
Computing and Informatics, Vol. 37, 2018, 1386–1410, doi: 10.4149/cai 2018 6 1386

A COOPERATIVE LOCAL SEARCH METHOD
FOR SOLVING THE TRAVELING TOURNAMENT
PROBLEM

Meriem Khelifa, Dalila Boughaci

LRIA-FEI-USTHB – Computer Science Department
BP 32 El-Alia Beb-Ezzouar, Algiers 16111, Algeria
e-mail: dboughaci@usthb.dz, khalifa.merieme.lmd@gmail.com

Abstract. Constrained optimization is the process of optimizing a certain objective
function subject to a set of constraints. The goal is not necessarily to find the global
optimum. We try to explore the search space more efficiently in order to find a good
approximate solution. The obtained solution should verify the hard constraints
that are required to be satisfied. In this paper, we propose a cooperative search
method that handles optimality and feasibility separately. We take the traveling
tournament problem (TTP) as a case study to show the applicability of the proposed
idea. TTP is the problem of scheduling a double round-robin tournament that
satisfies a set of related constraints and minimizes the total distance traveled by
the teams. The proposed method for TTP consists of two main steps. In the first
step, we ignore the optimization criterion. We reduce the search only to feasible
solutions satisfying the problem’s constraints. For this purpose, we use constraints
programming model to ensure the feasibility of solutions. In the second step, we
propose a stochastic local search method to handle the optimization criterion and
find a good approximate solution that verifies the hard constraints. The overall
method is evaluated on benchmarks and compared with other well-known techniques
for TTP. The computational results are promising and show the effectiveness of the
proposed idea for TTP.

Keywords: Sport scheduling, traveling tournament problem (TTP), optimization,
constraints, search methods, stochastic local search method (SLS)

Mathematics Subject Classification 2010: 68xxx, 68Uxx, 90-08

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1387

1 INTRODUCTION

Constrained optimization involves minimizing or maximizing a certain objective
function subject to a set of constraints. The main goal is to explore efficiently the
search space in order to find a good approximate solution that verifies the hard
constraints that are required to be satisfied. Constrained optimization problems are
often difficult to solve, due to an eventual complex interaction between the goals of
optimizing the objective function while satisfying the constraints.

Several methods have been proposed for solving constrained optimization prob-
lems. These methods include: the penalty function based method, the Lagrange
multiplier method that can solve optimization problems with equality constraints,
the augmented Lagrange multiplier for inequality constraints that combines the
classical Lagrange method with the penalty function method, the quadratic pro-
gramming methods (QP) that can solve optimization problems with a quadratic ob-
jective function and linear constraints, the gradient projection method for equality
constraints and the gradient projection that can be extended to solve optimization
problems with linear inequality constraints [26, 20].

We propose a cooperative search method for handling in two steps: feasibility
and optimality. More precisely, the proposed search method consists of two main
steps. In the first step, we search for feasible configurations satisfying the problem’s
constraints and ignore the optimization criterion. In the second step, we explore the
feasible search space to handle the optimization problem and find the best solution.
For this purpose, we propose to use constraints programming model, in the first step,
to ensure the feasibility criterion of solutions. In the second step, we use a meta-
heuristic approach to handle the optimization criterion and find a good approximate
solution that verifies the hard constraints.

To show the applicability of the proposed search method, we take as a case study
the traveling tournament problem (TTP) which is a challenging sports scheduling
problem [17, 24, 19]. The objective of the TTP is to find a double-round-robin
tournament schedule that minimizes the total distance traveled by the teams and
satisfies the related TTP constraints [11, 17, 24].

TTP is an interesting problem in both sports scheduling and combinatorial
optimization. It is known to be an NP-hard problem which makes finding quality
solutions in a short amount of time difficult [27]. TTP has attracted significant
interest recently since a favorable TTP schedule can generate large incomes in the
budget of managing the league’s sport.

Several methods have been studied for the TTP. Among them, we cite: the
branch and price method [16], the iterated local search method [7] that has been ap-
plied for a special case of TTP, so-called TTPPV (the traveling tournament problem
with predefined venues). In [8], an integer programming formulation is proposed to
the Max-MinTTP variant of TTP, in which the problem of minimizing the longest
traveled distance is addressed. A hybrid approach combining a local search heuris-
tic with an integer programming method was designed for TTP in [12]. Further,
a simulated annealing algorithm that explores feasible and infeasible schedules us-

1388 M. Khelifa, D. Boughaci

ing several structures of neighborhoods and compound movements is studied in [2].
A variable neighborhood search based method (VNS) is proposed in [18] and re-
cently a harmony search method is studied for the mTTP variant (mirored traveling
tournamant problem) [19].

In this work, first, we study two local search methods for TTP, which are sim-
ulated annealing (SA) and variable neighborhood search (VNS). The two methods
are used as a first-step for finding a feasible solution that satisfies the problem con-
straints. As a second step, we propose a stochastic local search algorithm (SLS) to
find a good approximate solution for TTP that minimizes the total distance trav-
eled by the teams. The overall method is implemented, tested on benchmarks and
compared with other well-known techniques for TTP.

Comparing our approach and the work of Anagnostopoulos et al. [2], we give
the following differences.

• In our method, the search is limited to feasible solutions while Anagnostopoulos
et al. explore both feasible and infeasible schedules [2].

• In our method, we handle the TTP problem in two main steps. 1) After generat-
ing an initial double round-robin configuration, we apply a local search method
based on a constraint satisfaction problem encoding. We define a cost function
to select feasible solutions, i.e., those having a zero value cost. 2) We propose
a stochastic local search method (SLS) to further improve the solution. SLS is
limited to feasible solutions. SLS minimizes the total distance traveled by the
teams. The objective function used by SLS computes this total distance. There
is no need to add a penalty function since we explore feasible configurations of
the search space [2].

• Contrary to our methodology, Anagnostopoulos proposed a simulated annealing
method (SATTP) in one step. This SATTP starts with a random initial solu-
tion obtained by using a simple backtrack search. The cost function combines
travel distances and the number of violations. In Anagnostoploulos constraint
violations are penalized [2].

The rest of this paper is organized as follows: Section 2 gives background on
the traveling tournament problem (TTP). Section 3 presents in detail the proposed
method applied to the TTP problem. Some numerical results are given in Section 4.
Finally, Section 5 concludes the work and gives some perspectives.

2 PROBLEM DEFINITION

The traveling tournament problem (TTP) is the problem of scheduling a double
round-robin tournament, while satisfying a set of related constraints and minimizing
the total distance traveled by the teams [13, 11, 28, 21].

The problem can be stated as follows: let us consider n teams (n even and
positive), a double round robin tournament is a set of games in which every team
plays every other team exactly once at home and once away. A double round robin

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1389

tournament has 2 · (n− 1) slots. The distance between team cities are given by n ·n
symmetric matrix Dis , such that an element Dis ij of Dis represents the distance
between the homes of the teams ti and tj. The teams begin in their home city and
must return there after the tournament.

