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University of Primorska, The Andrej Marušič Institute
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1 INTRODUCTION

The manuscript proposes a change in the architecture for a Shallow Parsing and
Shallow Transfer Rule-Based Machine Translation System. One of the methods,
which guarantees relatively good results for the translation of closely related lan-
guages, is the method of a rule-based shallow-parse and shallow-transfer approach
which uses a simple architecture, thus relying on (mostly structural) similarity of the
language pair. It has a long tradition and it has been successfully used in a number
of MT systems, the most notable of which are Apertium [3] and Čeśılko [11].

Shallow-transfer systems usually use a relatively linear and straightforward ar-
chitecture where the analysis of a source language is usually limited to the mor-
phemic level. Most such systems still rely on morphological analysis of the source
text in the source language. This part of the process is ambiguous. The newly pro-
posed architecture omits the disambiguation module in the starting phases of the
translation pipeline and stores all translation candidates generated by the ambiguous
process in the morphological analysis phase.

The time and space complexity of the proposed architecture are discussed along
with the presentation of the algorithms and data structures. An experimental pro-
totype system as a proof of concept has been constructed on the basis of the Aper-
tium [3] machine translation framework and using language data for the language
pair Slovenian-Serbian [14].

Neural machine translation (NMT) has recently replaced the “classical statistical
machine translation – SMT” and becomes the dominant research paradigm [1], but
there are still reports of RBMT systems outperforming SMT or NMT systems such
as [14] and also there are use cases where RBMT systems are more suitable (where
the deterministic behaviour of the system is important).

The rest of the manuscript is organised as follows: The domain description is
presented in Section 2, the motivation for the research is presented in Section 3. The
methodology is presented in Section 4, space and time complexity of the presented
data structures and algorithms is presented in Section 5, empirical evaluation and
results are presented in Section 6 and conclusions in Section 7.

2 DOMAIN DESCRIPTION

The European Association for Machine Translation (EAMT) [5] describes Machine
Translation as any translation task that involves the use of computers (machines).
In the scope of this paper we will use the term in a narrower scope: Fully Automatic
Machine translation [5] where the task of translating the text from the source lan-
guage to the target language is done by the computer (machine). More specifically
the research focuses on the translation of similar languages. One of the most suitable
paradigms for this domain is the Shallow Transfer Rule-Based MT (ST-RBMT).
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Figure 1. The modules of a typical shallow parsing and shallow transfer translation sys-
tem. The frameworks for the construction of MT systems [3, 12, 17, 21] follow this design.

2.1 Shallow Parsing and Shallow Transfer Rule-Based MT

Figure 1 shows the architecture of the most known translation systems for related
languages Apertium [3] and Čeśılko [12]. The newest version of Čeśılko [26] is
available under open source license.

The monolingual dictionaries are used in the morphological parsing of the source
text by the morphological analyser module and in the generation of the translation
text in the target language by the morphological generator module. The Part Of
Speech (POS) tagger module is used to disambiguate the ambiguous output of the
morphological analyser module. The bilingual dictionary is used for word-by-word
translation: in our case the translation is based on lemmata. The shallow transfer
rules are used to address local syntactic and morphological rules such as local word
agreement and local word reordering. The module using the bilingual dictionary
and the shallow transfer rules is the structural transfer module. The remaining
modules deal with text formatting which is not the domain of this paper. All
methods and materials discussed in this paper were tested on a fully functional
machine translation system based on GUAT [24], a translation system for related
languages based on Apertium [3], which is a widely used open source toolkit for
creating machine translation systems between related languages.

The majority of the translation systems for related languages use the shallow
parsing machine translation architecture [25].

