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Abstract. Context prediction is a promoting research topic with a lot of challenges
and opportunities. Indeed, with the constant evolution of context-aware systems,
context prediction remains a complex task due to the lack of formal approach.
In this paper, we propose a new approach to enhance context prediction using
a probabilistic temporal logic and model checking. The probabilistic temporal logic
PCTL is used to provide an efficient expressivity and a reasoning based on temporal
logic in order to fit with the dynamic and non-deterministic nature of the system’s
environment. Whereas, the probabilistic model checking is used for automatically
verifying that a probabilistic system satisfies a property with a given likelihood. Our
new approach allows a formal expressivity of a multidimensional context prediction.
Tested on real data our model was able to achieve 78 % of the future activities
prediction accuracy.

Keywords: Context prediction, logic, PCTL, pervasive system, context-aware sys-
tem, stochastic, transition model
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1 INTRODUCTION

Prediction is a research topic in different fields: meteorology, economy, trends of
prices and stocks as well as in computer science and software engineering such as
predicting failure in software [1]. Predictive mechanisms help to anticipate actions
and to implement the appropriate preventive measures. Ubiquitous computing sys-
tems are no exception in this respect; they do actually follow this trend. To be more
proactive, ubiquitous systems have to provide service adaptation, according to the
dynamic evolution of their context, in order to offer an adequate service fitting the
user’s needs.

One significant challenge, in particular, is to proactively assess the user’s needs in
the real world without requiring explicit input. Furthermore, a ubiquitous system
must provide the user with services well adapted to the overall context. Indeed,
services will be triggered dynamically and without an explicit user intervention in
a proactive way. Making use of the context in applications is a current area of
research known as “context-awareness” [2, 7]. A sensitive-context application must
perceive the context of the users and their environment and adapt its behaviour
accordingly. Most of the work on service adaptation in context-awareness is focused
on the current context.

In ubiquitous computing several studies and research have been conducted too,
under the prediction topic [2, 3, 4, 5]. These works aim to introduce new prediction
techniques to increase the dynamic nature and the proactivity of those pervasive
systems.
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1.1 Problem and Motivation

Predict the future context allows the pervasive system to choose the most effective
strategies to achieve its goals and to provide an active and fast adaptation to future
situations.

However, the existing approaches face key issues that need to be addressed:

1. provide a multi-dimensional context prediction,

2. support a temporal constraint and identify the expected time of context varia-
tions,

3. improve expressiveness and provide a clear semantics.

Current approaches in context prediction only deduce one-dimensional informa-
tion for the future context (e.g. future location). As a consequence, their expressive-
ness and effectiveness are limited. Even more so, if the system is unable to recognize
the expected time of such context changes and the underlying behavior.

Moreover, these approaches face a common challenge: the lack of formal and
general approaches for dealing with context prediction and more specifically, allow-
ing proactivity and service anticipation using context prediction. They assert the
lack of a common development framework for context prediction as well as formal
representation for the context and a formal approach for the prediction.

Over the past few years, a more general research trend emerged, focusing on
context prediction such as the work described in [5, 6], which discussed directions
for research on this issue. They pointed out that the work in this area is mostly
limited to location information, and a challenge they face is:

1. to consider more general context information,

2. to be able to support a temporal constraint and

3. to provide a logic-based expressive prediction with a clear semantic and formal-
ism.

1.2 Proposition

Pervasive proactive systems need, therefore, the ability to reason with time de-
pendencies and even more complex than that: spatiotemporal dimensions and the
overall context. To be able to recognise a future contextual information (e.g., where
is the location of the user X in the next 5 minutes?) and to provide an answer and
anticipate a service associated with a future context must be possible (e.g., activ-
ity X can be executed on location Y in the next Z minute). A system that can
include this kind of knowledge provides more flexibility and allows the ability to act
in a more efficient manner.

In previous research work, we emphasized on context prediction context in perva-
sive context-aware systems. We proposed a new definition that supports prediction
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in the same multi-dimension reasoning [8]. In another step towards the goal of pro-
viding formal prediction approach to context modeling we proposed a logic-based
model including a temporal constraint [9]. This paper is, therefore, another step to
provide a new spatiotemporal expressive prediction based on a formal semantic of
probabilistic temporal logic and stochastic transition model.

1.3 Contribution

The efficient deployment of a context-sensitive prediction, its dynamic and unpre-
dictable evolution, is still limited due to a semantic gap between the data provided
by the physical detection devices and the information needed to predict the future
behavior of the system and its users. Our proposed approach exceeds the weaknesses
identified in the literature [5, 10, 11] by providing: better context expressivity, more
efficient prediction based on logical reasoning, stochastic, non-deterministic mod-
eling and below a multidimensional approach, what fitting better the nature of
ambient systems.

In this paper, we are formalizing a new approach to express context prediction in
context-aware systems. We express context and the transition in a pervasive system
with a formal semantic, using a probabilistic temporal logic PCTL (a probabilistic
extension of temporal logic). We propose a probabilistic transition model to encode
the system’s behavior over the time. Combining PCTL with a stochastic model,
we can trace, analyze and predict the future context. Thus, we propose to use the
model checking verification to verify the future state properties with a quantitative
result and return the future state that has the maximum probability.

