. The concept lattice of Table 1 is shown in Figure 1. It is easy to see
that the equivalence classes of quotient space on equivalence relation R are present
in the objects sets of concept lattice.

In fact, the quotient space is a kind of division. From the view of the covering,
we have the following definition.

Definition 8. Given a formal context (U,A, I), a relation is defined as follows:
Rs = {(x, y) ∈ U × U : ∀a ∈ {x}∗, yIa}. There is a set Rc(x) = {y|(x, y) ∈ Rs, y ∈
U}.

Obviously, Rc(x) = ({x}∗)∗.
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Figure 1. Concept lattice of Table 1

Definition 9. Let U be an object set. I ′ = I ∩ (U ×B), B ⊆ A is a binary relation
between U and B that satisfies ∀x ∈ U,∀a ∈ B, xI ′a. (U,B, I ′) is a sub-context of
(U,A, I).

Theorem 5. Suppose that (U,B, I ′) is a sub-context of the (U,A, I), B ⊆ A.
(Rc(x), (Rc(x))∗),∀x ∈ U is a formal concept.

Proof. By the definition of Rc(x), (Rc(x), (Rc(x))∗) is a formal concept of (U,A, I).
And (Rc(x)∗B) = (Rc(x))∗, ((Rc(x))∗)∗B = ({x}∗)∗B, there is ({x}∗)∗B = ({x}∗)∗ =
Rc(x). So (Rc(x), (Rc(x))∗) is a formal concept of the sub-context. 2

Theorem 6. Each formal concept on (U,A, I) can be generated by
∨

operation of
the formal concepts that are formed by Rc classified sets. If

⋃
x∈U Rc(x) = U , then⋃

x∈U(Rc(x), (Rc(x))∗) = κ(U,A, I).

Proof. By Theorem 5, (Rc(x), (Rc(x))∗) is a concept of (U,A, I). The intent of each
concept generated by

∨
(Rc(x), (Rc(x))∗) is contained in {x}∗, that is, the intents

of all concepts, whether in the the original context or sub-context, are included in
Rc(x)′s attribute sets. The extent of concept on the sub-context is the extension on
the original context, so the intent and extent obtained by

∨
belong to the original

context. All concepts on the original context can be formed by (Rc(x), (Rc(x))∗). 2

5 CONCEPT GRANULAR DESCRIPTION BASED
ON THE QUOTIENT SPACE

The quotient space provides a quick way of simplifying the complex system. But
how to measure its effects? In this section, we will discuss granular entropy.
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The entropy of a system as defined by Shannon [29], called information entropy,
gives a measure of uncertainty about its actual structure. Unlike Shannon’s entropy,
the proposed entropy can measure not only uncertainty in information systems, but
also a granular classification. For information system (U,A, V, f), a quotient space
can be constituted by equivalence relation R of B ⊆ A. R can be seen as a map
defined in granules based on the division function. So we can define the distribution
function of the map and its information entropy.

Definition 10. Let (U,A, V, f) be an information system, B ⊆ A. RB deduces quo-
tient space ([ui]RB

, R, [A]) with respect to U . The partition granule of (U,A, V, f)
is defined by Xi = [ui]RB

(i = 1, 2, . . . ,m). ‖[ui]RB
‖ is its granular value. Its granu-

larity is denoted as G(Xi) = ‖Xi‖/|U |.
In general, the value of ‖Xi‖ is 1.

Theorem 7. For (U,A, V, f), B ⊆ A,RB ∈ P (A), quotient space ([ui]RB
, R, [A])

has the following properties:

1. ∪u∈U [u]RB
= U ;

2. [ui]RB
∩ [uj]RB

= ∅, when [ui]RB
6= [uj]RB

.

Proof. It is easy to see that the results are true according to Definition 10. 2

Definition 11 (Granular entropy). Let (U,A, V, f) be an information system.
A granular entropy of U/RB is defined as

E(RB) =
m∑
i=1

G(Xi)/|U |.

For an information system (U,A, V, f), U/RA = {X1, X2, . . . , Xm}, Shannon de-

fined an information entropy [29]: H(A) = −
∑m

i=1 pilog2pi,pi = |Xi|
|U | . Liang [32]

put forward a new definition of information entropy: E(A) =
∑m

i=1
|Xi||Xc

i |
|U ||U | =∑m

i=1
|Xi|
|U | (1−

|Xi|
|U | ), where Xc

i denotes the complement set of Xi, i.e., Xc
i = U −Xi.

|Xi|
|U | represents the probability of Xi within the universe U and

|Xc
i |
|U | is the probabil-

ity of the complement set of Xi within the universe U . This entropy can measure
not only uncertainty in information systems, but also fuzziness of a rough set and
a rough classification.