2.1.1 Apertium

Apertium is an open-source machine translation platform, initially aimed at related-
language pairs but recently expanded to deal with more divergent language pairs
(such as English-Catalan). The platform provides a language-independent machine
translation engine, tools to manage the linguistic data necessary to build a machine
translation system for a given language pair and linguistic data for a growing number
of language pairs. All these properties make Apertium a perfect choice in a cost-
effective machine translation system development.
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2.1.2 GUAT

All methods and materials discussed in this paper were tested on a fully functional
machine translation system based on GUAT [14] and [24], a translation system
for related languages based on Apertium [3]. The system GUAT was used as the
sandbox for the implementation of proposed methods. GUAT is automatically con-
structed so there is still a room for improvement, mainly through data correction
tasks. The basic architecture of the system follows the architecture of Apertium [3]
and is presented in Figure 1.

2.2 Multigraph

In mathematics, a graph is a structure amounting to a set of objects in which
some pairs of the objects are in some sense “related”. The objects correspond to
mathematical abstractions called vertices (also called nodes or points) and each of
the related pairs of vertices is called an edge (also called an arc or line). A graph G
is an ordered pair G := (V,E) with:

• V a set of vertices or nodes,

• E a set of unordered pairs of vertices, called edges or lines.

A multigraph or pseudograph is a graph which is permitted to have multiple
parallel edges between nodes, that is, edges that have the same start and end nodes.
Thus two vertices may be connected by more than one edge. Formally, a multi-
graph G is an ordered pair G := (V,E) with:

• V a set of vertices or nodes,

• E a multiset of unordered pairs of vertices, called edges or lines.

In our example we use a subset of the above definition, a directed multigraph, where
the edges defined by the pairs of the E multiset are ordered (directed from start to
finish). Another addition to the typical definition of a graph for our example was
the addition or a starting node.

The new definition of a directed multigraph with a starting node used in the
paper is:

• V a set of vertices or nodes,

• E a multiset of ordered pairs of vertices, called edges or lines,

• s a starting node.

Such multigraphs allow compact description of all available translation hypothe-
ses.
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2.3 k-Shortest Paths

A problem related to the well-known single-source shortest path problem is the k-
shortest paths problem. In the latter we are tasked with finding not only the shortest
path to a given vertex, but up to k-shortest paths. There are many variations on this
theme: depending on the structure of the graph; whether we are interested in only
a specific s–t path or multiple such pairs; or even if the paths ought to be loopless
or not. There exist efficient algorithms for computing these paths [6]. A variant of
the k-shortest paths algorithm, which we will describe later, was implemented and
used to construct a k-best set of translation candidates.

3 MOTIVATION

The shallow-transfer RBMT architecture usually relies on disambiguation after the
morphological analysis to cope with the possible multiple outcomes. Figure 1 shows
the disambiguation module following the morphological analysis. This process can
be done by a set of rules in a form of a Constraint Grammar [15] using Visl1 as used
in [20] or in most cases by using a statistical POS tagger such as [18]. This phase
precedes the more or less deterministic transfer phase. This is obviously a huge
limitation, especially for the lexical transfer, since in most language pairs there are
many words where translation depends upon the syntactic and/or semantic context.
If the system contains some (shallow) syntactic parser and/or structural transfer,
they also tend to produce ambiguous output relatively often.

The most important reasons for this research are:

• The production of a new POS tagger, especially a good quality tagger, is not
a simple task. One of the easiest methods is the training of a stochastic tagger
based on HMM algorithm [27]. Some parts of this task can be automatized using
unsupervised learning methods or supervised learning methods like [2], but it
still involves the selection of a new tag set, the production of a tagged training
corpus, testing of the corpus and, at the end, the basic learning process.

• The quality level of the tagging process of today’s state-of-the-art POS taggers
for highly inflectional languages like Czech and Slovak [10] and Slovenian, Croa-
tian and Serbian [8] is relatively low, comparing to the quality of POS taggers
for the analytical languages like the English language, and also comparing to
the overall quality of the translation systems for related languages.