The TTP is the problem of finding a feasible schedule that minimizes the distance
traveled by the teams, and satisfies the following constraints:

Double round robin constraint (DRRT): that means that each team plays
with every other team exactly twice, once in its home and once in the home of
its opponent.

AtMost constraint: each team must play no more than U and no less than L
consecutive games at home or away. Specifically, in our case, L is set to 1 and
U to 3.

NoRepeat constraint: A game ti− tj can never be followed in the next round by
the game tj − ti.

1. The TTP contains the number of teams (denoted n) and the distance matrix
(denoted Dis).

2. The output are: a double round robin tournament on the n teams respecting the
three constraints AtMost, NoRepeat and DRRT, and where the total distance
traveled by the teams is minimized.

Table 1 gives an example of a schedule for n = 4 teams. The negation sign
means that the team plays away.

Round Round1 Round2 Round3 Round4 Round5 Round6

Team

t1 3 2 4 −3 −2 −4
t2 −4 −1 −3 4 1 3
t3 −1 4 2 1 −4 −2
t4 2 −3 −1 −2 3 1

Table 1. Example of double round robin tournament with n = 4

This schedule specifies that the team t1 has the following schedule: it successively
plays against teams t3 at home, t2 at home, t4 at home, t3 away, t2 away and t4 away.
The travel cost of team t1 is: Dis13 + Dis32 + Dis24 + Dis41.

We note that the travel costs of a schedule S is the sum of the travel cost of
every team (denoted Travel-cost(S)).

3 THE PROPOSED APPROACH APPLIED TO TTP

We propose a new method for the TTP problem. The proposed method consists of
two main steps. First, we start with an initial configuration satisfying the DRRT
constraint. Then, we apply a local search method to generate a feasible configuration

1390 M. Khelifa, D. Boughaci

that verifies the three constraints: AtMost, NoRepeat, and DRRT. For this step,
we study two local search methods which are: variable neighborhood search (VNS)
and simulated annealing (SA) where the role is to handle the feasibility criterion of
solutions. In the second step, the feasible configuration found by the local search
step is sent to the stochastic local search method (SLS) for minimizing the total
distance traveled by the teams. Furthermore, we design a new technique which we
call the aspiration technique. This technique is used to ensure that the three hard
constraints are always satisfied when applying the SLS algorithm on the feasible
search space.

3.1 The Initial Configuration

The search method starts with an initial configuration verifying the DRRT con-
straint. We create this configuration based on graph-theory modelling [9] as follows:

We have n/2 games per round and 2 · (n − 1) rounds. We number the vertices
of the graph from 1 to n, where n is the number of teams. We put the top n in the
center and the other vertices in a circle around the top n.

• In the first day, we organize a game between (Team 1 and Team n), (Team 2
and Team n− 1), (Team 3 and Team n− 2), and so on, up to the game between
(Team n/2 and Team n/2 + 1).

• In the following day, we reproduce what happened in the previous day, making
a simple clockwise rotation of the coupling.

Figure 1 shows an example of the creation of the initial configuration for the case
of 6 teams.

Round1 (t1, t6) (t5, t2) (t4, t3)
Round2 (t5, t4) (t1, t3) (t6, t2)
Round3 (t1, t5) (t2, t4) (t6, t3)
Round4 (t1, t2) (t5, t3) (t6, t4)
Round5 (t5, t6) (t1, t4) (t2, t3)

Table 2. Single round robin tournament with n = 6

For more details, Table 2 gives the schedule which is a single round robin tour-
nament (SRR). We note that in a single round-robin schedule, each team plays
every other team once. When each team plays all others twice, this is called a dou-
ble round-robin tournament (DRRT). As shown in Table 3, the double round robin
tournament schedule can be obtained by adding the mirror of the SRR schedule.

3.2 Local Search Method for Feasible Schedules

After having created the initial DRRT schedule, we call the local search method
in order to locate feasible configurations satisfying the three constraints: AtMost,

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1391

Figure 1. Creation of the initial configuration

Round1 (t1, t6) (t5, t2) (t4, t3)
Round2 (t5, t4) (t1, t3) (t6, t2)
Round3 (t1, t5) (t2, t4) (t6, t3)
Round4 (t1, t2) (t5, t3) (t6, t4)
Round5 (t5, t6) (t1, t4) (t2, t3)

Round6 (t6, t1) (t2, t5) (t3, t4)
Round7 (t4, t5) (t3, t1) (t2, t6)
Round8 (t5, t1) (t4, t2) (t3, t6)
Round9 (t2, t1) (t3, t5) (t4, t6)
Round10 (t6, t5) (t4, t1) (t3, t2)

Table 3. Mirror of single round robin tournament n = 6

1392 M. Khelifa, D. Boughaci

NoRepeat, and DRRT. We study VNS and SA local search methods for building
feasible schedules. We use a cost function to penalize configurations that violate
the considered constraints. Further, we use neighborhood structures to explore the
search space. The cost function, the neighborhood structures and the two methods
are detailed in the following.

3.2.1 The Cost Function

The cost function consists of two terms. The first term permits to penalize configu-
rations not satisfying the AtMost constraint. The second term is to penalize those
not satisfying the NoRepeat constraint.

First, it is important to give the following useful notations in Table 4 to represent
the constraints.

ti is the team number i where i ∈ [1, n].

(ti, tj) is the game ti, vs. tj in the home of ti.

Round l is the round number l where 1 ≤ l ≤ |Round |.
Ri,j means that the match (ti, tj) is scheduled in a round Ri,j

where 1 ≤ Ri,j ≤ |Round |, ∀i, j ∈ |T | , i 6= j.
For example in Table 3, the match (t5, t1) is scheduled in Round8
at home of t5, R5,1 = 8, while the match (t1, t5) is scheduled
in Round3, R1,5 = 3.

S is a DRRT schedule.

Table 4. Some useful notations and definitions

Now, we define the No-repeat constraint fNo repeat · occ norepeat(S, ti, tj). The
function occ norepeat(S, ti, tj) verifies, in a current schedule S, if the match (ti, tj)
is followed in the next round by the match (tj, ti). This occurs when Ri,j = Rj,i + 1
or when Rj,i = Ri,j + 1.

occ norepeat(S, ti, tj) =

{
1, if (Ri,j = Rj,i + 1) ∨ (Rj,i = Ri,j + 1),

0, otherwise.
(1)

For example, the schedule in Table 3 (denoted S3), occ norepeat(S3, t1, t6) = 0
because for the game (t1, t6), R1,6 6= R6,1 + 1 and R6,1 6= R1,6 + 1. The match (t1, t6)
is played in R1,6 = Round1 while the match (t6, t1) is scheduled in R6,1 = Round6.
This implies that R1,6 6= R6,1 + 1.