E(RB) is mainly used to identify divided universe along with the attributes of
monotonic increasing or decreasing in knowledge B. The attributes of knowledge B
gradually increasing results in the division of B to universe finer, produced grain size
smaller. E(RB) increased gradually, knowledge B identification gradually increases.
The classification is more accurate. And vice versa. If the increase or decrease of
attributes with B, the division B to the universe is at constant and E(RB) are the
same.



1112 Q. Wu, H. Shi, L. Xie

Theorem 8. Let S = (U,A, V, f) be an information system, B,D ⊆ A. The fol-
lowing results hold in two quotient space with respect to RB and RD.

1. E(RB) =
∑m

i=1 ‖Xi‖/|U |2;
2. E(RB∪D) =

∑
i,j ‖Xi ∩Xj‖/|U |2.

Proof. It is proved by Definitions 10 and 11. 2

Theorem 9. Let (U,A, V, f) be an information system, B,D ⊆ A. If U/RB =
U/RD, then E(RB) = E(RD).

Proof. Since U/RB = U/RD, RB and RD deduce same partition on universe U,
that is, [ui]RB

= [ui]RD
(i = 1, 2, . . . ,m). They have the same quotient distribution.

By the formula of the granular entropy, we can get E(RB) = E(RD). 2

This theorem states that knowledge have the same classification ability if they
have same algebraic representations. However, the converse is not necessarily true.

Theorem 10. Let (U,A, V, f) be an information system, B,D ⊆ A. If RB ⊆ RD ∈
P (A) and E(RB) = E(RD), then U/RB = U/RD.

Proof. We assume that U/RB = {X1, X2, . . . , Xm}, U/(RD \ RB) = {Y1, Y2, . . . ,
Ym}. According to Definition 11 and Theorem 8 we can see that
E(RB) =

∑m
i=1 ‖Xi‖/|U |2, E(RB ∪ (RD \ RB)) =

∑
i,j ‖Xi ∩ Xj‖/|U |2. ‖Xi‖ =∑m

j=1 ‖Xi ∩ Xj‖ is available by E(RB) = E(RD). Thus, there are two situations:
Xi ⊂ Yj or that exists j0, so that ‖Xi ∩Xj0‖, i.e. Xi ∩Xj0 = ∅. However, ∪jYj = U
and ‖Xi ∩ Xj0‖ = 0, this will not happen. Hence, Xi ⊂ Yj for any Xi. Thus,
U/RB = U/RD. 2

The result given in Theorem 10 provides a theoretical foundation for knowledge
reduction based on the entropy.

Theorem 11. Let (U,A, V, f) be an information system, B ⊆ A. Then b ∈ B is
unnecessary if and only if E(RB−{b}) = E(RB).

Proof. The necessity is proved by Theorem 9. The sufficiency is proved by Theo-
rem 10. 2

Theorem 11 shows that adding an unnecessary attribute to a subset will not
change the size of granule.

Corollary 1. Let (U,A, V, f) be an information system, B ⊆ A. Then b ∈ B is
unnecessary if and only if E(RB−{b}) > E(RB).

Corollary 2. Let (U,A, V, f) be an information system, B ⊆ A. Then knowledge
RB is independent if and only if E(RB−{b}) > E(RB), b ∈ B.

Theorem 12 (Reduct). Let (U,A, V, f) be an information system. B ⊆ A is
a reduct of knowledge RB if and only if
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1. E(RA) = E(RB).

2. E(RB−{b}) < E(RB) for ∀b ∈ B.

Proof. Suppose that B is a reduct of A, i.e., there is U/RA = U/RB such that
E(RA) = E(RB) by Theorem 9. If B − b ⊆ B, exist E(RB−{b}) ≥ E(RB), then
there is at least U/RB−{b} = U/RB by Theorem 10. This contradicts with that B
is a reduct. To show the converse, suppose that there is E(RA) = E(RB), we can
get U/RA = U/RA by Theorem 10. Since E(RB−{b}) < E(RB) for ∀b ∈ B, B is
a reduct by Corollary 2. 2

Example 2. An information system S = (U,A, V, f), as shown in Table 2, where
U = {1, 2, ...5}, A = {a, b, c, d, e}. Seek out a minimum reduct of A.

