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Fortaleza, CE, Brazil
e-mail: aparecidapradop@gmail.com

Henrique J. A. Holanda, Carla K. de M. Marques

Department of Computer Science
University of Rio Grande do Norte (UERN)
59.610-210, Mossoró, RN, Brazil
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Abstract. Over the past decade, the fast advance of network technologies, hard-
ware and middleware, as well as software resource sophistication has contributed
to the emergence of new computational models. Consequently, there was a ca-
pacity increasing for efficient and effective use of resources distributed aiming to
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integrate them, in order to provide a widely distributed environment, which com-
putational capacity could be used to solve complex computer problems. The two
most challenging aspects of distributed systems are resource management and task
scheduling. This work contributes to minimize such problems by i) aiming to reduce
this problem through the use of migration techniques; ii) implementing a multiclus-
ter simulation environment with mechanisms for load balancing; iii) plus, the gang
scheduling implementation algorithms will be analyzed through the use of metrics,
in order to measure the schedulers performance in different situations. Thus, the
results showed a better use of resources, implying operating costs reduction.

Keywords: Multicluster, parallel jobs, migration, gang scheduling, distributed sys-
tem
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1 INTRODUCTION

Over the past decade, computing platforms (Cluster, Grid and Cloud) have emerged
as important computational power sources [48, 49]. Traditionally, the industry main
focus has been the performance improvement of computational systems, through
efficient projects increasing the components density and associated with exponential
growth of data size in simulation/scientific instrumentation, storage and information
published on the Internet. The computational power increase from such systems
has boosted investments by Internet Service Providers, Government and Research
Laboratories in computing environments, which are increasingly powerful, in order
to host applications ranging from social networks to scientific workflows [44].

In such context, distributed systems arise as an interesting solution providing
physical resources on demand, because it allows to add computing power of many
nodes interconnected through a network to perform tasks [44]. Computer distributed
systems have been used due to their important attributes, such as: efficient cost,
scalability, performance and reliability [46, 48, 49]. In computational grid, there are
three important aspects that should be treated: task management, tasks scheduling
and resources management [1]. In particular, Grid Task Scheduling (GTS) performs
an important role in the whole system, where the algorithms have a direct effect
on the grid. Task scheduling in heterogeneous computing environment has proven
to be an NP-complete problem [2, 3, 4, 46], and it still has attracted researchers’
attention.

In order to solve this problem, many types of scheduling algorithms have been
proposed for distributed environments being classified in several ways, i.e., in [6],
a hierarchical classification is proposed in the tree form, which divides algorithms
in the higher hierarchy into local and global. For instance, [7] defines a taxonomy
for scheduling problems on grid computing platforms. Smanchat and Viriyapant [8]
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have extended the grid taxonomy in order to define a scheduling problem taxonomy
in cloud computing. In [9], it is defined a general taxonomy providing conceptual
models for problems and solutions for scheduling which allows researchers the solu-
tion properties for scheduling in a clear way.

In addition, they presented an impact analysis of this matter in the research.
Extra to the set of features presented about taxonomy, there are many heuristics for
task scheduling in distributed environments. In literature, there are many scheduling
algorithms [12, 13, 46, 48] which deal with different types of problems and systems.
Among them, we highlighted the most traditional, such as First Come First Served
(FCFS), Shortest Job First (SJF), Opportunistic Load Balancing (OLB), Minimum
Execution Time (MET), Minimum Completion Time (MCT), MinMin and MaxMin.

Among existent scheduling techniques, we highlighted the scheduling group or
gang scheduling or co-schedulers [14, 47], which are considered to be efficient algo-
rithms for parallel jobs scheduling, which consist of tasks that must be allocated
and executed simultaneously on different processors. These types of scheduling al-
gorithms provide interactive response time for tasks with low execution time by
means of preemption, but, as a disadvantage, cause a fragmentation by reducing the
system performance [17, 19, 20, 25].