1.4 Paper’s Structure

The paper is organized as follows. First, we give an overview of the available predic-
tion methods (Section 2) with a synthesis and an evaluation. After that, we present
our approach (Section 3) starting with a presentation of temporal logic and an ex-
planation of the choice of probabilistic temporal logic. We then present a model
detailing each included component. And we finish this section by explaining the
prediction process. Before concluding the paper, we present the evaluation of our
approach (Sections 3.6, 3.7) and expected future work (Section 4).

2 RELATED WORK

In this section we give an overview of the available research within the context pre-
diction topic, specifically including proactive adaptation for pervasive systems; we
analyze, discuss those various works, and later we present an evaluation/synthesis
according to a selected set of criteria. As we have discussed and analyzed the pre-
diction research work in a previous survey [11], according to the technical prediction
approaches, we tried in this overview to discuss other related work, mostly from
recent research in chronological order.
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Also, we circumscribed a survey to research proposing generic models to sup-
port context prediction. Hence, the chosen works should support generic context
information: works specifically devoted to the location prediction were not consid-
ered relevant. As discussed in recent surveys [11, 12] the development of generic
approaches is a challenge in this research area.

One of the first contributions in context prediction was proposed by Mayrho-
fer [13]. Mayrhofer proposed architecture and a framework for context prediction
that are based on an unsupervised classification, attempting to find context clus-
ters, previously unknown from the input data. These context clusters represented
recurring patterns in the input data. This approach modeled the context as a finite
sequence of states where a user or a device triggers the change of the current state
from one state to another. This modeling helped to predict the next states of the
context based on the current state. He suggested a five-step process, taking sets of
observations, each recorded at a specific time, as input and providing as output the
current context of the user as well as predicting the future states of the context.
The proposed stages are sensor data acquisition, feature extraction, classification,
labeling, and prediction.

Mayrhofer proposed a prediction module based on the sequence prediction tech-
nique. This technique is based on the prediction task of a theoretical computer
sequence and can only be applied if the context is broken down into some form of
event flow. The context prediction in this work is based only on high-level context,
and the framework does not have any mechanism to support an adaptive strategy.

Like Mayrhofer, Sigg et al. [14, 6] provided a formal definition for the context
prediction task relevant to the issues raised on the quality of the context and on
how to handle the ambiguity of incomplete data. This method is also based on
patterns of context the learning algorithm builds to enable the prediction module.
The context prediction module is based on an alignment method that attempts to
predict the most likely continuation of a time series starting from the suffix of the
observed sequence.

Finally, Sigg et al. [6] also offer a continuous learning module to adapt to the
change in the environment or user habits. It continuously monitors the recorded
time series stored in context history and updates the relevant patterns.

However, we did not find in this work any specific implementation for this learn-
ing module. Only its constraints were given, including the interface specified by
the context history and language description of the rules, representing patterns.
Sigg does not describe any adaptive mechanism for prediction neither considers any
specification for context information.

Meiners et al. [15] suggested a context prediction approach called SCP (Struc-
tured Context Prediction). This approach is based on two key principles. The first
is making use of knowledge of the application domain that developers can integrate
when designing the application. This knowledge is described as a prediction model
that specifies how the predictions are to be executed and which configures the pre-
diction system. The second principle sets out the application of several prediction
methods, which are interchangeable. These methods are proposed to ensure the
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accuracy and effectiveness of predictions relevant to a given domain. They can be
selected and combined by the application developers. According to [15] the predic-
tion model assigns a method for each variable to predict its value. The method uses
as input the values of other variables that are either already predicted by their own
methods, or simply measured by sensors. Also, the authors proposed an architecture
for a prediction system which can be used as a reusable component by context-aware
applications.

In this work, the proposed Contexts Prediction architecture supports an adaptive
mechanism for contexts prediction. However, this mechanism is manual, that is, the
designer needs to choose at design time the most suitable algorithms for predictions.

Furthermore, the architecture also has a learning component and supports only
low-level context data and does not have a formal context representation.

Contextual spaces theory is an approach developed by Andrey Boytsov [3], to
best define context-awareness and to deal with sensor problems that create uncer-
tainty and incur a lack of reliability. This theory used spatial metaphors to represent
the context as a multidimensional space. It was designed to make context-awareness
clearer.

The theory of context space was initially submitted by Padovitz and Zaslav-
sky [16]. The authors attempted to provide a general model to help thinking about
and to describe the context and develop context-aware applications. This work will
be later the basis for several researches of Zaslavzky and Boytsov [4, 3, 17]. Boytsov
and Zaslavsky presented the CALCHAS system, which offered context prediction
and used an extension to the context space theory to provide proactive adaptation.

This approach addressed the context prediction problem in a general sense. In
context spaces theory several methods were tested and used for reasoning about the
context. The authors judged sequence technique as the most prospective prediction
approach.

For adaptation mechanisms, algebraic operations on situations and some logic-
based methods were developed for reasoning regarding situations [18].

This works had presented a general framework model, included an adaptation
approach based on prediction but did not propose a new formal or a generic predic-
tion method.