The penalty fNo repeat (S) is the total number of times that the game (ti, tj) is
followed immediately by (tj, ti) in the schedule S.

fNo repeat (S) =

|T |∑
i=1

|T |∑
j=i+1

occ norepeat (S, ti, tj) . (2)

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1393

Also, we define the At-Most constraint fAt Most . occ atmost (S, ti,Round l) is
the number of times that the team ti plays home or away games in three rounds
successively from Round l (Round l,Round l + 1,Round l + 2,Round l + 3).

con atmost(S, ti,Round l) =

1, if occ atmost(S, ti,Round l) > 3,

Round l < |Round | − 3,

0, otherwise.

(3)

For example, for the schedule S3 in Table 3: occ atmost (S3, t1,Round1) = 1,
since the team t1 is played 4 consecutive games at home in Round1, Round2, Round3

and Round4.
The penalty At-most fAt most (S) is the total number of times the teams play

more than three consecutive home games or three consecutive away games.

fAt most (S) =

|T |∑
i=1

|Round |−3∑
l=1

con atmost (S, ti,Round l) . (4)

The cost function is then defined by the sum of the two penalty constraints
NoRepeat and AtMost:

Cost(S) = fNo repeat(S) + fAt most(S). (5)

The main goal of the local search method is to find a configuration of zero-cost
value. This means finding a feasible configuration satisfying the three constraints:
AtMost, NoRepeat, and DRRT.

3.2.2 Neighborhood Structures

We use three neighborhood structures which are detailed in the following:

• N1: Swap Home. This move swaps the home/away roles of teams. For instance,
when we take two teams ti and tj, the move Swap Home(S, ti, tj) swaps the
home/away roles of a game involving the teams ti and tj. If team ti plays
home against team tj at Roundk and away against team tj at Round l then the
move Swap Home (S, ti, tj) gives the same schedule as S, except that team ti
plays away against team tj at Roundk, and home against tj at Round l. Table 5
displays an example of a move using the N1 neighborhood structure.

• N2: Swap Round. This move consists of swapping all games of a given pair
of rounds. For example the move Swap Round (S,Roundk,Round l) swaps two
given rounds (Roundk and Round l). Table 6 gives an example of schedule when
applying the N2 move.

• N3 Swap Team. This move corresponds to swapping all opponents of a given pair
of teams over all rounds, For example the move Swap Team (S, ti, tj) corresponds
to swapping all opponents of teams ti and tj over all rounds. Table 7 shows
an example of applying the N3 move.

1394 M. Khelifa, D. Boughaci

Round1 (t5, t1) (t4, t2) (t3, t6)
Round2 (t4, t1) (t3, t5) (t2, t6)
Round3 (t3, t1) (t4, t6) (t2, t5)
Round4 (t6, t1) (t2, t3) (t4, t5)
Round5 (t2, t1) (t6, t5) (t4, t3)

Round6 (t1, t5) (t2, t4) (t6, t3)
Round7 (t1, t3) (t6, t4) (t5, t2)
Round8 (t1, t4) (t5, t3) (t6, t2)
Round9 (t1, t6) (t3, t2) (t5, t4)
Round10 (t1, t2) (t5, t6) (t3, t4)

The application of the move Swap home away: N1 (S, t1, t2):
⇓

Round1 (t5, t1) (t4, t2) (t3, t6)
Round2 (t4, t1) (t3, t5) (t2, t6)
Round3 (t3, t1) (t4, t6) (t2, t5)
Round4 (t6, t1) (t2, t3) (t4, t5)
Round5 (t1, t2) (t6, t5) (t4, t3)

Round6 (t1, t5) (t2, t4) (t6, t3)
Round7 (t1, t3) (t6, t4) (t5, t2)
Round8 (t1, t4) (t5, t3) (t6, t2)
Round9 (t1, t6) (t3, t2) (t5, t4)
Round10 (t2, t1) (t5, t6) (t3, t4)

Table 5. Schedule before (up) and after (down) the application of home-away swap

The simulated annealing and variable neighborhood search (VNS) algorithms are
used to search for configurations satisfying the three constraints. These methods are
called for finding configurations with a cost function 5 equal to zero. Both SA and
VNS use the cost function to compare, in terms of quality, two schedules S and S

′
.

We note that the DRRT constraints are always satisfied since we started with an
initial configuration satisfying the DRRT constraint.

3.2.3 SA for Feasible Configurations

SA starts with an initial DRRT schedule. Then it moves iteratively (using the
N1 move) from the current schedule to another one in the search space for finding
lower cost solutions. When a new schedule with a lower cost is found, it replaces
the current solution. When a new schedule of a higher cost is chosen, it replaces
the current solution with some probability. This probability is decreased as the
algorithm progresses (analogously to the temperature in physical annealing). The
SA algorithm is sketched in Algorithm 1.

3.2.4 VNS for Feasible Configurations

VNS is a local search meta-heuristic proposed in 1997 by Mladenovic and Hansen.
Various variants of VNS have been proposed since then, but the basic idea is a sys-

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1395

Round1 (t5, t1) (t4, t2) (t3, t6)
Round2 (t4, t1) (t3, t5) (t2, t6)
Round3 (t3, t1) (t4, t6) (t2, t5)
Round4 (t6, t1) (t2, t3) (t4, t5)
Round5 (t2, t1) (t6, t5) (t4, t3)

Round6 (t1, t5) (t2, t4) (t6, t3)
Round7 (t1, t3) (t6, t4) (t5, t2)
Round8 (t1, t4) (t5, t3) (t6, t2)
Round9 (t1, t6) (t3, t2) (t5, t4)
Round10 (t1, t2) (t5, t6) (t3, t4)

After applying the move Swap Round: N2 (S,Round3, Round5):
⇓

Round1 (t5, t1) (t4, t2) (t3, t6)
Round2 (t4, t1) (t3, t5) (t2, t6)
Round3 (t2, t1) (t6, t5) (t4, t3)
Round4 (t6, t1) (t2, t3) (t4, t5)
Round5 (t3, t1) (t4, t6) (t2, t5)

Round6 (t1, t5) (t2, t4) (t6, t3)
Round7 (t1, t3) (t6, t4) (t5, t2)
Round8 (t1, t4) (t5, t3) (t6, t2)
Round9 (t1, t6) (t3, t2) (t5, t4)
Round10 (t1, t2) (t5, t6) (t3, t4)

Table 6. Schedule before (up) and after (down) the application of Swap Round

tematic change of neighborhood combined with a local search [14, 22]. Unlike local
search, VNS works on a set of different neighborhoods. In our study, we use three
(k = 3) structures of neighborhood which are: N1 (Swap Home), N2 (Swap Round)
and N3 (Swap Team). At each iteration, we select among the three structures one
to create neighbor solutions. The proposed VNS uses the deepest descent strategy
(DDS) as a subroutine. More precisely, VNS starts with an initial DRRT (S) sched-
ule and then tries to find a good solution in the whole neighborhood in an iterative
manner. The DDS procedure is called for each candidate solution constructed by
VNS method. As shown in Algorithm 2, DDS explores iteratively the search space
of the given solution S and returns the best neighbor solution found in this space.
VNS first uses the N1 structures to create neighbor solutions. When there is no
improvement, the neighborhood structure is mapped to N2 and then to N3 in the
hope to create diverse and good neighbor solutions. As done with SA, VNS works
in the same objective to find a feasible configuration. The overall process of VNS is
repeated until a schedule with zero-cost is reached (Cost(S) = 0).