U a b c d e

1 1 0 2 1 0
2 0 0 1 2 1
3 2 0 2 2 2
4 0 0 2 2 2
5 1 1 2 1 0

Table 2. An information system

By Theorem 8, {a}∗ = ({1, 5}, {2, 4}, {3}), ER{a}∗ = 3/25, {b}∗ = ({1, 2, 3, 4},
{5}), ER{b}∗ = 2/25, {c}∗ = ({1, 3, 4, 5}, {2}), ER{c}∗ = 2/25, {d}∗ = ({1, 5}, {2, 3,
4}), ER{d}∗ = 2/25, {e}∗ = ({1, 5}, {2}, {3, 4}), ER{e}∗ = 3/25, are calculated, and
then get ERA

= 5/25.
Similarly, we can get ER{a,b} = 4/25, ER{a,b,c} = 5/25, ER{a,b,c,d} = 5/25, ER{a,c} =

4/25, ER{a,d} = 3/25, ER{a,e} = 4/25, ER{b,c} = 3/25, ER{b,d} = 3/25, ER{b,e} = 4/25,
ER{c,d} = 3/25, ER{c,e} = 3/25, ER{d,e} = 3/25, ER{a,b,d} = 4/25, ER{a,b,e} = 5/25,
ER{a,c,d} = 4/25, ER{a,c,e} = 4/25, ER{a,d,e} = 4/25, ER{b,c,d} = 4/25, ER{b,c,e} = 4/25,
ER{b,d,e} = 4/25, ER{c,d,e} = 3/25, ER{a,b,c,e} = 5/25, ER{a,b,c,d} = 5/25, ER{a,b,d,e} =
5/25, ER{b,c,d,e} = 4/25.

It is easy to see that ER{a,b,e} = ER{a,b,c} = 5/25 = ERA
, so, {a, b, c} and {a, b, e}

are the minimum reduct.

6 CONSTRUCTING A CONCEPT LATTICE BASED
ON QUOTIENT SPACE

Quotient space allows us to construct concept lattices on different granules. In
practical applications, it is not necessary to construct the concept lattice of all
granules and merge them to get the original concept lattice. By selecting a few
suitable granules, the original concept lattice can be obtained by merging.

Example 3. The formal context in Table 3 is a minor revision of the famous exam-
ple, a film “Living Beings and Water” [2]. Since we require all the formal contexts
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in this paper are canonical, we delete the attribute a (water) from the original
formal context. The objects are living beings mentioned in the film and are de-
noted by U = {1, 2, 3, 4, 5, 6, 7, 8}, where 1 is leech, 2 is bream, 3 is frog, 4 is
dog, 5 is spike-weed, 6 is reed, 7 is bean, and 8 is maize. And the attributes in
A = {b, c, d, e, f, g, h, i} are the properties which the film emphasizes: b: lives in
water, c: lives on land, d: needs chlorophyll to produce food, e: two seed leaves, f :
one seed leaf, g: can move around, h: has limbs, and i: suckles its offspring.

U b c d e f g h i

1 × ×
2 × × ×
3 × × × ×
4 × × × ×
5 × × ×
6 × × × ×
7 × × ×
8 × × ×

Table 3. Living beings and water (U,A, I)

Figure 2. Concept lattice of Living Beings and Water κ(U,A, I)

The classified sets: Rc(1) = {1, 2, 3}, Rc(2) = {2, 3}, Rc(3) = {3}, Rc(4) =
{4}, Rc(5) = {5, 6}, Rc(6) = {6}, Rc(7) = {7}, Rc(8) = {6, 8}.

The formal concepts determined by classified set Rc(1) = {1, 2, 3} are: (U, ∅),
({3}, {b, c, g, h}), ({2, 3}, {b, g, h}), ({1, 2, 3}, {b, g}), ({3, 4}, {c, g, h}), ({2, 3, 4},
{g, h}), ({1, 2, 3, 4}, {g}), ({3, 6}, {b, c}), ({3, 4, 6, 7, 8}, {c}), ({1, 2, 3, 5, 6}, {b}).
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Rc(4) = {4}: (U, ∅), ({4}, {c, g, h, i}), ({3, 4}, {c, g, h}), ({2, 3, 4}, {g, h}),
({1, 2, 3, 4}, {g}), ({3, 4, 6, 7, 8}, {c}).