In a similar way to external fragmentation in memory, resources fragmentation
occurs in a grid computing consisting of a cluster set when it cannot find a cluster
that can perform job tasks simultaneously, being the total number of idle compu-
tational resources across the grid larger than this number of tasks. Fragmentation
occurs in the system when it presents free processors, but job computational re-
quirements cannot be completed, thus remaining inactive resources [21]. Resources
fragmentation has been a common research topic in the past two decades. Many
approaches to resources fragmentation have been developed, best-fit and task mi-
gration are the most common.

Based on the points made above, the goal of this study is to invest in reducing
the fragmentation caused by scheduling group as well as in response time. Among
the main contributions of this work, we can highlight:

1. Heuristics implementation, Adapted First Come First Served (AFCFS), Largest
Slowdown First (LXF) and Largest Job First Served (LJFS) using gang mech-
anism. Based on the assumption that gang scheduling causes fragmentation in
the environment, we seek to use migration mechanisms; e.g, check clusters that
have available processors, analyzing which jobs have their tasks at the beginning
of the queue in the latter and checking the job that has the lowest number of
tasks to migrate. In addition to these migration strategies, we used mechanisms
to avoid unnecessary migrations, as well as system overhead.

2. Implementation of techniques and algorithms, Join the Shortest Execution
Queue (JSEQ) and Opportunistic Load Balancing (OLB) for load balancing
in dispatchers, grid and local, aiming to distribute jobs for clusters, in order
to reduce task waiting time, and consequently improve system efficiency. We
emphasize that the JSEQ is a new proposed algorithm.
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3. Based on simulator study for grids, the simulation environment composition
uses a Multicore Multicluster Architecture, aiming to analyze dispatchers perfor-
mance in different situations, as well as the system behavior in different contexts.
This proposed environment is named as Grid Schedule Management Simulator
(GSMSim).

4. Plus, the scheduling algorithms implemented will be analyzed in different con-
texts by metrics, Average Wait Time, Average Response Time, Loss of Capacity
and Utilization, in order to measure both use of the system and its fragmenta-
tion.

This paper is structured as follows: First, the related work is presented (Sec-
tion 2). Section 3 presents the proposed system model. After that, we describe the
system operation (Section 4). Sections 5 and 6 present the gang scheduling and mi-
gration mechanisms. In addition, we present metrics performances, which are used
to analyze the scheduler performance in different situations (Section 7). Section 8
presents the results of the simulations. Finally, we present some conclusions and
motivation for future work (Section 9).

2 RELATED WORK

This work aims to invest in reducing the fragmentation caused by gang schedules [12,
20, 23, 24, 25], as well as reducing the response time of jobs. Researchers are
looking for efficient mechanisms to reduce execution time, as well as improve resource
utilization and hence minimize the fragmentation. The latter happens on the system
when there are jobs waiting in the queue to run and there are idle processors but
they still cannot perform the waiting jobs. Some works in this area are presented
below.

The authors [18, 35, 25] propose migration mechanisms in order to minimize the
fragmentation caused by gang schedules in these environments. They implement
local and grid migration strategies in the Adapted First Come First Served (AFCFS)
and Largest Gang First Served (LGFS) gang schedulers in a homogeneous cluster
simulation model. In the case of local migration, it is the transfer of a task from
one processor queue to another that belongs to the same cluster, and grid migration
involves transferring a task from one cluster to another. In addition, they use
simulation in parallel job and sequential job. The latter is composed of a single
task, which takes priority at the time of allocation of the task in the resource, e.g,
stopping the execution of a parallel job for its execution, thus leading to an increase
in the response time of this job. The authors [19] use the migration strategies
proposed by the authors [18, 35, 25] in gang schedulers AFCFS and Largest Job
First Served (LJFS) [18], in a single cluster simulation model, which consists of one
hundred and twenty (120) Virtual Machines (VMs). These are connected through
a Dispatcher Virtual Machine (DVM) dispatch, which includes a queue for jobs that
cannot be dispatched at the time of their arrival to the VMs, which is when VMs
are unavailable or overloaded.
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As far as minimizing the fragmentation caused by gang schedulers is concerned,
this was presented in the previous work [26, 27]. In these works, we apply migration
strategies in the AFCFS and LGFS [18], in a multicluster simulation environment,
using a hierarchical structure of two layers, consisting of managers, Grid Dispatcher
(GD) and Local Dispatcher (LD) to the allocation jobs to resources. Aiming at
a more efficient load balancing, these authors considered a set of load balancing
strategies: the first strategy was to introduce in the GD, before sending the jobs to
the clusters, a feedback of information about the clusters loads, for more efficient
load balancing; and, second strategy, we used an algorithm in LD, Join the Shortest
Queue (JSQ), that applies the technique in the distribution of the tasks to the
processors queue. This distribution is done according to the number of tasks in the
processor queue plus the running task, that is not taking into account the execution
time of the tasks. Differently from the work [26], the authors of [27] analyzed the
AFCFS and LGFS algorithms in a multicluster heterogeneous simulation system
in relation to the amount of resources by clusters. In addition, they used different
workload sizes in the system.