• According to the today’s most used designs for translation systems for related
languages, the shallow transfer translation systems, the disambiguation module
follows the source language morphological analysis at the beginning of the trans-
lation process. This design is shown in Figure 1. Such a design is adopted by
Apertium [3] and Čeśılko [12]. Errors produced at the early stages of the transla-

1 http://visl.sdu.dk/constraint_grammar.html

http://visl.sdu.dk/constraint_grammar.html
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tion process usually cause bigger problems than errors introduced at later phases
as later phases of the translation rely on the output of the preceding phases.

• Multiple translation candidates allow selection of the best candidates in the final
phase when all available data for the translation has been accumulated. The
most common translation errors are fluency errors of the target language and
not adequacy errors. These errors usually do not interfere with the meaning of
the translation but rather with the grammatical correctness of the translation.
They are mostly caused by the errors in morphological analysis or morphological
syntheses.

The omission of the tagger and introduction of a ranking scheme based on tar-
get language statistical model, as suggested in [13], yields better translation results.
The introduction of multiple translation candidates generated from all possible mor-
phological ambiguities, as suggested in [13], leads to an exponential growth of the
number of possible translation candidates.

The paper [25] proposed a rule-based method for eliminating the impossible
translation candidates, thus lowering the number of possible translation candidates.
A statistical ranking method was used to select an arbitrary number of best candi-
dates. The rules were automatically constructed.

The method proposed in this paper keeps all possible translation candidates in
the starting phases of the translation process, all the candidates are considered and
the best candidate (or n-best set of candidates) is selected in the last phase, the
ranking phase. The ranking phase uses a standard statistical language model to
score possible translation candidates.

4 METHODOLOGY

4.1 Proposed Architecture

The unified data structure would result in the rewrite of almost all modules of
the original Apertium system. One of the most appealing features of the Apertium
system is the transparency of the translation process. All data is shared in a human-
readable text form through simple UNIX pipes resulting in easy error discovery
and easy debugging. The proposed data structure would have to be serialized in
a human-readable form.

No change was made to the Apertium toolset for the means of the presented
experiment. A new module has been added to the architecture, the Multigraph
supervisor, which constructs the multigraph data structure and communicates with
the Apertium modules through UNIX named pipes. The new architecture is pre-
sented in Figure 2. The Multigraph supervisor module constructs the translation
candidates by sending parts of the sentences, connecting edges in the data structure,
to the appropriate module and saves the result in the same data structure gradually
constructing all translation candidates. The data structure is further presented in
Section 4.1.1.
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The POS tagger module that handles the morphological disambiguation has
been omitted from the architecture as all the ambiguities are stored and dealt with
in the later modules.

Source text

De-formatter

Morphological 

analyzer

Structural

transfer

Morphological

generator

Post-generator

Re-formatter

Target text

Ranker

Mult igraph

supervisor

Figure 2. The proposed new architecture of a shallow transfer RBMT system using multi-
graphs. The Supervisor module uses the original modules in the translation process.

4.1.1 The Data Structures

Two data structures based on multigraphs were used in the Multigraph supervisor
module: the construction process and the most distinct properties are presented in
the subsections following this section.

The pilot implementation of the presented architecture was done in Java using
the Java Universal Network/Graph Framework – JUNG, which is an open-source
software library that provides a common and extendible graph/network analysis and
visualization framework. JUNG also provides a visualisation framework that makes
it easy to construct tools for the interactive exploration of network data.

4.1.2 Morphological Analysis

The morphological analysis produces ambiguous results. There are multiple Morpho-
Syntactical descriptors – MSD [7] that can be attributed to one word form; an ex-
ample of an ambiguously tagged sentence is presented in Figure 3. The MSD tags
used in this example are:

• 〈adv〉 – adverb,

• 〈vbser〉 – auxiliary verb to be,

• 〈pres〉 – present tense,

• 〈p3〉 – third person,

• 〈sg〉 – singular,

• 〈vblex〉 – regular verb,

• 〈f〉 – female gender,
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• 〈acc〉 – accusative case,

• 〈nom〉 – nominative case,

• 〈pos〉 – positive,

• 〈nt〉textgreater – neuter gender,

• 〈n〉 – noun.