Rc(5) = {5, 6}: (U, ∅), ({6}, {b, c, d, f}), ({5, 6}, {b, d, f}), ({6, 8}, {c, d, f}),
({6, 7, 8}, {c, d}), ({5, 6, 8}, {d, f}), ({5, 6, 7, 8}, {d}), ({1, 2, 3, 5, 6}, {b}),
({3, 4, 6, 7, 8}, {c}).

Rc(7) = {7}: (U, ∅), ({7}, {c, d, e}), ({6, 7, 8}, {c, d}), ({5, 6, 7, 8}, {d}),
({3, 4, 6, 7, 8}, {c}).

Rc(8) = {6, 8}: (U, ∅), ({6}, {b, c, d, f}), ({5, 6}, {b, d, f}), ({6, 8}, {c, d, f}),
({6, 7, 8}, {c, d}), ({5, 6, 8}, {d, f}), ({5, 6, 7, 8}, {d}), ({1, 2, 3, 5, 6}, {b}),
({3, 4, 6, 7, 8}, {c}).

Since Rc(1)
⋃
Rc(4)

⋃
Rc(5)

⋃
Rc(7)

⋃
Rc(8) = U ,

⋃
(Rc(x), L(Rc(x))x∈{1,4,5,7,8}

= κ(U,A, I).

6.1 Algorithm

Main idea: Concept lattice is to be constructed in the simplified formal context.
This concept lattice is a one-way homomorphism to the original one. The simplified
concept lattice can be extended to restore according to the need.

Input: (U,A, I) where U = {u1, u2, . . . , u|U |}, A = {a1, a2, . . . , a|A|}
Output: Simplified (U ′, A′, I ′)//To restore concept lattice of the original formal
context by it.
01 For i = 1 to |U | begin
02 For j = 1 to |A| begin
03 If(ui, aj) ∈ I
04 then (ui)

∗
aj
← aj

05 else (ui)
∗
aj
← ∅

06 End
07 End
08 For i = 1 to |A| begin
09 For j = 1 to |U | begin
10 If(ui, aj) ∈ I
11 then (ai)

∗
uj
← uj

12 else (ai)
∗
uj
← ∅

13 End
14 End
15 For i = 1 to |U | begin
16 For i = 1 to |U | begin
17 Di ← ∅
18 If (ui)

∗
ak
⊇ (uj)

∗
ak

20 then Di ← (ui)
∗
ak
∪ (uj)

∗
ak

21 End
22 End
23 For i = 1 to |A| begin
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24 For i = 1 to |A| begin
25 Ei ← ∅
26 If (ai)

∗
ul
⊇ (aj)

∗
ul

27 then Ei ← (ai)
∗
ul
∪ (aj)

∗
ul

28 End
29 End
30 Reduced formal context (D,E, I) = (U ′, A′, I ′) with quotient space division.
31 To restore concept lattice κ(U,A, I) of the original formal context.

Example 4. Data table is shown in Table 4. It is a classic example of formal
concept analysis [2].

1 2 3 4 5 6 7 8 9 10 11

fu
r(

h
a
ir

)

fe
a
th

er
s

sc
a
le

s
ca

n
fl
y

li
v
es

in
w

a
te

r

la
y

eg
g
s

p
ro

d
u
ce

s
m

il
k

h
a
s

a
b
a
ck

b
o
n
e

w
a
rm

-b
lo

o
d
ed

co
ld

-b
lo

o
d
ed

d
o
m

es
ti

c

1 Bat × × × × ×
2 Bear × × × ×
3 Cat × × × × ×
4 Chicken × × × × ×
5 Dog × × × × ×
6 Dolphin × × × × ×
7 Elephant × × × ×
8 Frog × × × ×
9 Hawk × × × × ×

10 Housefly × × × ×
11 Owl × × × × ×
12 Sea lion × × × × ×
13 Snake × × × ×
14 Spider × × ×
15 Turtle × × × ×

Table 4. An illustrative example of a formal context of animals and their attributes

In order to distinguish between objects and attributes, we attach a letter sub-
script for each number. The uppercase is object, the lowercase is attribute.
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Step 1.