The VNS algorithm is sketched in Algorithm 3.

1396 M. Khelifa, D. Boughaci

Round1 (t5, t1) (t4, t2) (t3, t6)
Round2 (t4, t1) (t3, t5) (t2, t6)
Round3 (t3, t1) (t4, t6) (t2, t5)
Round4 (t6, t1) (t2, t3) (t4, t5)
Round5 (t2, t1) (t6, t5) (t4, t3)

Round6 (t1, t5) (t2, t4) (t6, t3)
Round7 (t1, t3) (t6, t4) (t5, t2)
Round8 (t1, t4) (t5, t3) (t6, t2)
Round9 (t1, t6) (t3, t2) (t5, t4)
Round10 (t1, t2) (t5, t6) (t3, t4)

After the application of the move Swap Team: N3 (S, (t3, t5)):
⇓

Round1 (t3, t1) (t4, t2) (t5, t6)
Round2 (t4, t1) (t3, t5) (t2, t6)
Round3 (t5, t1) (t4, t6) (t2, t3)
Round4 (t6, t1) (t2, t5) (t4, t3)
Round5 (t2, t1) (t6, t3) (t4, t5)

Round6 (t1, t3) (t2, t4) (t6, t5)
Round7 (t1, t5) (t6, t4) (t3, t2)
Round8 (t1, t4) (t5, t3) (t6, t2)
Round9 (t1, t6) (t5, t2) (t3, t4)
Round10 (t1, t2) (t3, t6) (t5, t4)

Table 7. Schedule before (up) and after (down) the application of Swap Team

3.3 Stochastic Local Search for TTP

As already mentioned, the two local search methods (SA and VNS) are used in the
first step to handle the feasibility criterion. In the second step, we apply SLS on the
feasible configuration to handle the optimization criterion and minimize the total
distance traveled by the teams.

SLS [15, 3] is a local search method that combines diversification and intensifi-
cation strategies to locate a good solution. The intensification phase selects the best
neighbor solution while the diversification phase selects a random neighbor solution.
The diversification phase is applied with a fixed probability wp > 0 and the inten-
sification phase with a probability 1 − wp. The process is repeated until a certain
number of iterations called maxiter is reached.

To maintain that the three hard constraints are always satisfied in our SLS
algorithm, we apply an aspiration technique. The latter is given in the next sec-
tion.

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1397

Algorithm 1: The proposed SA for feasible configurations

Data: A DRRT schedule, α = 0.9, the neighborhood structures N1

Result: A feasible configuration that satisfies AtMost, NoRepeat and
DRRT constraints

1 S0 ← an initial configuration verifying DRRT
2 Temp ← an initial temperature
3 S ← S0

4 for (I = 1 to Maxiter) do
5 if (Cost(S) 6= 0) then
6 S

′ ← Choose random configuration using the neighborhood
structure (N1) on S

7 r ← random number between 0 and 1

8 if (r ≺ e
Cost(S)−Cost(S

′
)

Temp) then
9 S ← S

′

10 Temp ← Temp · α
11 else
12 Go to 13

13 Return the schedule S

Algorithm 2: DDS(S,Nk(S))

Data: A DRRT schedule S, the neighborhood structures Nk(S)
Result: an improved schedule

1 repeat
2 Choose S

′ ∈ Nk(S) with Cost(S
′
) ≤ Cost(S

′′
), ∀S ′′ ∈ Nk(S)

3 if (Cost(S
′
) < Cost(S)) then

4 S ← S
′

5 until Cost(S
′
) ≥ Cost(S), ∀S ′ ∈ Nk(S);

6 Return the schedule S

3.4 Aspiration Technique to Select the Best Neighbor

We propose a new technique which we called aspiration technique to filter the search
space and keep only the feasible configurations. The aspiration technique permits to
memorize information on moves leading to feasible neighbor configurations, starting
from a current configuration. First, we explore the search space to locate feasi-
ble configurations (denoted CSC) with zero-cost according to the cost function (5)
described in Section 3.2.1. Then among them, we take the best one having the
minimum traveled distance.

1398 M. Khelifa, D. Boughaci

Algorithm 3: The proposed VNS for feasible configurations

Data: A DRRT schedule, the three first Neighborhood structures Nk

(1 ≤ k ≤ 3)
Result: A feasible configuration that satisfies AtMost, NoRepeat and

DRRT constraints
1 S ← an initial configuration verifying DRRT
2 k ← 1
3 S ← local search(S)
4 for (I = 1 to Maxiter) do
5 if (Cost(S) 6= 0) then
6 S

′ ← choose random solution (Nk (s))

7 S” ← Call DDS (S
′
, Nk)

8 if (Cost(
(
S”
)
< Cost((S)) then

9 S ← S”

10 else
11 if (k < 3) /* when there is no improvement, the neighborhood structure

is changed to the next one */

12 then
13 k ← k + 1
14 else
15 k ← 1

16 else
17 Go to 18

18 Return the schedule S

For every neighborhood structure, the technique is illustrated as follows:

• For the N1 neighborhood structure (Swap Home), we use a list of NBgames
elements where NBgames is the number of the games (NBgames = (n− 1) · n).
Each element of the list consists of two cells (see Figure 2). The first cell is
the game (ti, tj) and the second is the cost of the move N1(S, (ti, tj)) (denoted
C M(ti, tj)). The latter is the variation of the cost value that must be applied if
we swap the home/away roles of game (ti, tj) to create S

′
. If S

′
is the schedule

obtained after applying N1 on S in (ti, tj), i.e. N1(S, (ti, tj)) = S
′
.