Danes je lepo vreme.

Danes

Danes<adv>

je

biti<vbser><pres><p3><sg>

jesti<vblex><pres><p3><sg>

prpers<prn><subj><p3><f><sg><gen>

lepo

lep<adv>

lep<adj><f><sg><acc><pos>

lep<adj><f><sg><ins><pos>

lep<adj><nt><sg><acc><pos>

lep<adj><nt><sg><nom><pos>

vreme

vreme<n><nt><sg><acc>

vreme<n><nt><sg><nom>

Figure 3. The ambiguously tagged sentence Danes je lepo vreme

The introduction of multiple translation candidates generated from all possible
morphological ambiguities, as suggested in [13], leads to an exponential growth of
the number of possible translation candidates.

The output of the morphological analysis is a set of all possible morphological
tags describing each word. Every word with more than one tag can be observed as
a set of possible ambiguities. In the case of highly inflectional languages like the
pair presented in this paper the number of ambiguous possibilities increases. The
set of all possible translation candidates is constructed as the vector product of all
ambiguous sets. The number of possible translation candidates grows exponentially
with the length of the sentence, the upper limit of the number of possible transla-
tion candidates is:

∏|Smax|
i=0 ximax , where Smax is the longest sentence and ximax is the

biggest number of ambiguities for a word. The average number of possible transla-
tion candidates is much lower, it is x̄S̄, where x̄ is the average number of ambiguities
and S̄ is the average length of a sentence.

The following example shows empirical values for an example source sentence
and typical numbers collected from a corpus test-set: the maximal values: |S| = 40,
x = 15, |TC| =

∏40
i=0 15 = 110.573323209e+45 and the average values: S̄| = 15,

x̄ = 3, |TC| =
∏15

i=0 3 = 14 348 907.
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The data structure that can contain all the information produced by the mor-
phological analysis in a compact form and also enable easy access to all translation
candidates is a multigraph, where nodes represent word boundaries and edges rep-
resent all possible ambiguous word forms. An example multigraph of the same
example sentence from Figure 3 is shown in Figure 4.

54

lep <adj><f><sg><acc><pos>

vreme<n><nt><sg><nom>

vreme<n><nt><sg><acc>

3

prpers<prn><p3><f><sg><gen>

biti<vbser><pres><p3><sg>

jesti<vblex><pres><p3><sg>

2 1

0

Da
ne

s 
<a

dv
>

[][]

lep <adj><nt><sg><nom><pos>

lep <adj><nt><sg><acc><pos>

lep <adj><f><sg><ins><pos>

lep <adv>

Figure 4. The multiple possibilities of the morphological analysis are stored in the edges
of the multigraph. The example multigraph is constructed from the data in Figure 3.

4.1.3 Structural Transfer

The structural transfer rules are usually made in two parts: the search pattern
(context) and action. We will concentrate on Apertium style rules although the
abstraction would apply to most systems. A search through the Apertium systems2

showed that the length of 3 elements for the search pattern suffices for more than
98 % of rules. The linguistic explanation is that the rules act in a very limited
context.

Although we can safely use the length of the longest context (search pattern)
of 3 in the majority of cases, we will abstract the length to an arbitrary length lR.
All possible candidates of the length lR are constructed starting at the beginning of
the multigraph – an example is shown in Figure 4 – and gradually moving to the last
node of the multigraph. This technique enables the applications of the rules in the
Left to Right Longest Match (LRLM) order which has been proven to be effective
by [23].

2 Apertium project at Sourceforge: http://sourceforge.net/projects/apertium/

http://sourceforge.net/projects/apertium/
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Figure 5. The data structure storing all the data from the Structural transfer module

It can be easily proven that this algorithm constructs an LRLM coverage of all
translation candidates. The candidates are sent to the structural transfer mod-
ule and the result is stored in a new data structure shown in Figure 5. The
value for lR has been set to 3 to simplify the visualization of the data struc-
ture.