Differently from the works cited above, this proposal uses a Multicore Multiclus-
ter Architecture (MCMCA) in the simulation model [43], in order to meet a larger
data set demand. In this environment, the heterogeneity happens in relation to the
number of resources per cluster, the resource clock rate and resource characteristics
in each cluster. In addition, data consists of two different types of jobs, sequential
and parallel. The latter consists of several tasks that are independent and executed
simultaneously. In this work, it is considered that a sequential job is a priority task
that requires only one processor for execution and the least estimated processing
time compared to other jobs. Therefore, upon reaching the environment, the job
is sent to the best available processor, that is not paralyzing another job for ex-
ecution. In case, all processors are busy, the sequential job is sent to the queue
of the processor which has the shortest runtime. This is to reduce the execution
time of the jobs. In addition to the above proposals, two algorithms are introduced
in the LD: Join the Shortest Execution Queue (JSEQ) and Opportunistic Load
Balancing (OLB) [10], which apply techniques in the distribution of tasks to the
queue of processors. We emphasize that the JSEQ is a new proposed algorithm.
These algorithms are intended to reduce queuing time, as well as the response time
of a job and, therefore, fragmentation. In addition, the following policies are ap-
plied for the queues scheduling: AFCFS, LJFS [19] and Largest Slowdown First
(LXF) [36]. These algorithms will be implemented and adapted to the gang mech-
anism in order to scale the tasks of the jobs allocated in queues and implemented
in the simulation environment. These policies are evaluated separately in the sys-
tem in different situations, using metrics to measure both system utilization and
fragmentation.

In view of this, the results (see Section 8) show (compared to other gang
schedulers with and without migration, different strategies in LD and changes in
the priority of a sequential job and heterogeneous workloads), that the migrating
AFCFS gang scheduler presented the best results efficiently in all scenarios. Thus,
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the efficiency of AFCFS with migration was confirmed, as presented by the au-
thors [18, 35, 25, 19, 26, 27]. Different from these, we analyzed the LXF gang
algorithm with and without migration in the same AFCFS and LJFS scenarios.
The LXF algorithm presented a lower average response time of the jobs in relation
to the LJFS algorithm. In addition, through the Loss of Capacity (LoC) metric,
we evaluate the fragmentation caused by the gang algorithms (AFCFS, LXF and
LJFS) in an MCMA environment. According to the results, the AFCFS and LXF
algorithms cause less fragmentation in the environment.

3 SIMULATOR PROPOSAL: GSMSIM

This work proposes a multicore multicluster simulator model based on queues.
A simulation methodology is applied in order to validate the model and to quantify
the performance under realistic conditions (see Figure 1). The simulation system
(Grid Schedule Management Simulator – GSMSim) consists of a multicore multi-
cluster environment using a two-layer hierarchical structure. It was implemented in
order to analyze schedulers performance in different situations, as well as environ-
ment behavior in different contexts. This system was implemented in the Laboratory
of Research Group in Applied Computer Modeling at the Federal University of Ceará
(UFC).

GSMSim model is based on queueing theory (Figure 1), which is useful for system
analysis – in which conflicts occur when many entities try to simultaneously access
the same resource – [28] as well as in scheduling modeling for distributed systems [29].
GSMSim is composed by managers, Grid Dispatch (GD), Local Dispatch (LD), and
clusters administrators.