In her work on services prediction, Salma Najar offered a mechanism of discov-
ery and prediction guided both by context and user intent [19]. She used semantic
similarity techniques. The system is based on the implementation of a matching al-
gorithm, which computes the matching degree between the intention and the current
context of the user and the set of semantic services described accordingly. OWL-
SIC (OWL-S Intentional & Contextual) is an extension of OWL-S (Web Ontology
Language-Semantic, is an ontology, within the OWL-based framework of the Se-
mantic).

The similarity approach required historical data, to select and recommend ser-
vices that are not always available. In fact, it needs a first phase of a collec-
tion to get enough data which will be processed after that. The intentional
approach provided by Najar [19] was a user-centered approach but can generate
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conflict: for instance a problem of interoperability between services. Indeed, two
compatible intentions do not necessarily map to two technically compatible ser-
vices. This work also proposed a conceptual framework focused on services predic-
tion.

Joao et al. [5] proposed new framework including a prediction-algorithms library.
They named the proposed model ORACON. The architecture of this model is based
on the Model-View-Controller (MVC) design pattern. It has three layers, two agents,
one library of prediction algorithms, External Histories, External Ontologies, and
External Applications. ORACON proposed prediction of entities. An entity, in this
sense, can be a living being, an object or even a location. Each entity can have
many applications, modeled as External Applications, which can interact with the
model in order to obtain predictions. This work focused more on the framework; it
did not propose a specific prediction approach. There prediction algorithm library
contains four prediction approaches: alignment, enhanced alignment, semi-Markov
and collaboration [5]. This proposed model was an interesting work which can be
enhanced with many extensions to improve the performance, increase the accuracy
of classification and optimize the processing time.

Föll et al. [20] proposed a PreCon as a multi-dimensional context predicting
method, composed of three parts: a stochastic model to represent context changes,
an expressive temporal-logic query language using CSL (continuous stochastic lan-
guage) and stochastic algorithms to predict the context. The model based on user
behavior was presented as an SMC (Semi-Markov Chain).

This work was the unique formal work using the CSL as a query language of
the system, and a Semi-Markov Chain. There is also another work that had tried
to automate the recognition of activities using the LTL formalism with a model
checking [21].

They concluded their work, noting that a probabilistic extension using a PCTL
can increase the expressive power of the formal core.

We found this to be the most relevant work, and we based our approach on it,
specifically in a model checking verification. We use PCTL formalism and include
action in a model to get a more descriptive model.

2.1 Synthesis

Table 1 summarizes a comparison of the related works. As we can see the majority
of works do not support formal representation of the context, low and high context
level. They focused more on providing a framework including a predictive module,
rather than on the prediction module itself. The essential part of a prediction model
being the approach used in the prediction process itself.

Ubiquitous environments are highly dynamic, that is, applications can interact
with a great number of different and unknown applications all the time [22, 23, 24].
Hence, it is essential to define a formal representation for the context, so that
different systems can easily communicate. Thus, specifying a context represen-
tation is considered a key feature for model prediction. This is why we choose
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Adap-
tive
strat-
egy

Context
formal
presen-
tation

Low-
high
context
level

Learn-
ing
capabil-
ity

Predic-
tion
technique

Frame-
work
pro-
posed

Mayrhofer
2004

no no no yes sequence
prediction
approach

yes

Sigg
2008–2010

no no yes yes trajectory
prolonga-
tion

yes

Meiners
2010

yes no yes yes Bayesian yes

Boytsov
2011

yes yes no yes sequence
predictor
the most
perspective
approach

yes

S. Föll
2014

no no yes yes temporal
query
prediction

no

S. Najar
2014

yes no no yes semantic
similarity
(discover-
ing)

yes

H. Joa
2016

yes yes yes yes alignment
semi-
markov

yes

Table 1. Comparative overview of context prediction research work

a formal context representation based on a logic perspective [9]. Also, we build
a model in a temporal logic formalism providing clear formal semantics by using
a probabilistic temporal logic (PCTL), and we propose a new probabilistic-labeled
transaction model Model-LPTM. One might also conclude that the prediction ap-
proaches supported by previous works compute the most probable future context,
based on simple uni-dimensional context information. Existing systems do not al-
low a formal context prediction through temporal-semantics and multidimensional
processes.

In this paper, we propose to investigate the application of probabilistic temporal
logic as a powerful formal presentation for context prediction. It also proposes
a formal prediction approach based on temporal logic in a multidimensional context
space and on a new formalism that integrates probability and labeling; which provide
a new probabilistic labeled transaction model thus helping effective context-aware
prediction.
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3 THE PROPOSED APPROACH

3.1 Temporal Logic in the Context Aware System

Time is a fascinating subject. We are moving through time continuously, and in
order to survive and manage ourselves, we regularly have to make temporal-logic-
based decisions. In daily lives, people are using time-dependent information, e.g.
when to go to the dentist? When is a meeting to be held? With the rise of ubiquitous
systems (which ideally aim to provide a smart user-focused service; like reminder
services, assisted-living services and more), temporal analysis and reasoning appear
best-suited to ensure the proper functioning for this kind of system. Temporal logic
can also be used as a programming language. The basic paradigm is to review the
past and then take action in the future. Abstractly we have an initial state and
certain actions that can be performed in a given state if it satisfies a certain set of
conditions. Performing an action on a state produces a new state.