Cost(S
′
) = Cost(S) + C M(ti, tj). (6)

With this technique, we can take the subset of swaps that gives feasible solutions
with zero cost in time O(|NBgames|).
• For the N2 neighborhood structure (Swap Round), we use a matrix Movr of
|Round |·|Round | elements where each element Movr [Round i,Round j] represents
the variation of the cost value that must be applied if a move exchanges two

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1399

Algorithm 4: The SLS method for TTP

Data: a TTP instance, maxiter , wp
Result: The best schedule S

1 Create an initial configuration (CS) verifying the DRRT constraint
2 Apply the local search method (VNS or SA) on CS to obtain a

configuration (CSC) verifying the three constraints
3 S ← CSC
4 for (I = 1 to Maxiter) do
5 if (r ≺ wp) then
6 Apply the aspiration technique N1(S) to find a subset of

neighborhoods with Cost equal to zero.
7 Choose a random neighbor among them S

′ ∈ N1(S)

8 S ← S
′

9 else
10 Create Movr [ti, tj] using aspiration technique on N3(S)
11 Select the best movement (ti, tj)
12 S ← SwapTeam (S, ti, tj)
13 Create a list (NBgames) using Aspiration technique, on N2(S)
14 Select the best movement (ti, tj)
15 S ← SwapHome (S, ti, tj)

16 Return the schedule S

Figure 2. Structure of an element of our list

rounds: Round i and Round j) to create the schedule S
′
. Thus the cost of S

′ ∈
N2(S) is obtained by the sum of the Cost(S) and the value of the element
Movr [Round i,Round j]: If S

′
is the schedule obtained after applying N2 on S in

(Round i,Round j) (i.e. N2(S, (Round i,Round j)) = S
′
).

Cost(S
′
) = Cost(S) + Movr [Round i,Round j]. (7)

We can get a subset of neighborhoods that have the cost-value equal to zero in
time ≤ (O|N2(S)|). We note that after every move, we update the aspiration
matrix Movr.

• For N3 (Swap Teams), we use a matrix Movt of |T | · |T | element where each
element represents the variation of cost that must be applied if a move exchanges
two plans of two teams (ti, tj). Thus the cost of S

′
(S after a move) is obtained

1400 M. Khelifa, D. Boughaci

by the sum of the cost of S and the value of the element Movt [ti, tj]: If S
′

obtained after applying N3 on S in (ti, tj), i.e. N3(S, (ti, tj)) = S
′
.

Cost(S
′
) = Cost(S) + Movt [ti, tj]. (8)

We can obtain a subset of feasible neighbor configurations with zero cost value
in time equal to O(|N3(S)|). The best neighbor is obtained by browsing this
subset in time ≤ O(|N3(S)|). The matrix is updated after each move.

The SLS is sketched in Algorithm 4.

4 EXPERIMENTS

The source code is written in Java. The experiments are performed on a Core Duo
(1.60 GHz) with 2 GB of RAM. We evaluate our method on five different sets of
instances available at the website [1]. We validate our method on the most pop-
ular testbed that includes: the so-called NLx instances, Circular distance instance
CIRCx, Super Instance, Galaxy and the CON instances [29, 25, 19]. The description
of these instances is given as follows:

NLx instances are based on real data of the US National Baseball League, where
x is an even number of teams.

CONx is the constant distance instances are characterized by a distance of one (1)
between all teams.

SUPERx is based on Rugby League, a league with 14 teams from South Africa,
New Zealand and Australia.

CIRCx instances: all teams are placed on a circle, with unit distances (distance of
1 between all adjacent nodes). The distance between two teams i and j with
i > j is then equal to the length of the shortest path between i and j which is
the minimum of i− j and j − i+ n.

4.1 Parameter Tuning

The adjustment of the different parameters of the proposed algorithms is fixed by
an experimental study. The set values are those for which a good compromise
between the quality of the solution obtained by the algorithm and the running time
of the algorithm is found. Due to the non-deterministic nature of the SLS method,
for each instance, 20 runs have been considered, each of them for 10 000 iterations.

For the probability wp, a large wp (wp > 0.6) may cause of being trapped in
local solutions, while a scriptsize wp (wp < 0.3) means every solution is chosen
from the search space randomly, which may decrease explored more thoroughly the
promising regions in search space. Therefore, we should use wp value between 0.3
and 0.6. Hence in our study the wp probability is set to 0.4.

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1401

For VNS, after twelve runs we observed that the average necessary number of
iterations to find a CSC solution is about 8 000 iterations. Furthermore, in VNS the
feasible schedule is found at each SLS run. The superiority of VNS is due to the
good combination of the diversification and the intensification in the search space
this by systematically changes the proposed neighborhood in two phases: firstly,
descent to find a local optimum and finally, a perturbation phase to get out of the
corresponding valley.

4.2 Numerical Results

In the following, we present the numerical results found by the proposed approach.
First, we give in Table 8 (respectively in Table 9) the results found by SA (respec-
tively VNS). The first column gives the number of teams which are instances with
an even number of teams, from n = 6 up to n = 36, the column Nbr mov repre-
sents the number of necessary moves to obtain a feasible configuration verifying the
three constraints DRRT, AtMost, and NoRepeat. The column Time gives the CPU
time in seconds to obtain the feasible configuration (the reported time is the best
obtained time to find the feasible solution).

n Nbr mov Time n Nbr mov Time

6 1 0.023 22 2 001 335.60
8 2 0.050 24 2 421 1 119.63

10 3 0.091 26 2 621 1 455.85
12 83 18.53 28 3 015 1 654.87
14 92 22.703 30 4 045 1 893.91
16 192 113.50 32 5 113 3 221.51
18 281 181.36 34 6 342 4 761.34
20 1 945 318.18 36 8 782 5 931.34

Table 8. The results found by SA

n Nbr mov Time n Nbr mov Time

6 1 0.010 22 1 623 456.11
8 1 0.024 24 1 937 987.01

10 3 1.12 26 2 134 1 221.23
12 46 17.22 28 2 995 1 546.67
14 78 19.67 30 3 110 1 224.34
16 95 97.00 32 4 675 2 551.00
18 119 112 34 5 112 3 243.16
20 978 234.77 36 6 433 4 056.44

Table 9. The results found by VNS

We implemented two variants of our method: SLSwith SA and SLSwith V NS. The
first one is SLS combined with SA for a local search method. In the second one, we

1402 M. Khelifa, D. Boughaci

use VNS instead of SA as a local search. Table 10 compares the time consumed by
the two methods. The time is given in second.

As shown in Tables 8 and 9, both SA and VNS succeed in finding the feasi-
ble configuration (schedule satisfying DRRT, AtMost, and NoRepeat) for all the
considered benchmarks (until n equals to 36 teams). The two methods VNS and
SA are comparable in term of ability to find feasible configurations in comparable
time. However, when we study the overall methods (SLSwith V NS) and (SLSwith SA),
we can remark that VNS accelerates the search of solutions when it is integrated
in SLS contrary to SA. We can see clearly that VNS is better than SA when it is
integrated into SLS in term of total CPU time consuming. We draw Figure 3 to
show this behavior.