GD is in charge for sending sequential and parallel jobs to clusters, and LD for
sending tasks belonging to the jobs in processor queues. Each LD is composed of
a cluster (Ci) (i ranging from 1 to m) consisting of a multicore processor set (Pl)
(l ranging from 1 to M), being {M, i, l,m ∈ N}. Additionally, each Pl has its own
queue in the system.

In the system, there were different scenarios concerning the number of processors,
machines features and quantity of clusters, in order to simulate workloads, which
have jobs with multiple levels of parallelism. In this study, it is considered that
a system is homogeneous when machines clock rate is equal and each Ci possesses
a different quantity of processors; likewise, a system is heterogeneous when machines
clock rate is different ranging from 1 500, 1 600, 1 700, 1 800, 1 900, 2 000, 2 500,
3 000, 3 500 (megahertz), randomly generated at the time of creating resources in
the simulation environment. Therefore, there is heterogeneity in resources of the
same cluster and, consequently, among clusters. Thus, the proposed environment
can be used in different scenarios.

In the developed environment, clusters belong to an administrative domain, so
that they are able to communicate with GD. Besides, the communication among
processors is free contention. Hence, the communication latency is calculated as
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Figure 1. Multicore multicluster simulator model based on queues – GSMSim

follows [30, 31]: T (z) = α + z
ρ

in which α is a constant, z represents the job size

(megabytes) and ρ is the bandwidth (megabytes).

3.1 Workload

Workloads were extracted from a real distributed environment and present char-
acteristics of Standard Workload Format (SWF) [33]. They are composed of two
different types of jobs, which are competing for the same resources: sequential and
parallel jobs. A workload W = {J1, J2, . . . , Jj} (j = 1, 2, 3, . . .) is composed of mul-
tiple jobs, where a job Jj is represented by a tuple (idj, atj, sj, ptj). See parameters
description in Table 1.

Parameters Description

idj Identification of the job, (idj = 1, 2, 3 . . .).
atj Time of arrival, (atj ≥ 0).
sj Number of tasks in a job, (sj ≥ 1).
ptj Estimate of the processing time of a job, (ptj > 0).

Table 1. The workload parameters

A job Jj is composed of one or more tasks, e.g., Jj = {v1,j, . . . , vi,j}. If Jj =
{v1,j}, then, Jj = 1 is a sequential job consisting of a single task, which requires
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only one processor for its execution. Therefore, it is a high priority task, since when
it arrives in the environment, it is sent to the highest speed available processor.
This only happens when this task presents the shorter processing time estimated ptj
regarding to other jobs. In the case of all processors being busy, this task is sent to
the processor queue that has lower execution time.

A parallel job Jj consists in vj,|Jj | tasks which |Jj| > 1. Mapping among tasks
and processors must be one to one. Therefore, job tasks cannot be attributed to
the same processor queue. In addition, tasks belonging to a parallel job will be
scheduling for execution according to the technique scheduling in the system queue.

4 GSMSIM OPERATION

This section describes in detail the operation of system managers: GD and LD, as
it is shown in Figure 1.

4.1 Grid Dispatch

GD sends jobs to clusters. This submission is based on a feedback information about
the total load of each cluster, i.e., the total number of jobs in queues plus the number
of tasks in execution on processors (Algorithms 1 and 2). These information about
clusters load will only be sent upon a GD request, because excessive feedback may
cause system overload. It is very important to know the load value of each cluster
for an efficient load balancing. In case of clusters are balanced, it occurs a random
dispatching.

In Equation 1, it is defined the load calculation of each cluster,

LCi =
1

|PM |
×
|PM |∑
p=1

[f(p) + k] (1)

in which LCi is the total load associated to cluster Ci (i ranging from 1 to m),
|PM | is the total number of processors per cluster, f(p) is the total number of tasks
queued for each processor of Ci, and k represents the existence or not of a task
running on processor: k = 1, there is a task running; otherwise, k = 0.