Figure 5 shows a representation of the complex data structure produced from
the morphological output, presented in Figure 3, and stored in the multigraph pre-
sented in Figure 4. All the morphological descriptors have been numbered. The
paths connecting the morphological descriptors have been constructed using these
numbers. Let us observe the examples in Figure 6 where the first two trigrams of
the lexical units are represented by the strings “000” and “001”.

Danes je lepo vreme.

Danes<adv> biti<vbser><pres><p3><sg> lep<adv>

000

Danes<adv> biti<vbser><pres><p3><sg> lep<adj><f><sg><acc><pos>

001

Figure 6. The first two trigrams represented by the strings “000” and “001”, respectively
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All strings of a certain length are stored in the same column. The trigrams
containing the morphological descriptors of three adjacent word forms are stored in
nodes: the edges will be used to store the probabilities of the trigrams.

4.1.4 Morphological Generation

The lexical units that were stored as n-grams in the complex data structure are
fed to the Morphological generator which generates the linearized text. The data is
stored in the same data structure.

4.1.5 Ranking

The ranking process simulates the Statistical N-gram Language Models, in partic-
ular the Trigram Language Model. The Trigram Language Model is the most used
statistical language model. Probability of a string P (S) is represented by Equa-
tion (1), where wi denotes the ith word of the string S. The probability of a string S
is equal to the product of the conditional probabilities of the words constituting the
set, with the condition that all the previous words of the string S appear before the
ith word.

P (s) = P (w1)P (w2|w1)P (w3|w1w2) . . . p(wl|w1 . . . wl−1) =

=
l∏
i

P (wi|w1 . . . wi−1).
(1)

The process computes the probabilities for all trigrams and stores them in the
multigraph data-structure. The probability of the observed trigram is stored in the
edge finishing in the observed node.

The problem of ranking the best translation candidate using the trigram lan-
guage model based on the presented data structures becomes the search for the
minimal path in the graph from a starting node to the finishing node. The most
known algorithm that can be used is the Dijkstra algorithm [4]. An algorithm that
produces k-shortest paths must be used in order to produce an n-best-set, actually
k-best-set according to the presented nomenclature, of translation candidates. The
graph presented in Figure 5, that presents the final data structure with candidates
for the final translation, is an acyclic, directed (multi)graph.

Since the essentially optimal algorithm given in [6] is somewhat involved, we
present a simplified method for computing up to k-shortest paths in directed acyclic
graphs (DAGs) and provide the straightforward analysis. In DAGs, the question of
whether the computed paths are loopless or not is moot: there are no loops. We
will denote the out-degree of a vertex v ∈ V by deg−(v) and the cost of an edge
(u, v) ∈ E by `(u, v). Furthermore, we use the following convention: n = |V | and
m = |E|.

The algorithm works by traversing the set of vertices in reverse topological order,
which can be obtained in linear time, starting with the target vertex t. Each vertex
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keeps a list of up to k distances of shortest paths to t, which is initially empty, except
for t which contains a distance of 0. Then, each vertex i loops through its outgoing
edges (i, j) and inserts into a priority queue each endpoint j, with a priority equal
to the first element in the list of j plus the cost of the edge (i, j). Once this is
done, each vertex pops up to k elements from the priority queue and inserts them
into its list. After an element is popped, a new one is inserted into the priority
queue from the same list as the popped element. Formalizing in pseudocode we get
Algorithm 1.