Instance SLSwith SA SLSwith V NS

Time Time

CON4 9.89 0.10
CON6 24.80 19.80
CON8 55.47 30.22
CON10 104.21 89.29
CON12 161.04 104.75
CON14 344.64 214.44
CON16 629.99 411.99
CON18 1 145.00 891.29
CON20 1 887.12 905.75
CON22 2 008.05 1 224.21
CON24 4 507.58 2 998.99
NL4 98.11 53.23
NL6 341.89 145.21
NL8 967.34 524.15
NL10 1 064.31 575.21
NL12 2 681.38 974.83
NL14 3 671.10 2 452.93
NL16 7 343.24 5 316.34
CIRC4 123.36 94.65
CIRC6 370.62 201.32
CIRC8 612.55 431.96
CIRC10 1 449.50 866.11
Galaxy 4 160.71 108.14
Galaxy 6 430.11 288.50
SUPER4 1 941.67 897.89

Table 10. Time comparison between SLSwith SA and SLSwith V NS

To better analyze the obtained results and demonstrate the performance of our
approach we compare the proposed method to the best known solution and other
the best-known techniques for TTP.

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1403

0 2,000 4,000 6,000 8,000

SLSwith SA

SLSwith V NS

CPU time

Figure 3. CPU time comparison between SLSwith SA and SLSwith V NS

Table 11 gives the numerical results found by the overall approach. We give the
CPU time (Time) in seconds (the reported time is the time needed to find the best
solution), the best (Best) and the average solution (AVG) of twenty executions found
by our method. We give the best known solutions (Best*) [1] for each instance and
the gap between Best and Best*. The best results are in bold font. The proposed
method SLS is compared with the best-known solutions Best* for TTP in order to
show its performance in solving TTP.

Gap % =
SLS(Best)− Best∗

SLS(Best)
∗ 100. (9)

0 0.5 1 1.5 2 2.5 3

·105

SLS

Best-Known

Solution quality

Figure 4. Comparison between SLS and Best-known

1404 M. Khelifa, D. Boughaci

Instance Best* SLS Gap %
Time(s) Best Average

CON4 17 0.10 17 17 0
CON6 43 19.80 43 43 0
CON8 80 30.22 80 80 0
CON10 124 89.29 124 125 0
CON12 182 104.75 182 184 0
CON14 252 214.44 252 254 0
CON16 327 411.99 336 338 2.67
CON18 417 891.29 433 455 3.69
CON20 522 905.75 525 554 0.57
CON22 628 1 224.21 628 632 0
CON24 749 2 998.99 756 808 0.92
NL4 8 276 53.23 8 276 8 276 0
NL6 23 916 145.21 23 916 24 122 0
NL8 39 947 524.15 40 621 42 234 1.65
NL10 59 583 575.21 61 193 62 711 2.63
NL12 111 248 974.83 120 655 127 856 7.79
NL14 188 728 2 452.93 206 274 231 785 8.50
NL16 261 687 5 316.34 308 413 322 394 15.15
CIRC4 20 94.65 20 20 0
CIRC6 64 201.32 64 64 0
CIRC8 130 431.96 140 144 7.69
CIRC10 242 866.11 272 287 11.02
Galaxy 4 416 108.14 416 416 0
Galaxy 6 1 365 288.50 1 365 1 394 0
Galaxy8 2 373 1 007.01 2 373 2 648 0
Galaxy10 3 676 2 015.56 4 554 5 134 19.27
Galaxy12 7 034 2 897.14 7 354 8 005 4.35
Super 4 63 405 897.89 63 405 63 405 0
Super 6 130 365 1 425.11 130 365 130 365 0

Table 11. A comparison with best-known Best*

SLS succeeds in finding the optimum solutions for CON4, CON6, CON8,
CON10, CON12, CON14, NL6, NL4, CIRC6, Galaxy4, Galaxy6, Galaxy8, Super4
and Super6. The gap between the best-known solutions and the results of our ap-
proach, in general, does not go above 15.15 % for NL instances and is between 1
and 3.67 % for CON instances. This demonstrates the effectiveness of the proposed
approach in solving the traveling tournament problem. In addition to the numer-
ical analysis, we draw the box plots diagrams to better visualize the distribution
of cost value. The boxplot in Figure 4 shows that our method produces consistent
results. The results are interesting and demonstrate the benefit of our approach for
TTP.

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1405

4.3 A Comparative Study for NL Instances

Since the NLx family of instances is probably the most researched TTP benchmark-
family and virtually all researches studying the TTP publish their computational
results with NLx instances, in this section, we compare the proposed method to
other well-known techniques for TTP on NL instances.

Table 12 compares SLS with some well-known techniques for TTP. The compar-
ison is done with the following techniques: GA (which is a genetic algorithm with
novel encoding scheme for representing a solution instance [6]), AISTTP (which
is an immune-inspired algorithm based on the CLONALG framework [4]), CTSA
(which is a hybrid integer programming/constraint programming approach and
a branch and price algorithm [23]), AATTP (which is an approximation Algorithm
for TTP [29]), CPMT (which is a tabu search and simulated annealing [25]) and
ANT-HYP (which is an ant based hyper-heuristic [5]).

The comparison with other techniques shows the efficiency of our method. In
order to quantify this improvement we compute the performance ratio (PR) or the
average gaps given as follows:

PR =
NBins∑
i=1

Gapi/NBins (10)

where the Gapi is the gap between the best solution of our method and the best of
the other techniques of the instance i. NBins is the total number of the considered
instances.

The performance ratio between the proposed approach and AATTP is equal to
8.68 % which means that our approach improves the results of AATTP in average
by 8.68 %. Also, our method gives better average than CTSA with 0.76 % and
improves the results of CPMT and ANT-HYP method in average by 2.32 % and
3.61 %, respectively. Further, the proposed approach is able to perform better than
GA results in average by 1.13 %, whereas our approach finds near solutions with
deviation from AISTTP equal to −0.05 %.

4.4 A Comparative Study for CON Instances

For CON instances, the comparison is done with Tabu Search [10] since it achieves
the best-known solution on almost all CON instances. Table 13 gives the results
found by both SLS and Tabu search on CON instances. According to these numerical
results, SLS succeeds in finding better results for all the checked instances compared
to Tabu search. Furthermore, the performance ratio between our approach and Tabu
search method is equal to 2.25 % which means that the proposed approach enhances
the results of Tabu search in average by 2.25 %.

The superiority of our approach is explained by the good combination of the two
main steps, which permits to explore efficiently the search space and locate good
solutions.