4.2 Local Dispatch

After a parallel job Jj has been sent to cluster Ci, according to the lowest workload of
LCi, LD assigns job tasks to available queues based on Opportunistic Load Balancing
(OLB) algorithm, or Join The Shortest Execution Queue (JSEQ) algorithm, which
were adapted and implemented in LDs.
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Algorithm 1 Grid dispatcher(job)

Input: jobs
Output: T (job can be run by the system) or F (system cannot run the job)
1: set S ← empty
2: clusters select← 0
3: for i = 1 to number clusters do
4: if (cluster[i].number processor) < (job.number task) then
5: S ← S U (cluster[i])
6: clusters select← clusters select + 1
7: else if (clusters select > 0) then
8: if (job.num tasks > 1) then
9: Cluster← lower load(S)

10: Cluster.LocalDispatcher(job)
11: else
12: Cluster← random(S)
13: Cluster.LocalDispatcher(job)
14: end if
15: else
16: return T
17: end if
18: return F
19: end for

4.2.1 Opportunistic Load Balancing

OLB (Algorithm 3) sends tasks belonging to a job for available processors or to
their queues, regardless tasks execution time expected on processors [11]. It has
the advantage of keeping machines busy but also the disadvantage of not paying
due attention to about minimizing task wait time in queue, consequently, the job
response time.

4.2.2 Join the Shortest Execution Queue

JSEQ algorithm, is an adjustment proposed in this work, based on Join the Shortest
Queue (JSQ) [26, 27, 34]. JSEQ (Algorithm 4) is in charge for sending tasks that
belong to a job for processors queues, in a way that the tasks already queued have
lower execution time. It is important to notice that the execution time value sent to
LD is the sum execution time of task in the queue plus the execution time of task in
the processor; differently from JSQ, in which the sending of tasks to processors occurs
through the quantity of tasks in processors queues. This can lead to an increase of
task waiting time in queues. Thus, when a sequential job reaches the GSMSim, it
has priority, as explained in Section 3.1, regardless of the algorithm that is applied in
LD. Furthermore, the information feedback regarding to processors queues behavior
only occurs when LD calls, thus avoiding system overload.
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Algorithm 2 lower load(cluster [n])

Input: set of n clusters
Output: cluster that has the lowest load
1: for (i = 1 to n) do
2: if (i

.
= 1) then

3: lower← i
4: size← cluster[i].number task()

cluster[i].number machine()

5: else
6: if ( cluster[i].number task()

cluster[i].number machine()
< size) then

7: lower← i
8: size← cluster[i].number task()

cluster[i].number machine()

9: end if
10: end if
11: end for
12: return cluster(lower)

After distributing tasks in queues by one of the machine algorithms (OLB
or JSEQ), it is used one of scheduling queues Adapted First Come First Served
(AFCFS); Largest Job First Served (LJFS) [18, 19, 25] or Largest Slowdown First
(LXF) [36] to scheduling tasks in queues.

The next section will present such schedulers using the gang technique adapted
to task scheduling in processors queues.

Algorithm 3 OLB(Gang g)

Input: gang g
1: list S ← empty
2: list T ← empty
3: for i← 1 to cluster.number processor do
4: if (cluster.processor[i].task executed = null) then
5: S.include(cluster.processor[i])
6: else
7: T.include(cluster.processor[i])
8: end if
9: end for

10: sort random(S)
11: sort random(T )
12: cluster.processor← empty
13: cluster.processor← S.concatenate(T )
14: for i← to g.number task do
15: cluster.processor[i].include(g.number task[i])
16: end for
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Algorithm 4 JSEQ(Gang g)

Input: gang g
1: for i← 1 to cluster.number processor do
2: select← cluster.processor[i]
3: j ← i− 1
4: while (j ≥ 0) and (select.time estimated <

cluster.processor[j].time estimated) do
5: cluster.processor[j + 1] := cluster.processor[j]
6: j := j − 1
7: end while
8: cluster.processor[j + 1]← select
9: end for

10: for i← 1 to g.number task do
11: cluster.processor[i].include(g.task[i])
12: end for

5 GANG SCHEDULING

It is very often applied in job scheduling, in which each job is composed by a task
set that must be performed simultaneously on different processors [22, 16]. This
type of technique is considered efficient for scheduling parallel jobs in distributed
environments, but, as a disadvantage, it results in a fragmentation reducing system
performance [5, 15, 16, 19, 25].