We have defined a variant of TL (temporal logic) as a language for the specifica-
tion of each situation and its related context. In general, TL has been developed and
applied as a formalism for reasoning about the ordering and quantitative timing of
events [25]. Several formulations have been proposed to satisfy the needs of different
contexts. TL may be classified according to the underlying nature of time: linear
temporal logic LTL and computational tree logic CTL.

LTL, CTL and CTL* can express qualitative properties of a system. Real sys-
tems such as a pervasive system, however, are quite often characterized by non-
deterministic behavior and this is because of the human presence. In order to pro-
vide efficient services, to be user-centric and more realistic, those systems should be
attuned to the unpredictable behavior of humans. Taking probabilities into account,
in addition to non-deterministic behavior, would expand this aspect of the system
allowing the quantification of unpredictable behavior, if the specification holds with
an arbitrary probability value and within a given time limit.

We propose to use PCTL, which had the expressive power of probabilistic tem-
poral logic (it introduces probability to extend CTL which is inadequate in dealing
with a real-life system like a ubiquitous computing system) (Figure 1).

3.2 Probabilistic Temporal Logic Specification

Temporal logic extends the traditional modal logic to allow the description of when
a formula is true. That is, rather than just “necessity” or “possibility”, a formula
may be true at the next point in time or at some other point in the future.

Branching time logic, such as Computation Tree Logic (CTL) [26], enables the
choice of a path among multiple possible paths in a tree structure describing probable
future events. So that, each choice has to mirror the possible set of behaviors starting
from the current state. As opposed to linear-time temporal logic, for which, there
is only one possible future path, we can express whether a property holds for all
possible paths (A formula), or if there exists at least one path for which it is true
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Figure 1. Expressivity CTL vs. LTL vs. CTL* vs. PCTL

(E formula). The values of these formulas are determined with a Kripke structure:
a graph with a set of states, transitions between states, and labels indicating which
propositions are true within the states.

We will use a probabilistic extension of CTL, Probabilistic Computation Tree
Logic (PCTL) [27, 28] as it allows probabilistic state transitions, as well as explicit
deadlines for when a formula must hold.

The proposed PCTL syntax is based on the syntax and semantics proposed
in [27, 28]. For the sake of clarity, some specific notations, as well as the underlying
probabilistic model, have been slightly modified from the original syntax presented
by those papers, in order to adapt them to the work context.

In this section, we present the proposed model for the context prediction prob-
lem based on the real-world situation and the related features; which represent the
contextual information of each situation (e.g. location, time, occupation, ambient
information, sound, temperature, etc.).

Figure 2 summarizes the proposed approach. It is based on PCTL formalism,
a probabilistic labeled transition model which will be detailed later (Subsection 3.3).
The context prediction is based on model checking, which will return the future
situation and its probability.

A. Formalism

a. Context

Definition 1. In order to specify this situation-context, let s = (c1, c2, . . . ,
Cn) ∈ S, s being an n-dimension vector of context information described by
a preposition or a combination of prepositions, where each component ci of s
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Figure 2. Overview of the proposed approach

is of a specific context type Ci (e.g. 〈location〉, 〈occupation〉, . . . ). A state s
can be multidimensional and expresses composite contextual data describing
the features of a specific situation; e.g., s = ((meeting-room)x(power-point)
×(occupation = 5)) designates the presentation situation on a meeting room.

For each new combination of context information (c1, . . . , cn) that has not
been observed before, is detected, a new state s will be inserted into the
model and labeled with (c1, . . . , cn). For more details about the context
logic-based modeling we refer to previous related work [9].

b. Path and state

The prediction semantics is based on PCTL syntax. For this let p ∈ [0, 1] be
a probability, let t ∈ R+ be a time-bound, and let (Ci, ci) be a contextual
value ci of type Ci as defined earlier.

Definition 2. Path formulas express the properties and behaviour allocated
to paths.

ϕ = X≤tΦ|Φ1

⋃≤t
Φ2.

State formulas express the properties and behaviour allocated to states

Φ := tt|ff |(Ci, ci)|(A, a)|¬Φ|Φ1 ∨ Φ2|Φ1 ∧ Φ2|P ∼ p(ϕ)

where ci ∈ 2AP AP a set of atomic propositions describing situation context
(e.g. location: 〈meeting room〉, light: 〈bright〉, occupation: 〈3〉, application-
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running: 〈power-point〉), a ∈ A is a finite set of actions, and ∼ is a com-
parison operator ∼∈ {〈, 〉,≤,≥}, and p is a probability threshold p ∈ [0, 1].
Path quantifiers as in PCTL are built from one of the temporal modalities: X
(next) or U (until) (Table 2). t is a time constraint defining an upper bound
on a time interval to describe the duration of a situation, the subsequent
transition and when an action will be active.

Quantifiers over Paths

AΦ – All Φ has to hold on all paths starting from
the current state.

EΦ – Exists There exists at least one path starting
from the current state where Φ holds.