Algorithm 1 Proposed k-shortest path algorithm for DAGs

procedure k-shortest-paths(V,E, k, t)
paths := array of n lists
paths [t] := empty list
paths [t].append(0)
for all v ∈ V \ {t} do . In reverse topological sorted order

paths [v] := empty list
PQ := empty
pointers := array of deg−(v) list pointers
for all (v, j) ∈ E do

pointers [j] := paths [j]
PQ .enqueue(j, pointers [j].data + `(v, j))

end for
count := 0
while count < k ∧ ¬PQ .empty do

j := PQ .deleteMin()
paths [v].append(pointers [j].data + `(v, j))
count := count + 1
if pointers [j].next 6= null then

pointers [j] = pointers [j].next
PQ .enqueue(j, pointers [j].data + `(v, j))

end if
end while

end for
end procedure

The time and space complexity of the presented algorithm is presented in Sec-
tion 5.1.

5 SPACE AND TIME COMPLEXITY

A few definitions that will alleviate the discussion of the complexity of the presented
algorithms and data structures.

• lR – longest rule pattern length,
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• lS – longest sentence length,

• a – biggest number of ambiguities.

In numbers: setting the longest sentence to 30 words and the biggest number of
ambiguities for a word to 36 (from the corpus Multext-east [9] and the GUAT system
morphology [22]). The average number of ambiguities is 3. Setting the longest rule
to 3 as more than 98 % of all the rules in Apertium systems and all the rules in the
GUAT system have 3 or fewer lexical units in the pattern.

The data structure presented in Section 4.1.2 is a multigraph with lS nodes and
a edges between two nodes. The number of edges m is defined as: m = lS · a and
giving the maximum and minimum number of edges: mmax = 30 · 36 = 1 080 and
maverage = 30 · 3 = 90, respectively. The average number of edges in our example
setting is m = lS · a = 30 · 14 = 780 and the number of nodes is n = 30.

The data structure presented in Section 4.1.3 is a multigraph with lS−lR+1 sets
of nodes, where each set of nodes can have up to alR nodes. Each node is connected
with up to a edges (valence) to nodes in the adjacent set of nodes.

Equations (2) and (3) present the total number of nodes and edges and the con-
tinuation presents the empirical projections of the presented values using maximal
and average values from the corpus Multext-east [9], and Equation (3) presents the
total number of edges using the same values, as presented in the previous example.

n = alR · (lS − lR + 1),

nmax = 363 · 28 = 1 306 368, (2)

naverage = 33 · 28 = 252;

m = na,

mmax = a4 · 28 = 364 · 28 = 47 029 248, (3)

maverage = a4 · 28 = 34 · 28 = 2 268.

The worst-case scenario cannot be reached as most of the word positions and
POS variations are dependent.

The construction of the graph, basically the morphological analysis, and the
execution of the structural transfer process are linear to the number of edges, so the
time complexity can be attributed mostly to the largest contributor, the ranking
process.

5.1 The Ranking Process

Analysis is as follows. In the first stage, each vertex i ∈ V goes through its outgoing
edges and places the first element found in each of its neighbors’ lists into the
priority queue. It is not difficult to implement the priority queue insert operation
in time O(1), and using adjacency lists the loop through the neighbors can be
done in O(deg−(i)). We can write the cost for the first stage over all vertices as
O
(∑n

i=0 deg−(i)
)

= O(m) by the handshaking lemma.
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In the second stage, each vertex i ∈ V performs k deleteMin operations, and
for each deleteMin operation it also inserts the next element from the list into the
priority queue. The deleteMin operation can be performed in O(lg deg−(i)), since
there are at most deg−(i) elements inside the priority queue at any given time.
Finding the next element in the list and inserting it into the priority queue can be
done in O(1). Writing the cost over all vertices for this stage, we get the values
presented in Equation (4):

O

(
n∑

i=0

k lg deg−(i)

)
= O

(
k lg

(
n∏

i=0

deg−(i)

))

= O
(
k lg

((m
n

)n))
= O (nk(lgm− lg n)) .