In the simulation system, the following policies were applied for scheduling
queues: Adapted First Come First Served (AFCFS), Largest Job First Served
(LJFS) and Largest Slowdown First (LXF). They were adapted to gang mechanism,
in order to dispatch jobs tasks allocated to queues, and implemented in a simulation
environment.

5.1 AFCFS

AFCFS (Algorithm 5) tends to favor jobs with lower task number, and, consequently,
requires lower number of processors. On the other hand, this may cause an increase
in response time concerning larger jobs. In Algorithm 5, line 1, it is to initialize
the search procedure in processors queues by jobs that have lower task number, and
then, in line 6, it starts tasks exchange ordination.

Figure 2 describes the scenario where tasks belonging to jobs J1 = v1,1, . . . ,
v4,1; J2 = v1,2, . . . , v3,2; J3 = v1,3, . . . , v3,3; J4 = v1,4, . . . , v4,4; J5 = v1,5, v2,5 were
distributed to processors queues according to their arrival time in the system. As
we can see, jobs require different quantities of processors, J1 = 4; J2 = 3; J3 = 3;
J4 = 4; J5 = 2, respectively. Considering the job sizes, these will be scheduled
according to Algorithm 5: J5 = v1,5, v2,5; J2 = v1,2, . . . , v3,2; J3 = v1,3, . . . , v3,3;
J1 = v1,1, . . . , v4,1; J4 = v1,4, . . . , v4,4, as it is shown in Figure 3. These tasks were
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Algorithm 5 AFCFS(Processor queue p.q)

Input: queue q of tasks of a processor p
1: if p.q.begin 6= null then
2: if start(p.q.begin) 6= null then
3: if p.q.begin.netx 6= null then
4: shorter← p.q.begin
5: aux← p.q.begin.next
6: while aux 6= null do
7: if aux.number task berlongs job < shorter.number task berlongs job

then
8: shorter← aux
9: else

10: aux← aux.next
11: end if
12: end while
13: aux← p.q.begin
14: p.q.begin← shorter
15: p.q.begin← aux
16: remove duplicate(p.q.begin)
17: end if
18: end if
19: end if

distributed in queues according to LD algorithm (OLB or JSEQ) and were then
scheduled according to AFCFS policy.

before scheduling
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Figure 2. Jobs in queues – before scheduling

AFCFS has complexity O(n), in which n is the task number in queues, which
will be scheduled. It is only O(n) because the scheduler passes by the queue once to
check which job has the lowest number of tasks, and then forwards to the beginning
of the queue where the jobs have fewer sister tasks. This situation can be performed
in constant time that would be O(1). Thus, complexity O(n) +O(1) = O(n).
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5.2 LJFS

LJFS (Algorithm 6) tends to favor larger jobs performance at the expense of the
smaller ones, i.e., the larger jobs have tasks allocated in processors queues before
any other smaller task belonging to a job, causing an increase of response time in
smaller jobs.

Algorithm 6 LJFS processor.queue p.q

Input: queue q of tasks of a processor p
1: for i← 1 to p.q.size do
2: select processor← p.q[i]
3: i← i− 1
4: while (j ≥ 0) and (select.number task sisters > p.q[j].number task sisters)

do
5: p.q[j + 1] := p.q[j]
6: j := j − 1
7: end while
8: p.q[j + 1]← select processor
9: end for

It is presented a new scenario using LJFS for the same jobs from previous ex-
ample (Figure 2). Considering parallel job size (Figure 4), it will be scheduled
in the following order: J1 = v1,1, . . . , v4,1; J4 = v1,4, . . . , v4,4; J2 = v1,2, . . . , v3,2;
J3 = v1,3, . . . , v3,3; J5 = v1,5, v2,5, as shown in Figure 5.