{1f}∗ = {1B, 2B, 3C , 5D, 6D, 7E, 10H , 12S, 14S},
{2f}∗ = {4C , 9H , 11O},
{3s}∗ = {13S, 15T},
{4f}∗ = {1B, 9H , 10H , 11O},
{5w}∗ = {6D, 8F , 12S},
{6e}∗ = {4C , 8F , 9H , 10H , 11O, 13S, 14S, 15T},
{7m}∗ = {1B, 2B, 3C , 5D, 6D, 7E, 12S},
{8b}∗ = {1B, 2B, 3C , 4C , 5D, 6D, 7E, 8F , 9H , 11O, 12S, 13S, 15T},
{9w}∗ = {1B, 2B, 3C , 4C , 5D, 6D, 7E, 9H , 11O, 12S},
{10c}∗ = {4C , 8F , 10H , 13S, 14S, 15T},
{11d}∗ = {3C , 4C , 5D}.

{6e}∗ − {10c}∗ = {4C , 9H , 11O},
{10c}∗ − {3s}∗ = {8F , 10H , 14S}.

That is,

{3s}∗ ⊆ {8b}∗,
{3s}∗ ⊆ {10c}∗ ⊆ {6e}∗,
{11d}∗ ⊆ {9w}∗ ⊆ {8b}∗,
{7m}∗ ⊆ {9w}∗ ⊆ {8b}∗,
{2f}∗ ⊆ {9w}∗,
{2f}∗ ⊆ {6e}∗,
{5w}∗ ⊆ {8b}∗.

So, {1f}∗, {4f}∗, {6e}∗, {8b}∗ are more coarse granules.

{1B}∗ = {1f , 4c, 7m, 8b, 9w},
{2B}∗ = {1f , 7m, 8b, 9w},
{3C}∗ = {1f , 7m, 8b, 9w, 11d},
{4C}∗ = {2f , 6e, 8b, 9w, 11d},
{5D}∗ = {1f , 7m, 8b, 9w, 11d},
{6D}∗ = {1f , 5w, 7m, 8b, 9w},
{7E}∗ = {1f , 7m, 8b, 9w},
{8F}∗ = {5w, 6e, 8b, 10c},
{9H}∗ = {2f , 4f , 6e, 8b, 9w},
{10H}∗ = {1f , 4f , 6e, 10c},
{11O}∗ = {2f , 4f , 6e, 8b, 9w},
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{12S}∗ = {1f , 5w, 7m, 8b, 9w},
{13S}∗ = {3s, 6e, 8b, 10c},
{14S}∗ = {1f , 6e, 10c},
{15S}∗ = {3s, 6e, 8b, 10c}.

Similarly,

{2B}∗ = {7E}∗ ⊆ {3C}∗ ⊆ {1B}∗,
{7E}∗ ⊆ {12S}∗ = {6D}∗,
{3C}∗ = {5D}∗,
{6D}∗ = {12S}∗,
{14S}∗ ⊆ {10H}∗,
{13S}∗ = {15T}∗,
{9H}∗ = {11O}∗.

{1B}∗, {4C}∗, {5D}∗, {6D}∗, {8F}∗, {9H}∗, {10H}∗, {13S}∗ are coarse granules.

Step 2. A simplified formal context (U ′, A′, I ′) constructed by quotient space is
shown in Table 5.

1 4 6 8

fu
r(

h
a
ir

)
ca

n
fl
y

la
y

eg
g
s

h
a
s

a
b
a
ck

b
o
n
e

1 Bat × × ×
4 Chicken × ×
5 Dog × ×
6 Dolphin × ×
8 Frog × ×
9 Hawk × × ×

10 Housefly × × ×
13 Snake × ×

Table 5. A simplified formal context (U ′, A′, I ′)

Concept lattice κ′(U,A, I) of the simplified formal context is built as shown
in Figure 3. It is easy to verify, ER{1f ,4f ,6e,8b}

= 4/225, {1f , 4f , 6e, 8b} is the

minimum reduct.

Step 3. According to (1), {3s}∗ ⊆ {10c}∗ ⊆ {6e}∗, the concept that its attribute
contains 6e can be added 10c but not objects 4C , 9H , 10H . ({10H}, {1f , 4f , 6e,
10c}) is deduced from ({10H}, {1f , 4f , 6e}). {11d}∗ ⊆ {9w}∗ ⊆ {8b}∗: ({1B, 9H},
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{4f8b}) ⇒ ({1B, 9H}, {4f , 8b, 9w}). {7m}∗ ⊆ {9w}∗ ⊆ {8b}∗: ({1B}, {1f , 4f , 8b})
⇒ ({1B}, {1f , 4f , 8b, 7m, 9w}).