1406 M. Khelifa, D. Boughaci

Instance SLS AATTP Gap AISTTP Gap CTSA Gap

NL4 8 276 — — — — — —

NL6 23 916 — — — — 24 467 −2.30

NL8 40 621 47 128 −16.01 40 156 1.14 41 754 −2.78

NL10 61 193 69 958 −14.32 61 351 −0.25 63 277 −3.40

NL12 120 655 125 086 −3.67 120 531 0.21 116 421 3.05

NL14 206 274 230 874 −11.92 206 434 −0.77 215 665 −4.55

NL16 308 413 300 744 2.48 288 674 0.04 288 674 5.40

Instance SLS ANT−HYP Gap CPMT Gap GA Gap

NL4 8 276 — — — — — —

NL6 23 916 23 916 0 — — 23 916 0

NL8 40 621 40 361 0.64 41 928 −3.21 41 505 −2.17

NL10 61 193 65 168 −6.49 65 193 −6.53 — —

NL12 120 655 123 752 −2.56 120 906 −0.20 — —

NL14 206 274 225 169 −9.16 208 824 −1.23 — —

NL16 308 413 321 037 −4.09 287 130 6.90 — —

Table 12. A comparative study for NL instances

Instance SLS Tabu Search Gap %

CON4 17 17 0

CON4 43 48 −11.62

CON8 80 81 -1.25

CON10 124 124 0

CON12 182 184 −1.09

CON14 252 253 −0.09

CON16 336 342 −1.72

Table 13. A comparative study for CON instances

5 CONCLUSION

We proposed a search method for constrained optimization. The proposed method
handles optimality and feasibility separately. It is applied to the well-known NP-
hard traveling tournament problem (TTP). TTP is concerned with finding a tour-
nament schedule that minimizes the total distances traveled by the teams. The
TTP has attracted significant interest recently since a favorable TTP schedule can
generate large incomes in the budget of managing the league’s sport. The proposed
approach is a combination of the stochastic local search algorithm (SLS) as an opti-
mization technique and the local search method (VNS/SA) as a search method for
feasible configurations. The method is implemented, evaluated on publicly available
standard benchmarks and compared with other techniques for TTP. The proposed
method provides competitive results and finds solutions of high quality. It matches
the best-known solutions on seventeen instances and outperforms some interesting

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1407

methods. The advantage of the novel method is that it can reduce mainly the prob-
lem complexity since we consider only feasible configurations. However, we can lose
the global optima in some situation since we do not explore full search space. We
plan to study the impact of exact techniques on the proposed method. It would be
nice to study the effectiveness of our method in solving other constrained optimiza-
tion problems.

REFERENCES

[1] Challenge Traveling Tournament Instances. http://mat.tepper.cmu.edu/TOURN/,
2016.

[2] Anagnostopoulos, A.—Michel, L.—Van Hentenryck, P.—Vergados, Y.:
A Simulated Annealing Approach to the Traveling Tournament Problem. Journal of
Scheduling, Vol. 9, 2006, No. 2, pp. 177–193, doi: 10.1007/s10951-006-7187-8.

[3] Boughaci, D.: Metaheuristic Approaches for the Winner Determination Problem
in Combinatorial Auction. In: Yang, X. S. (Ed.): Artificial Intelligence, Evolutionary
Computing and Metaheuristics. Springer, Berlin, Heidelberg, Studies in Computa-
tional Intelligence, Vol. 427, 2013, pp. 775–791, doi: 10.1007/978-3-642-29694-9 29.

[4] Pérez Cáceres, L.—Riff, M. C.: AISTTP: An Artificial Immune Algorithm
to Solve Traveling Tournament Problems. International Journal of Computa-
tional Intelligence and Applications, Vol. 11, 2012, No. 1, Art. No. 1250008, doi:
10.1142/s1469026812500083.

[5] Chen, P.-C.—Kendall, G.—Vanden Berghe, G.: An Ant Based Hyper-
Heuristic for the Travelling Tournament Problem. 2007 IEEE Symposium on
Computational Intelligence in Scheduling (SCIS ’07), 2007, pp. 19–26, doi:
10.1109/scis.2007.367665.

[6] Choubey, N. S.: A Novel Encoding Scheme for Traveling Tournament Problem Us-
ing Genetic Algorithm. International Journal of Computer Applications (IJCA), Spe-
cial Issue on Evolutionary Computation for Optimization Techniques (ECOT 2010),
Vol. 2, 2010, No. 7, pp. 79–82, doi: 10.5120/1536-139.

[7] Costa, F. N.—Urrutia, S.—Ribeiro, C. C.: An ILS Heuristic for the Travel-
ing Tournament Problem with Predefined Venues. Annals of Operations Research,
Vol. 194, 2012, No. 1, pp. 137–150, doi: 10.1007/s10479-010-0719-9.

[8] Moreira de Carvalho, M. A.—Nogueira Lorena, L. A.: New Models for the
Mirrored Traveling Tournament Problem. Computers and Industrial Engineering,
Vol. 63, 2012, No. 4, pp. 1089–1095, doi: 10.1016/j.cie.2012.08.002.

[9] de Werra, D.: Some Models of Graphs for Scheduling Sports Competitions. Dis-
crete Applied Mathematics, Vol. 21, 1988, No. 1, pp. 47–65, doi: 10.1016/0166-
218x(88)90033-9.

[10] Di Gaspero, L.—Schaerf, A.: A Composite-Neighborhood Tabu Search Ap-
proach to the Traveling Tournament Problem. Journal of Heuristics, Vol. 13, 2007,
No. 2, pp. 189–207, doi: 10.1007/s10732-006-9007-x.

http://mat.tepper.cmu.edu/TOURN/
https://doi.org/10.1007/s10951-006-7187-8
https://doi.org/10.1007/978-3-642-29694-9_29
https://doi.org/10.1142/s1469026812500083
https://doi.org/10.1109/scis.2007.367665
https://doi.org/10.5120/1536-139
https://doi.org/10.1007/s10479-010-0719-9
https://doi.org/10.1016/j.cie.2012.08.002
https://doi.org/10.1016/0166-218x(88)90033-9
https://doi.org/10.1016/0166-218x(88)90033-9
https://doi.org/10.1007/s10732-006-9007-x

1408 M. Khelifa, D. Boughaci

[11] Easton, K.—Nemhauser, G.—Trick, M.: The Traveling Tournament Problem
Description and Benchmarks. In: Walsh, T. (Ed.): Principles and Practice of Con-
straint Programming – CP 2001. Springer, Berlin, Heidelberg, Lecture Notes in Com-
puter Science, Vol. 2239, 2001, pp. 580–584, doi: 10.1007/3-540-45578-7 43.

[12] Goerigk, M.—Westphal, S.: A Combined Local Search and Integer Programming
Approach to the Traveling Tournament Problem. Annals of Operations Research,
Vol. 239, 2016, No. 1, pp. 343–354, doi: 10.1007/s10479-014-1586-6.

[13] Guedes, A. C. B.—Ribeiro, C. C.: A Heuristic for Minimizing Weighted Carry-
Over Effects in Round Robin Tournaments. Journal of Scheduling, Vol. 14, 2011,
No. 6, pp. 655–667, doi: 10.1007/s10951-011-0244-y.

[14] Hansen, P.—Mladenović, N.: Variable Neighborhood Search: Principles and
Applications. European Journal of Operational Research, Vol. 130, 2001, No. 3,
pp. 449–467, doi: 10.1016/s0377-2217(00)00100-4.

[15] Hoos, H. H.—Boutilier, C.: Solving Combinatorial Auctions Using Stochastic
Local Search. Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI), 2000, pp. 22–29.