LJFS has complexity O(n∗ log(n)), in which n is the task number in queue that
will be scheduled. As the scheduler comes down to reorder the queue in descending
order according to tasks number belonging to the job, this complexity is the same
as a common ordering method, therefore, it is based on the merge sort ordering
method [37].
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Figure 5. After scheduling – using LJFS

5.3 LXF

LXF (Algorithm 7) tends to benefit jobs that have larger Expansion Factor (XF),
which is often used when comparing scheduling algorithms. It is related to metric
XF, which is given by the objective function of Algorithm 7 (line 4), in which
the select.t processing is a job processing estimate time and select.t wait is the job
waiting time in the system.

Algorithm 7 LXF(Processor.queue p.q)

Input: queue q of tasks of a processor p
1: for i← 1 to p.q.size do
2: select← p.q[i]
3: i← i− 1
4: t1 ← (select.t processing+select.t wait)

select.t processing

5: while (j ≥ 0) and (t1 <
(p.q[j].t processing+p.q[j].t wait)

p.q[j].t processing)
do

6: p.q[j + 1] := p.q[j]
7: j := j − 1
8: end while
9: p.q[j + 1]← select

10: end for
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Based on the example of Section 5.1 in Figure 7, a scenario using LXF is shown.
The parallel jobs J1, J2, J3, J4 and J5 present the following XF, respectively: 1.6; 2.5;
1.8; 1.7; 1.3. These results were calculated using the equation in line 4 (Algorithm 7),
where the values of the select.t processing and select.t wait are collected from the jobs
information, J1, J2, J3, J4 and J5, which will be executed. Considering jobs that
have larger XF, they will be scheduled in the following order J2 = v1,2, . . . , v3,2;
J3 = v1,3, . . . , v3,3; J4 = v1,4, . . . , v4,4; J1 = v1,1, . . . , v4,1; J5 = v1,5, v2,5, as shown in
Figure 7.
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Figure 6. Jobs in queues – before scheduling
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Figure 7. After scheduling – using LXF

LXF has complexity O(n ∗ log(n)), in which n is the task number in processor
queue. This algorithm puts tasks in descending order, depending on the XF outcome
(Section 5.3). The XF of each job is calculated in a constant time. Thus, it is
considered the merge sort method as the LXF ordering algorithm.

6 MIGRATION

On the assumption that gang scheduling causes environment fragmentation, we seek
to reduce fragmentation by means of task migration. In this study, we studied
many migration ways for heterogeneous system aiming to minimize such problems.
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Thus, we assumed two types of migration: local ml (Algorithm 8) and external me

(Algorithm 9).
As me involves task transfer from one cluster to another, some strategies were

proposed to avoid unnecessary migrations and, consequently, system overload. They
are

1. checking all clusters that have available processors;

2. analyzing which jobs have their tasks at the beginning of the queue of idle
processors;

3. based on the analysis above, checking a job which has the lowest number of
tasks and that is less than or equal the number of idle processors;

4. finally, migrating job tasks which have the lowest number of tasks.

Algorithm 8 local migration(cluster)

Input: one of the grid clusters
Output: T (migration done) and F (migration did not happen)
1: set S ← machines available in the clust
2: set T ← empty
3: for i← 1 to clust.number of machines() do
4: if (clust.machines[i].queue[1]) and (clust.run(cluster.machines[i].queue[1]) =

F ) then
5: T ← T U (clust.machines[i].queue[1])
6: end if
7: end for
8: task← T.shorter number migration()
9: if (number of migration ≤ S.cardinality()) then

10: for i← 1 to clust.number of machines() do
11: if (clust.machine[i] queue(task.id job) = T )

and (clust.machine[i].queue[1].id job) 6= (task.id job) then
12: clust.migration(clust.machine[i].task with id(task.id job),
13: S.shorter queue())
14: end if
15: end for
16: return T
17: end if
18: return F

Figure 8 presents a migration scenario. Processors P1, P2 and P3 are available,
tasks v1,1 and v2,1 are, respectively, at the beginning of processors queues P1 and P2,
and task v3,1 is in P6 queue, the latter is busy and presenting other tasks in queue
ahead of task v3,1. Therefore, to ensure that tasks v1,1, v2,1 and v3,1 ∈ J1 are
immediately taken, v3,1 is migrated to P3.
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Algorithm 9 external migration(cluster[n])