Path-Specific Quantifiers

GΦ – Globally Φ has to hold on the entire subsequent
path

FΦ – finally Φ eventually has to hold

XΦ – Next Φ has to hold at the next state

ΦUψ – Until Φ has to hold at least until at some po-
sition ψ holds. ψ will be verified in the
future

Table 2. Paths quantifiers

Considering Φ a state formula expressed as a pair (Ci, ci), which describes
the type of context and the specific context value in this state (e.g.: location,
meeting-room). We leverage these operators to analyze the future context
behavior;

• F is the Eventually operator used to verify if a condition φ eventually
has to hold in any state from s somewhere on a subsequent path in the
model.
• G is the Globally operator, and it can be used to check if the condition
φ holds in every state on all subsequent paths starting in s.
• X is the Next operator: it evaluates a condition φ on all immediate

successor states to the current state s. It has to hold at the next state
(this operator is sometimes noted N instead of X). Since we focus on
immediate prediction, we will build a prediction model on this operator
in this paper.
• U is the Until operator and expresses that Φ2 will be verified in the future.

And Φ1 has to hold starting at the current state at least until at some
further position Φ2 holds.

The PCTL state formula P ∼ p(ϕ) asserts that, under all schedulers [28],
the probability for the event expressed by the path formula ϕ meets the
bound specified by ∼ p. The probability bounds “∼ p” can be understood
as quantitative counterparts to the CTL path quantifiers ∃ and ∀.
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B. PCTL Semantic

Definition 3. Let M = (S,AP, L) be a PCTL model, s is a state ∈ M , AP
a set of an atomic preposition, L is a labeling function, and φ is a PCTL formula.
The satisfaction relation is noted as M , s � φ.

Let s be a state, s ∈ S we can define the satisfaction relation for state formulas
as follows:

• M , s true ∀s ∈ S,

• M , s � ci ⇔ ci ∈ L(s),

• M , s � ¬φ⇔M , s 2 φ,

• M , s � φ1 ∧ φ2 ⇔M , � φ1 and s � φ2,

• M , s � φ1 ∨ φ2 ⇔M , � φ1 or s � φ2,

• M , s � P ∼ p(ϕ)⇔ P{π ∈ Paths(s)|M , π � ϕ} ∼ p.

The satisfaction relation for path formula is defined inductively as follows:

• M , π |= XΦ⇔ π = s0→a0,t0 s1→a1,t1 . . . sn→an−1,tn−1 sn and M , s1 |= Φ,

• M , π |= Φ1UΦ2 ⇔ π = s0→a0,t0 s1→a1,t1 . . . sn→an−1,tn−1 sn and ∃k.M ,
sk |= Φ2 and

• ∀j < k.M , sj |= Φ2.

C. Labeled Probabilistic Transition Model: Model-LPTM

A pervasive system follows various behavioral patterns depending on user’s be-
havior. Those patterns cannot be described in a deterministic way. Hence,
our choice of a probabilistic non-deterministic model. In the following, we give
a description of this model and the proposed approach to predicting the next
situation using this formalism.

We represent an LPTM model as a transition system which combines probabilis-
tic choice as in Markov chains with a non-deterministic choice. We define the
model with a timed probabilistic transition based on models defined in [27, 28].
The model integrates time and action and will be presented as follows.

Definition 4. Let LPTM be a Kripke (S,A, P, L): a labeled transition proba-
bilistic model defined as follows:

• S: a finite set of states where s ∈ S and sinit ∈ S,

• Act : a finite set of actions where a ∈ A and A ⊆ Act ,

• L: S → 2AP state labeling function assigning to each state one or several
atomic prepositions ∈ AP ,

• P ⊆ S×A×R+×Dist(S) is the function assigning a probabilistic transition
distribution, such that if (s, δt, a, ρ) ∈ Dist(S) and δt > 0 after a span time
4t in a situation s was spent and a is an active ∈ A(s) then ρ is a point
distribution.
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As for probabilistic systems, we can introduce paths for timed probabilistic
systems except that transitions are now labeled by a (duration, action, distribution)
tuple. Each transition is labeled by a tuple (δt, a, ρ) ∈ Dist(S), where:

• δt is the time span between si and sj (Section 3.6),

• P (si, sj) is the probability assigned to the path transition between si and sj
(Section 3.4),

• a ∈ A(si) is an action active between two states si and sj (Section 3.5).

Our contribution using this model consists in considering every si ∈ S as de-
scribed by a set of context parameters (ci ∈ Ci) such that L(si) = ci and an action
for a transition path with a temporal duration constraint δt.

To avoid transient states, we choose to integrate them as proposals in paths.
Thus, the path describes a transient context as an accomplishment action or activity
action (see Section 3.5). That can be part of the next state. This makes the modeling
more context-aware and proactive.

Using this LPTM, we can formalize the behavior trace and context variation by
an infinite state tree like in MDP. The context can be a composite context. The
variation of one or several context’s element introduces changes on the state. We
can describe a pervasive environment according to the user’s behaviour with action
semantic (Section 3.4), and context variation, at each spatiotemporal interval, we
have an active state describing a specific context si ∈ S. While the user (e.g.:
walking, driving, be, . . . ) or the environment and the system environment (running
process, etc.) act, the context changes and the LPTM moves to the new state
sj ∈ S expressing the property of new context. This successor state sj is visited
with a probability p(si, sj). Before leaving the current state si, the context does
not change and stay active for a limited duration of time δt spent in si. Example:
model (Figure 3).