(4)

Together with the first phase, this amounts to O(m+nk(lgm−lg n)). In general
we can bound the number of edges by m = O(n2) and obtain O(m + nk lg n). We
point out, that our time bound is never better than that of [6], which for DAGs
amounts to O(m+n+ k). The space bounds of Algorithm 1 are simply O(m+nk),
since each vertex keeps a list of length at most k and the deg−(v) pointers are simply
O(m) over the entire algorithm, by the handshaking lemma.

For our particular problem, we can bound the running time as follows, using the
worst-case values we have computed in the previous section. Equation (5) presents
the final values.

O
(
m + k lg

((m
n

)n))
= O

(
m + k lg

((na
n

)n))
= O (m + nk lg(a)) (5)

where a, the number of ambiguities, is a very small number, e.g. 3, as argued in the
previous section. Therefore the log term is of no practical significance.

6 EMPIRICAL EVALUATION AND RESULTS

Two main goals were evaluated in this experiment:

• the change in the quality of the final results, the translations,

• the time complexity.

The newly proposed system was compared to two already available translation
systems for the same language pair:

• the original off-the-shelf Apertium system with the Slovenian-Serbian translation
data, described in [24],

• to the system presented in the experiment [25].

The later system uses a method to restrict the number of translation candidates.
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6.1 Translation Quality Comparison

The Human-targeted Translation Edit Distance – HTER [19], which is derived from
the edit-distance [16], was used to evaluate the translation quality. The metric counts
the number of deletions, insertions and substitutions that need to be performed
among the observed sequences, i.e., count the minimal number of edits needed to
produce a correct target sentence from an automatically translated sentence. The
definition of a correct translation understood in this experiment is a translation that
is syntactically correct and expresses the same meaning as the source sentence and is
achieved with the least amount of transformation. This procedure shows how much
work has to be done to produce a good translation. The metric roughly reflects the
complexity of the post-editing task.

Two evaluations were performed:

• The comparison between the system presented in this paper (GUAT Multigraph)
and systems from a similar experiment [25] – the evaluation was performed on
a small test-set (57 sentences);

• The translation quality evaluation using the same methodology as the former
comparison using a bigger test-set (500 sentences).

The first evaluation was done on a relatively small test-set due to the constraints
of the systems evaluated in the experiment [25]; one of the systems (GUAT all can-
didates) used all possible morphological ambiguities for the generation of translation
candidates resulting in possibly millions of translation candidates. Such translations
lasted hours and even days. The test data for this part of the experiment comprised
of the 57 sentences. The sentences were chosen by length (sentences shorter than
15 words). This limitation still enabled a fair comparison of the translation quality
of all the systems. The complexity of each sentence was arbitrary, there was no
special selection of the sentences using this criteria although shorter sentences are
usually simpler in structure. The results of this part of the evaluation are presented
in Figure 7.

GUAT original – the reference system, based on Apertium architecture.

GUAT all candidates – a system that kept all translation candidates to the last
phase (best translation performance, exponential growth of possible translation
candidates).

GUAT rules selection – the system with a method that restricted the number
of possible translation candidates in the starting phases of the translation.

GUAT Multigraph – the system with the newly proposed architecture.

The newly proposed system (GUAT Multigraph) mean value of HTER is 0.1712
which is better than the off-the-shelf system (GUAT original) mean value of HTER
(0.2213). The paired two sample ttest for means in Table 1 shows that mean values
are significantly different. The P value of the ttest is less than alpha (0.05), so
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Figure 7. The translation quality evaluation, using HTER metric (less is better). The
newly proposed system (GUAT Multigraph) outperforms the original system from [25]
and equals the improved systems from the same experiment.

we can reject the null hypothesis (that there is no difference in mean) and we can
accept that the mean value of GUAT Multigraph is lower than the mean value of
the original system.