According to (2), {2B}∗ = {7E}∗ ⊆ {1B}∗, {6D}∗ = {12S}∗, {9H}∗ = {11O}∗,
{13S}∗ = {15T}∗: ({1B, 4C , 5D, 6D, 8F , 9H , 13S}, {8b}) ⇒ ({1B, 2B, 4C , 5D, 6D,
7E, 8F , 9H , 11O, 12S, 13S, 15T}, {8b}). {9H}∗ = {11O}∗: ({1B, 9H , 10H}, {4f})⇒
({1B, 9H , 10H , 11O}, {4f}). {9H}∗ = {11O}∗, {13S}∗ = {15T}∗: ({4C , 8F , 9H ,
13S}, {6e, 8b})⇒ ({4C , 8F , 9H , 11O, 13S, 15T}, {6e, 8b}). {9H}∗ = {11O}∗, {13S}∗
= {15T}∗, {14S}∗ ⊆ {10H}∗: ({4C , 8F , 9H , 10H , 13S}, {6e})⇒ ({4C , 8F , 9H , 10H ,
11O, 13S, 14S, 15T}, {6e}). {3C}∗ = {5D}∗, {6D}∗ = {12S}∗, {14S}∗ ⊆ {10H}∗:
({1B, 5D, 6D, 10H}, {1f}) ⇒ ({1B, 3C , 5D, 6D, 10H , 12S, 14S}, {1f}). {9H}∗ =
{11O}∗: ({9H , 10H}, {4f , 6e}) ⇒ ({1B, 9H , 11O}, {4f , 6e}). {9H}∗ = {11O}∗,
{9w}∗ ⊆ {8b}∗: ({1B, 9H}, {4f , 8b}) ⇒ ({1B, 9H , 11O}, {4f , 8b, 9w}). {2B}∗ =
{7E}∗ ⊆ {1B}, {14S}∗ ⊆ {10H}∗: ({1B, 10H}, {1f , 4f , }) ⇒ ({1B, 10H},
{1f , 4f , }). {2B}∗ = {7E}∗ ⊆ {1B}, {3C}∗ = {5D}∗, {6D}∗ = {12S}∗, {7m}∗ ⊆
{9w}∗ ⊆ {8b}∗: ({1B, 5D, 6D}, {1f , 8b, }) ⇒ ({1B, 2B, 3C , 5D, 6D, 7E, 12S}, {1f ,
7m, 8b, 9w}). {9H}∗ = {11O}∗, {2f}∗ ⊆ {6e}∗, {9w}∗ ⊆ {8b}∗: ({9H}, {4f , 6e, 8b})
⇒ ({9H , 11O}, {2f , 4f , 6e, 9w}).

In addition, according to (1), we can obtain the following results. {3s}∗∩{6e}∗ =
{3s}∗ ∩ {8b}∗ = {3s}∗ ∩ {10c}∗ = {13S, 15T} ⇒ ({13S, 15T}, {3s, 6e, 8b, 10c}).
{6e}∗∩{10c}∗ = {8F , 10H , 13S, 14S, 15T} ⇒ ({8F , 10H , 13S, 14S, 15T}, {6e, 10c}).
{8b}∗ ∩ {9w}∗ = {1B, 2B, 3C , 4C , 5D, 6D, 7E, 9H , 11O, 12S} ⇒ ({1B, 2B, 3C , 4C , 5D,
6D, 7E, 9H , 11O, 12S}, {8b, 9w}). {8b}∗ ∩ {11d}∗ = {9w}∗ ∩ {11d}∗ = {3C , 4C , 5D}
⇒ ({3C , 4C , 5D}, {8b, 9w, 11d}). {5w}∗∩{8b}∗ = {6D, 8F , 12S} ⇒ ({6D, 8F , 12S},
{5w, 8b}). {2f}∗ ∩ {6e}∗ = {2f}∗ ∩ {8b}∗ = {4C , 9H , 11O} ⇒ ({4C , 9H , 11O},
{2f , 6e, 8b}).

By (2), we get that {3C}∗∩{5D}∗ = {1f , 7m, 8b, 9w, 11d} ⇒ ({3C , 5D}, {1f , 7m, 8b,
9w, 11d}). {6D}∗ ∩ {12S}∗ = {1f , 5w, 7m, 8b, 9w} ⇒ ({6D, 12S}, {1f , 5w, 7m, 8b,
9w}). {12S}∗ ∩ {14S}∗ = {1f , 6e, 10c} ⇒ ({12S, 14S}, {1f , 6e, 10c}).