Explanation: To lead the next situation from the current situation i to the next
one j we count:

• as,n represents an action active for a given state (e.g., a01 describes the active
action from S0 to S1),

• δtij represents the time span between si and sj (e.g., δt01 describes transition
duration from S0 to S1),

• Pij refers to the transition probability from the situation si to the situation sj
such that ΣjPij = 1.

a. Transition Probability

For each transition (Si, Sj), the transition probability will be:

p(si, sj) = P (Xn+1 = sj|Xn = si) (1)

where Xn is the random variable that models the stochastic behavior at the
current state and Xn+1 model the stochastic behavior at the next state.
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Figure 3. Transition model

Recall that the formulas are defined about a probabilistic structure, as described
earlier. While the used structures consist of labeled states and path, they only
imply that it is possible to transition from the state at the tail to the state at
the head with some non-zero probability.

We express a model as a causal model. In this paper, we assume a dependent
relation between current state and the next one. The probabilistic transition

Figure 4. State transition probability



1426 D. Ameyed, M. Miraoui, A. Zaguia, F. Jaafar, C. Tadj

depends only on the current state si and sj is independent of all previous state
changes.

The transition probability and the set of prepositions describing contextual fea-
ture situations can be estimated and deduced from the history of past trace of
state transitions and their linked contextual features.

As in statistic computation, let the transition weight be ωij, which defines the
number of transitions observed from si to sj. The transition probability is
calculated as follows:

p(si, sj) = P (Xn+1 = sj|Xn = si) =
ωsi,sj∑
n∈S ωsj ,sn

. (2)

The probability of transition between two states is the ratio of the number of
observed state transitions from si to sj to the number of all observed transitions
from si.

Example: We have a current state s0 that can lead to any of the immediate next
states as in Figure 5 as a distributed probability.

Figure 5. State transition

The probability without any constraint of time or action to lead to any next
state when φ will be verified as a Next (optimal) in S1, S2 and as a Next (all) in
S3 be S3 or S1.
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b. Action

Observing the system’s and user’s behavior, we also noted information describing
actions which influence a service process and make a change in a situation in
the feature context. Based on reference work discussing the linguistics of time
and the semantic verbs and time [30, 31], these actions can use the aspectual
verbs according to the categories in Table 3.

Expressivity Dynamic Durative Telic (bound)

Accomplishment Describing Yes Yes Yes
Durative action
Ending by a culmination point

Activity describing Yes Yes No
durative action

State Often durative No Yes (temporary state) Yes
No (permanent state)

Achievement Change of state Yes No Yes
near punctual duration

Table 3. The four aspectual categories

In the proposed model we can use accomplishment and activity to describe
a transition over a path and a state and achievement in a situation (node).

The computation over the proposed model we use the accomplishment-action
on the path because we are reasoning in a dynamic system with a time-bound
and we count the durative actions in a bound time during a transition. We can
label a graph with state-action and achievement to clearly describe a scenario
or an example.

In the proposed model, actions depend on transition and describe a transition
over a special path. The set of actions available at s ∈ S is denoted by A(s). For
each action a ∈ A(si), the probabilities can be estimated as other observations from
the history of past trace. We count the probability of transitioning from si to sj
under the action a, and we denote this probability by αsai(sj). We refer to [32] for
more details about computation in mapping and learning steps.

Example: We have a set A(s0) = {a1, a2} and a transition and s0 can lead to
any of the immediate states as in Figure 6.

In this example, the probability next φ to occur with any action a ∈ A(s0) is∑
sj∈S∧sj |=φ α

si
a (sj)∑

sj∈S P (sj, si) ·
∑

sj∈S∧sj α
si
a (sj)

= 0.45,

the optimal next will be the path with a strategy probability ≥ 0.45 in this case
that will be the transition (S0, S2) under the action a2.

3.3 Space Time Duration

We will show how we can estimate the time span between si and the next sj. The
time was considered in the model as the constraint parameter for states as well as
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Figure 6. Action transition

transitions (path), as described in a previous contextual definition and model. Every
situation has a time interval describing its start time and end time which can be
useful as a learning data base [24, 8].

We express the time span as a probability function where µ and α are the mean
and standard deviation values, calculated from the time span. In order to limit
the computation, we consider in the current work only the observation falling with
standard deviation

f(δtij, (µ, σ)) =
1

σ
√

2π
e
− 1

2

(
δtij−µ
σ

)2

. (3)

Figure 7 gives an example of transition time span: the typical time span falls in
the following range.

We model the time span as a random variable Dn expressing the time spent
between si and sj. To figure out Dn, we observe the time periods spent between
consecutive states transitions, and we associate an individual distribution to every
transition between si and sj. Formally the distribution can be presented as:

∆ij(δt) = P (Dn = δt|Xn+1 = Sj, Xn = Si). (4)

The cumulative distribution is given by 4ij which is given as
∫ b
0
4ij(δt) dδt

and can be computed as the sum of probabilities associated with consecutive in-
tervals up to a desired upper time bound b. The probability of a time span to
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Figure 7. Transition span time

lie within the interval [a, b] can be derived from the cumulative distribution as∫ b
0
4ij(δt) dδt.