[16] Irnich, S.: A New Branch-and-Price Algorithm for the Traveling Tournament Prob-
lem. European Journal of Operational Research, Vol. 204, 2010, No. 2, pp. 218–228,
doi: 10.1016/j.ejor.2009.10.024.

[17] Kendall, G.—Knust, S.—Ribeiro, C. C.—Urrutia, S.: Scheduling in Sports:
An Annotated Bibliography. Computers and Operations Research, Vol. 37, 2010,
No. 1, pp. 1–19, doi: 10.1016/j.cor.2009.05.013.

[18] Khelifa, M.—Boughaci, D.: A Variable Neighborhood Search Method for Solv-
ing the Traveling Tournaments Problem. Electronic Notes in Discrete Mathematics,
Vol. 47, 2015, pp. 157–164, doi: 10.1016/j.endm.2014.11.021.

[19] Khelifa, M.—Boughaci, D.: Hybrid Harmony Search Combined with Variable
Neighborhood Search for the Traveling Tournament Problem. In: Nguyen, N. T.,
Iliadis, L., Manolopoulos, Y., Trawiński, B. (Eds.): Computational Collective Intelli-
gence (ICCCI 2016). Springer, Cham, Lecture Notes in Computer Science, Vol. 9875,
2016, pp. 520–530, doi: 10.1007/978-3-319-45243-2 48.

[20] Kuester, J. L.—Mize, J. H.: Optimization Techniques with Fortran. McGraw-Hill,
New York, 1973.

[21] Miyashiro, R.—Matsui, T.: Semidefinite Programming Based Approaches to the
Break Minimization Problem. Computers and Operations Research, Vol. 33, 2006,
No. 7, pp. 1975–1982, doi: 10.1016/j.cor.2004.09.030.

[22] Mladenović, N.—Hansen, P.: Variable Neighborhood Search. Computers and
Operations Research, Vol. 24, 1997, No. 11, pp. 1097–1100, doi: 10.1016/s0305-
0548(97)00031-2.

[23] Rasmussen, R. V.—Trick, M. A.: The Timetable Constrained Distance Minimiza-
tion Problem. Annals of Operations Research, Vol. 171, 2009, No. 1, pp. 45–49, doi:
10.1007/s10479-008-0384-4.

https://doi.org/10.1007/3-540-45578-7_43
https://doi.org/10.1007/s10479-014-1586-6
https://doi.org/10.1007/s10951-011-0244-y
https://doi.org/10.1016/s0377-2217(00)00100-4
https://doi.org/10.1016/j.ejor.2009.10.024
https://doi.org/10.1016/j.cor.2009.05.013
https://doi.org/10.1016/j.endm.2014.11.021
https://doi.org/10.1007/978-3-319-45243-2_48
https://doi.org/10.1016/j.cor.2004.09.030
https://doi.org/10.1016/s0305-0548(97)00031-2
https://doi.org/10.1016/s0305-0548(97)00031-2
https://doi.org/10.1007/s10479-008-0384-4

A Cooperative Local Search Method for Solving the Traveling Tournament Problem 1409

[24] Ribeiro, C. C.: Sports Scheduling: Problems and Applications. International
Transactions in Operational Research, Vol. 19, 2012, No. 1-2, pp. 201–226, doi:
10.1111/j.1475-3995.2011.00819.x.

[25] Rossi-Doria, O.—Sampels, M.—Birattari, M. et al.: A Comparison of the
Performance of Different Metaheuristics on the Timetabling Problem. In: Burke, E.,
De Causmaecker, P. (Eds.): Practice and Theory of Automated Timetabling IV
(PATAT 2002). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 2740, 2003, pp. 329–351, doi: 10.1007/978-3-540-45157-0 22.

[26] Snyman, J. A.: Practical Mathematical Optimization: An Introduction to Basic
Optimization Theory and Classical and New Gradient-Based Algorithms. Springer
US, Applied Optimization, Vol. 97, 2005.

[27] Thielen, C.—Westphal, S.: Complexity of the Traveling Tournament Prob-
lem. Theoretical Computer Science, Vol. 412, 2011, No. 4-5, pp. 345–351, doi:
10.1016/j.tcs.2010.10.001.

[28] Van ’t Hof, P.—Post, G.—Briskorn, D.: Constructing Fair Round Robin Tour-
naments with a Minimum Number of Breaks. Operations Research Letters, Vol. 38,
2010, No. 6, pp. 592–596, doi: 10.1016/j.orl.2010.08.008.

[29] Westphal, S.—Noparlik, K.: A 5.875-Approximation for the Traveling Tourna-
ment Problem. Annals of Operations Research, Vol. 218, 2014, No. 1, pp. 347–360,
doi: 10.1007/s10479-012-1061-1.

https://doi.org/10.1111/j.1475-3995.2011.00819.x
https://doi.org/10.1007/978-3-540-45157-0_22
https://doi.org/10.1016/j.tcs.2010.10.001
https://doi.org/10.1016/j.orl.2010.08.008
https://doi.org/10.1007/s10479-012-1061-1

1410 M. Khelifa, D. Boughaci

Meriem Khelifa is a Ph.D. student at the University of Scien-
ce and Technologies Houari Boumediene (USTHB). She received
her Master degree in computer science from the University Kasdi
Merbah, Ouargla, Algeria. She is an active member of the
Laboratory for Research in Artificial Intelligence (LRIA). Her
research interests include issues related to the meta-heuristic
approaches, optimization problems, and the sports scheduling
problem. She is an author of some scientific papers on sport
scheduling and traveling tournament problems. Actually, she is
working on developing new algorithms based on graph theory

and machine learning algorithms to solve large sport scheduling instances at the HERON
laboratory (Higher Education Research on Emotional Intelligence and Privacy Protection),
UdeM Université de Montréal, Canada.

Dalila Boughaci is Full Professor in computer science at the University of Science and
Technology USTHB (Algeria). She got her Ph.D. from the University of Aix-Marseille
(France) in 2008 and her “Habilitation” Post-Doctoral diploma from USTHB University
in 2009. She earned her Bachelor of Engineering degree in computer science from Algiers
University, M.Sc. degree in computer science and her second Ph.D. in programming sys-
tems from the University of Sciences and Technology, Beb-Ezzouar, Algiers in 1997, 2001
and 2008, respectively. Her current research interests are in the areas of data mining, deep
learning, evolutionary computation, artificial intelligence, meta-heuristics, multi-agent sys-
tems, network security, credit scoring and e-commerce. She has published several papers
on these research topics in journals and conferences and directed several Ph.D., M.Sc.
and B.Sc. students’ projects. She has taught parallel computing, machine learning, web
service, object oriented programming, algorithmic, software engineering, databases, Java,
agents and programming languages at Algiers, and served on several program committees.
She is a member of the LRIA Artificial Intelligence Laboratory at the University of Al-
giers. She is the head of the research team: Optimization, Reasoning and Application of
the LRIA Laboratory.