In the new context, object 5, 6, and 4, 8, 13 have the same attributes respectively,
so we should consider the possibility that these objects form concepts. {5D}∗ ∩
{6D}∗ = {1f , 7m, 8b, 9w} ⇒ ({1B, 2B, 3C , 5D, 6D, 7E, 12S}, {1f , 7m, 8b, 9w}). The
concept already exists. At the same time, {3C}∗ = {5D}∗, {6D}∗ = {12S}∗,
object 5 and 6 cannot construct the concept. {4C}∗∩{8F}∗ = {4C}∗∩{13S}∗ =
{6e, 8b} ⇒ ({4C , 8F , 9H , 11O, 13S, 15T}, {6e, 8b}). The concept already exists.
{13S}∗ = {15T}∗, object 13 cannot construct the concept. {13S}∗ = {15T}∗,
{8F}∗ ∩ {13S}∗ = {6e, 8b, 10c} ⇒ ({8F , 13S, 15T}, {6e, 8b, 10c}). Finally, calcu-
late the two single object concepts, ({4C}, {2f , 6e, 8b, 9w, 11d}), ({8F , {5w, 6e, 8b,
10c}).

Step 4. To construct the concept lattice κ(U,A, I) as shown in Figure 4.
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Figure 3. Concept lattice κ′(U,A, I)

Figure 4. Concept lattice κ(U,A, I)

6.2 Experiments

Denote N = min{|U |, |A|}, we know the time complexity of Step 1 in Algorithms is
O(N2). So we can get two matters as follows.

1. The time complexity of algorithm is O(4N2).

2. Suppose that Algorithm will be terminated in the kth step; then the time com-

plexity of Algorithm is O
(∑i=k

i=1(N × k)
)

. We can easily get O
(∑i=k

i=1(N × k)
)

≤ O (4N2).

To verify the effectiveness of the algorithm, we compared it with Godin al-
gorithm [24] (Basic Incremental Update Algorithms) using a server that contains
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a Intel R© CoreTM i5-4590 3.30 GHz CPU, 4 GB memory, Windows 7 operating sys-
tem and Visual C++ 6.0. The experimental data is random. The number of at-
tributes is set to 20. The number of objects is increased from 50 to 1 050. Change
interval is 50. Figure 5 shows calculation results of two kinds of algorithms.

Figure 5. Comparison of the proposed algorithm with the Godin algorithm

In Figure 5, the abscissa denotes the number of formal concept. The ordinate is
time to calculate the concept lattice. As it can be seen, the number is less than 200,
the difference is not obvious. The proposed algorithm is better when the number
becomes larger. It is proved that the proposed algorithm is effective.

It should be noted that the proposed algorithm is based on the quotient space
granules. The algorithm has no obvious advantage in speed, if the information
system can only be divided into a finer granule. It is, in fact, that the existing data
space is abstracted into a “coarse grains” one. Thereby, the dimension of data is
reduced, also simplifies the concept lattice. This simplified process can be thought
of as hidden knowledge at different level, and it is suited to the needs of the problem
analysis. The comparison of speed, in a sense, is not the most important.

7 CONCLUSION AND FUTURE WORK

This paper introduces concept information granule, granular entropy and quotient
space into concept lattice research, and presents a unified research model for expan-
sion and reduction of concept lattice in different granulations, and provides a detailed
description of this overall process. In this model, it mainly obtains conclusions as
follows:
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1. A concept information granule is provided for the concept lattice research. As
the knowledge in basic level, the concept information granule not only offers
a uniform technology for concept learning on the whole, but it is also convenient
for knowledge sharing and reuse in different levels;

2. The granular quotient space is introduced to lattice building research, which can
overcome the impact on the application of FCA caused by the time complexity
and space complexity problem to some extent, it helps to find useful information
and avoids users getting lost in the complex information;

3. A new granular entropy between concepts is given in different granulations,
which can help experts judge relations except for inheritance relation and mea-
sure the degree of reduction of the context.

Although the FCA based on granular quotient space proposed in this paper is only
a starting point and a lot of subsequent study is needed, it offers a new way or
guideline for the concept lattice reduction. How to combine concept lattice with
quotient space more rationally and reduce human judgments is one focus of our
research in the future.
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Conceptual Structures: From Information to Intelligence (ICCS 2010). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 6208, 2010, pp. 139–153.