3.4 Immediate-Context Prediction Processing

The state space can be traversed by going from one state to the next as allowed by
transitions among states. The resulting series of visited states (path) models one
possible spatiotemporal behavior of context. For context prediction we start at the
state si ∈ S occupied in the real world, and we evaluate the possible path starting
at si and leading to the next state sj. The state and path follow the PCTL semantic,
as explained in Section 3.2.

In the proposed model we can evaluate a satisfaction relation for the path for-
mula as follows:

Xn+1 ← argmaxXn+1
P (Xn+1 = sj|Xn = si, a ∈ A(si)). (5)

The path formula ϕ is satisfied after 4t unit of time elapsed in a situation s
and under an action a if and only if the probability P ((s, a,4t) � ϕ) satisfies the
threshold ∼ p.

In our case, we need to be able to verify that a given state satisfies the context’s
state preposition φ = (Ci, ci) (as described in Section 3.3). We also need to consider
the temporal operator Next P ∼ p[Xφ] and define its probability computation.

Using a PCTL, we can investigate the reachability properties using the Next
operator, evaluating a condition state formula φ, expressed over the contextual in-
formation (Ci, ci), on all immediate successor states sj of the current situation si.
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Using this reasoning, the system is able to predict a variety of information about
the context (e.g. the next location, the next activity, what time the user finishes
work, at what time the next meeting starts, what is the optimal strategy to lead the
next situation, etc.). The high threshold probabilities according to a special action
describing a transition reduce the number of false prediction prepositions and make
the prediction more efficient and more context-aware.

We can derive the prediction based on next operator in PCTL as explained in
the next subsection using the verification algorithm in a model checking based on
symbolic method [33, 34].

3.5 Computation for PCTL Next Operator

In this paper, we focus on immediate prediction. Thus, we will only use the next
operator. In future work, we might extend the proposed approach with the two
more temporal operators: (i) Until: P ∼ p[φ1 ∪ φ2] and (ii) Bounded Until: P ∼
p[φ1 ∪≤k φ2] which can be useful for a long-term prediction.

The Next operator restricts the space of satisfaction property of path formula ϕ
to the immediate successor the next state sj of the current state si. We need to
determine the Next (optimal) φ = Pmax=?([Xφ]) which is the maximum probability
satisfying Next φ.

Xn+1 ← argmaxXn+1
P (Xn+1 = sj|Xn = si). (6)

Or the all Next (all) φ = P./ρ([Xφ]); here we can find all the policies that satisfy
the next state with φ property, where:

P (Xn+1 = sj|Xn = si, a ∈ A(si)) (7)

= P〈a〉

(
X
≤δtij
4t (φ)

)
(8)

=

∑
sj∈S∧sj |=φ P (sj, si).

∑
sj∈S∧sj |=φ α

si
a (sj).

∫ 4t+δtij
4t Tij(δt) dδt∑

sj∈S P (sj, si).
∑

sj∈S∧sj α
si
a (sj).

∫∞
4t Tij(δt) dδt

. (9)

The optimization function log(P (φ|λ)) is proposed to avoid data overflow in the
computation of feed forward probability.

The prediction approach is based on the traces contained in the stochastic user
model. The traces are used as a search space of possible context changes. Infor-
mation about the recent sensed context changes (current state’s context) is used to
condition the prediction on what the optimal Next might be expected in the imme-
diate future. Using a model based on statistical knowledge, the predictions in the
proposed approach, work as a scanning process in a stochastic transition system to
find the Next verifying the property expressed in the formula. A component diagram
of the prediction model can be represented, as shown in Figure 8.
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Figure 8. Component diagram of LPTM system

3.6 Use Case and Test

In this section, we present the experimental results for the proposed model. Before
getting into the evaluation of the prediction model, we describe the data set we
used [35, 36].

We use a real-world context traces from Domus smart home case study. The
Domus smart home is one-bedroom apartment mounted inside the University of
Sherbrooke. The apartment is equipped with different types of sensors. During the
experiments, users have participated to evaluate the early morning routines, which
correspond to the basic everyday tasks during the morning. The routine describes
morning activities as follow: wake up, toileting, preparing breakfast, having break-
fast and other activities. We use this study case to predict the Next activity. The
activities we consider in the simulation are as follows: wake up, use toilet, preparing
breakfast, having breakfast.

As a simulator tool, we use Petri nets, that means formal models of information
flow which support timing specifications and a non-deterministic behavior for more
details about tools we refer to [37]. We first model the prediction model as shown
in Figure 9.

The model is composed mainly of:

• Generation: this module generates the current context and constraints as a ran-
dom choice.

• Get related activity: the module gives the activity probability (Section 3.4).

• Get related activity Action: the module determines the action probability (Sec-
tion 3.5).

• Get related activity time: the module defines the time span probability (Sec-
tion 3.6).
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Figure 9. General view of prediction model
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• Probability calculation: the module gives the probability of the most probable
Next activity (Section 3.7).

The transition between different activities are learned based on the LPTM trace
Model as shown in Figure 10.

Figure 10. Activities transitions information

To recognize the next activity, we generate a random for a variety of activity
(context value) time and action as shown in Figure 10. When an event is detected,
this module generates automatically the actual context, the action and the transition
time (Figure 10).