System GUAT original GUAT Multigraph

Mean 0.221269 0.171212

Variance 0.018006 0.013760

Observations 57 57

Hypothesis no difference

P (T ≤ t) two-tail 0.00011

Table 1. The ttest shows that the mean values are significantly different

Table 2 shows that there is no significant difference in the mean values of GUAT
rules selection and GUAT Multigraph. The values of the GUAT all candidates and
GUAT Multigraph are the same, all translations were equal (both systems prepared
and selected the same candidate translations).

The second evaluation was made to support the results of the first evaluation on
a bigger test-set comparing the system presented in this paper (GUAT Multigraph)
and the off-the-shelf GUAT system, which is based on the original Apertium archi-
tecture. The basic methodology was the same as in the first comparison. A new
test-set was prepared which was comprised of 500 sentences randomly selected from
the MULTEXT-East corpus [9]. Both systems used the same translation data, the
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System GUAT rules sel. GUAT Multigraph

Mean 0.174157 0.171212

Variance 0.014498 0.013760

Observations 57 57

Hypothesis no difference

Alpha 0.05

P (T ≤ t) two-tail 0.160599

Table 2. The ttest shows that the difference in mean values could be coincidental (we
cannot trust the difference)

construction process of the translation data was described in [24] and the data is
available at the Sourceforge3. The results of this part of the comparison are pre-
sented in Figure 8. The system with the newly proposed architecture shows an
improvement over the reference system.

0.19287646

0.232051169

0.190369829

0

0.05

0.1

0.15

0.2

0.25

GUAT rules+ranker GUAT original GUAT Multigraph

Figure 8. The translation quality evaluation, using HTER metric, of the original GUAT
system based on the original Apertium architecture comparing to the newly proposed
system. The newly proposed system outperforms the original system.

The ttest presented in Table 3 shows that the mean values are significantly
different.

3 http://sourceforge.net/projects/apertium/

http://sourceforge.net/projects/apertium/
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System GUAT original GUAT Multigraph

Mean 0.232557 0.190251

Variance 0.020446 0.017484

Observations 200 200

Alpha 0.05

Hypothesis no difference

P (T ≤ t) two-tail 0.00000000794

Table 3. The ttest shows that the mean values are significantly different

6.2 Time Complexity

The empirical evaluation of the time complexity was done simultaneously with the
evaluation of the translation quality. The test-data is described in Section 6.1, which
was comprised of 200 sentences randomly selected from [9] corpus. The tests were
performed on a personal computer4. Table 4 shows the time complexity comparison
between the original GUAT system and the newly proposed system.

System: GUAT Multigraph

Nr. of sentences 200 200
Total time (seconds) 377.78 6 453.56
Per translation 1.89 22.27
Ratio 1.00 11.78

Table 4. Empirical evaluation of the time complexity. The newly proposed system is
roughly 6 times slower than the original on the selected test sentences.

Description of Table 4:

GUAT – The reference system, based on [24].

Multigraph – the system with the newly proposed architecture.

Total time (seconds) – the total time the system spent to translate all 200 test
sentences.

Per translation – the average time spent per translation.

Ratio – The ratio between the time spent by the reference system – GUAT and
the described system.

7 CONCLUSIONS

The presented architecture represents a viable solution to the problem of exponen-
tial growth of the number of possible translation candidates in a non-disambiguated
shallow transfer translation system. The empirical evaluation showed an improve-
ment in the translation quality compared to the original system and also compared

4 Laptop computer with Intel i3 CPU M330@2.13 GHz and 4 GB of memory
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to the values presented in [25], which was an attempt to limit the number of possible
translation candidates. The empirical evaluation also showed that the new system
performed as well as a system that included all possible translation candidates,
which shows that it always selected the best translation candidate.

The empirical evaluation of the time consumption showed that the new system
performed roughly 12 times slower than the reference system and the constant fac-
tor was present in all test examples showing that the time complexity differed to
a constant factor.

The proof-of-the-concept system has been implemented and it proved to be
working as expected. A true implementation of the newly proposed architecture
with the new module is already in progress. It could be incorporated into the
Apertium framework.
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