[5] Qian, Y.H.—Zhang, H.—Li, F. J.—Hu, Q.H.—Liang, J.Y.: Set-Based Gran-
ular Computing: A Lattice Model. International Journal of Approximate Reasoning,
Vol. 55, 2014, No. 3, pp. 834–852.

[6] Qiu, G. F.—Chen, J.: Concept Knowledge System and Concept Information Gran-
ular Lattice. Chinese Journal of Engineering Mathematics, Vol. 22, 2005, No. 6,
pp. 963–969.

[7] Qiu, G. F.—Ma, J.M.—Yang, H. Z.—Zhang, W.X.: A Mathematical Model for
Concept Granular Computing Systems. Science China Information Sciences, Vol. 53,
2010, No. 7, pp. 1397–1408.



Granular Partition and Concept Lattice Division Based on Quotient Space 1123

[8] Ding, S. F.—Li, J. Y.—Xu, L.—Qian, J.—Zhao, X.W.—Jin, F. F.: Research
Progress of Granular Computing (GrC). International Journal of Digital Content
Technology and Its Applications, Vol. 5, 2011, No. 1, pp. 162–172.

[9] Wang, L.D.—Liu, X.D.—Wang, X.: AFS-Based Formal Concept Analysis within
the Logic Description of Granules. In: Yao, J. et al. (Eds.): Rough Sets and Current
Trends in Computing (RSCTC 2012). Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, Vol. 7413, 2012, pp. 323–331.

[10] Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of
Concepts. In: Rival, I. (Ed.): Ordered Sets. Springer, Dordrecht, NATO Advanced
Study Institutes Series (Series C – Mathematical and Physical Sciences), Vol. 83,
2009, pp. 445–470.

[11] Wu, W.Z.: Attribute Granules in Formal Contexts. In: An, A., Stefanowski, J., Ra-
manna, S., Butz, C. J., Pedrycz, W., Wang, G. (Eds.): Rough Sets, Fuzzy Sets, Data
Mining and Granular Computing (RSFDGrC 2007). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 4482, 2007, pp. 395–402.

[12] Wu, W.Z.—Leung, Y.—Mi, J. S.: Granular Computing and Knowledge Reduc-
tion in Formal Contexts. IEEE Transactions on Knowledge and Data Engineering,
Vol. 21, 2009, No. 10, pp. 1461–1474.

[13] Weihua, X.U.—Liu, S.H.: Granularity Representation of Knowledge in Informa-
tion System Based on General Binary-Relation. Computer Engineering and Applica-
tions, Vol. 109, 2011, No. 2, pp. 619–630.

[14] Yao, Y.Y.: Concept Lattices in Rough Set Theory. IEEE Annual Meeting of the
Fuzzy Information, 2004. Processing NAFIPS ’04, Vol. 2, 2004, pp. 796–801.

[15] Yao, Y.Y.—Zhang, N.—Miao, D.Q.—Xu, F. F.: Set-Theoretic Approaches to
Granular Computing. Fundamenta Informaticae, Vol. 115, 2012, No. 2-3, pp. 247–264.

[16] Zhang, B.—Zhang, L.: Theory and Applications of Problem Solving. Elsevier
Science Inc. Press, pp. 770, 1992.

[17] Zhang, L.—Zhang, B.: Quotient Space Based Problem Solving: A Theoretical
Foundation of Granular Computing. Qinghua University Press, 2014.

[18] Zhang, L.—Zhang, B.: The Quotient Space Theory of Problem Solving. In:
Wang, G., Liu, Q., Yao, Y., Skowron, A. (Eds.): Rough Sets, Fuzzy Sets, Data
Mining, and Granular Computing (RSFDGrC 2003). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2639, 2003, pp. 11–15.

[19] Zhang, Q.—Xing, Y.: Formal Concept Analysis Based on Granular Computing.
Journal of Computational Information Systems, Vol. 6, 2010, No. 7, pp. 2287–2296.

[20] Zhang, W.X.—Yang, H. Z.—Ma, J.M.—Qiu, G. F.: Concept Granular Com-
puting Based on Lattice Theoretic Setting. In: Bargiela, A., Pedrycz, W. (Eds.):
Human-Centric Information Processing Through Granular Modelling. Springer,
Berlin, Heidelberg, Studies in Computational Intelligence, Vol. 182, 2009, pp. 67–94.

[21] Wang, H.—Zhang, W.X.: Relationships Between Concept Lattice and Rough
Set. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L. A., Żurada, J. M. (Eds.): Artificial
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