As we mentioned before, the Dumas data set that we used for actual context
is limited to having breakfast, other activities, preparing breakfast, use toilet, wake
up, washing dishes, for action is limited to (close door, open door) and for time is
limited to (5, 10, 15, 20, 25, 30, 35, 40, 45, 50) The outputs of this module are:

• The actual context used as input by the transition Get related activity to de-
termine the activity probability.

• The action used as input by the transition Get related activity Action to deter-
mine the activity probability.

• The transition time used as input by the transition Get related activity time to
determine the time span probability.

The transitions between different activities are learned based on the LPTM trace
model, as shown in Figure 11. The input of this module is the actual activity
selected randomly by the generator (Figure 10). According to this activity the
transition “Get activities and Prob” selects the adequate activities and probabilities
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from the place Trace LPTM. As output of this module, we have three parameters:
the actual activity presented by the variable SeleAC as string, the list of activities
presented by the list ACL and the list of probabilities presented by the list LPA.

For instance, if the actual activity is “Wake up” (SeleAC) then the output
of this module will be (“wake up”, [“use toilet”, “preparing breakfast”], [0.9, 0.1])
the different probabilities in the place “Trace LPTM” are computed from dataset
DUMAS. After we get all probabilities, the transition “Probability calculation and
Activity selection” (Figure 9) determines the next activity (Section 3.7). Then the
role of the transition “verifying result” to test the result generated by the transition
“probability calculation and Activity selection” The actual activity and the next
activity are the input of this module. We compare the result obtained by the values
in the place “DB-Real-Flow Evidence”.

Figure 11. Action-time generators

Finally, after getting the Next activity identified, we evaluate the results based
on real flow evidence as shown in Figure 12.

The diagram in Figure 13 resumes the prediction results for each activity. The
average of the prediction model was 65 %, we also get 78 % in some activity, as
shown in the following diagram.

3.7 Result Discussion

The accuracy criteria can usually be ranging from low/worst performance to high/
best performance, depending on the capacity of the approach to be effective in
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Figure 12. Verifying results Next activity

Figure 13. The activities prediction accuracy

a ubiquitous environment. Our model is in the high rang performance comparing to
other context prediction model tested in real data. Using Lezi algorithm [38], the
authors obtained prediction rate nearing 47 %. Using Markov and Bayes [39], the
prediction accuracy achieved was 70 % to 80 %. In Najar’s work [19], the system
was based on the implementation of matching algorithm the prediction had a result
that neared 60 %. Sigg et al. [40] have used ARMA in an analytical test, and we
disregarded it for our work because is applicable only for a numerical data set. Da
Rosa et al. [5] obtained an average accuracy of 60 % for the alignment method and
72 % for the Semi-Markov approach, and the model does not make a distinction
between low or high context level. Föll et al. [41] used CSL and Semi-Markov-
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Chain, they achieved 87 %, and they concluded their work noting using PCTL could
increase the expressive power of the formal core. Which constitutes an essential and
valuable contribution presented in our model including the semantic of action and
span time duration as a probability function, to improve the expressivity and obtain
better precision for the prediction.

Figure 14 summarizes the comparison of the existing approach and our proposed
approach, regarding the different evaluation criteria [11].

Figure 14. Comparative analysis of approaches

4 CONCLUSION AND FUTURE WORK

The prediction of future context has become a central element in pervasive systems to
provide proactive context-awareness adaptation. However, the effective deployment
of a context-aware prediction is still limited due to a semantic gap between the data
provided by the physical sensing devices and the necessary information to predict
future behavior of the system and its users. In this paper, we have demonstrated how
formal methods could be adapted to offer a formal ground to reduce this semantic
gap and provide improved expressiveness via the PCTL logic. And therefore, verify
reachability a next-state in the future. Introducing the constraints of time and
action adds logic-based expressiveness and provides a clear tracing and learning
model. Thus, increasing the effectiveness of probabilistic measures.
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In this paper, we present a new formal approach using probabilistic tempo-
ral logic and model checking to provide an immediate prediction. The proposed
approach allows a formal expressivity of prediction. This is useful in pervasive
computing systems to deal with their inherently heterogeneous nature. The model
offers a real-time ability to discover a future context on multidimensional space and
can handle a general context in low or high level. Adopting a PCTL as formal-
ism provides better expressivity to describe the nondeterministic nature of human
behavior which can provide an efficient prediction and consequently offer adequate
proactivity, fitting with the user’s needs. In fact, PCTL can be used to specify prop-
erties of probabilistic timed automata adding the semantic of action in our model,
Thus, we think it will be useful to specify properties of probabilistic timed labelled
automata. Regarding the complexity of model checking with probabilistic timed
labelled automata, we consider this in a separate future work after more research in
this direction.

In future work, we will extend the current research to include the long-term
prediction and possibly discuss a generic framework that can support the pro-
posed prediction model to automating proactive adaptation based on predicted
context. We will try to investigate more, the issue of semantic in action to be
able to provide a more expressive model, inducing cognitive and linguistic sup-
port.
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Quebec, Montreal, Canada. He received his Ph.D. degree in signal and image processing
from ENST Paris, Paris, France, in 1995. His main research interests include signal
processing, speech recognition, pervasive computing and multimodal systems.