Input: all n clusters of the grid
Output: T (migration done) and F (migration did not happen)
1: set S ← empty
2: set T ← empty
3: for i← 1 to n do
4: for j ← 1 to cluster[i].number machines() do
5: if (exist cluster[i].machine[j].queue[1])

and (cluster.run(cluster[i].machine[j].queue[1]) = F ) then
6: S ← S U (cluster[i].machine[j].queue[1])
7: end if
8: end for
9: end for

10: job← capture job id(T.shorter number task().id job)
11: for i← 1 to n do
12: if (cluster[i].number machine available() ≥ job.number task) then
13: T ← T U (cluster[i])
14: end if
15: end for
16: cluster target← T.minimum machine available
17: amount task← 0
18: for i← 1 to cluster target.number of machine() do
19: if (not exist target.number machine[i].running)

and (amount task ≤ job.number task) then
20: migrate(job, cluster target.machine[i])
21: amount task← amount task + 1
22: end if
23: end for

During task migration, destination processors are reserved in order to prevent
that other tasks can use them. Reserving a destination processor will ensure that
the migrated tasks start their executions immediately. It is important to note that
the me is only applied when the ml does not solve the problem.

Migration Strategies were applied in scheduling algorithms: AFCFS, LJFS and
LXF (Section 5), which were used as a queue scheduler in the simulation envi-
ronment. Therefore, these algorithms with migration will be defined as AFCFSm,
LJFSm and LXFm. Scheduling hierarchy requires that, firstly, the scheduling algo-
rithms are run (AFCFS, LXF or LJFS), and then, the ml migration tries to dispatch
the jobs not allocated by the scheduling algorithm. The me migration will only be
used in an attempt of using more resources.

In the next section, it will be described the performance metrics that were
applied to analyze the system model behavior in different situations.
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Figure 8. Example of a migration scenario

7 PERFORMANCE METRICS

In this study, the following performance metrics were applied: Average Waiting Time
(AWT), Average Response Time (ART), Loss of Capacity (LoC) and Utilization
(U) [38, 39, 40, 41], all in order to analyze the schedulers performance in different
situations, as well as the system behavior in different contexts.

7.1 AWT

AWT measures the job average waiting time in the system, AWT = 1
w
×
∑w

j=1wt(j)
in which wt(j) measures the time between the job arrival in the system and the
beginning of its execution, and w is the total number of job executed.

7.2 ART

The metric response time (in seconds) measures the time interval between the job
arrival in the system until the end of its execution, ART = 1

w
×
∑w

j=1 rt(j) in which
rt(j) represents the job response time and w is the total number of jobs executed.

7.3 LoC

This metric is relevant to measure both the use and the fragmentation of the system.
Then, fragmentation happens when

1. there are tasks waiting in queue to execute;

2. there are idle nodes, but they still cannot perform tasks on hold.

LoC metric has been used in some studies, such as [26, 27, 38, 39, 40, 41]. In
this work, LoC metric is calculated as follows:

LoC =

∑q−1
j=1 nj(tj+1 − tj)δj
N(tq − t1)

× 100, (2)
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nj represents the idle processors number during the time (tj+1 − tj); N is the total
number of processors in the system; tq − t1 represents the arrival time of the first
job in the system and the output of the latter one; and δj is the real condition of
processor and jobs in the system. If δj = 1, it indicates the existence of available
processors to execute at least one job in queue by the moment a new job is dis-
patched; and δj = 0 indicates that the queues are empty or that does not exist in
queues jobs of size less than or equal to the number of idle processors.

Bellow is an example of LoC calculation, with a total of N = 96 processors, see
Table 2.

LoC =

[
5(10− 0)1 + 3(13− 10)0 + 6(17− 13)1 + 4(30− 17)0 + 8(100− 30)1

96(100− 0)

]
× 100

.
= 6.6% (3)

tj δj and nj
t1 = 0; t2 = 10 δ1 = 1 and n1 = 5

t2 = 10; t3 = 13 δ2 = 0 and n2 = 3

t3 = 13; t4 = 17 δ3 = 1 and n3 = 6

t4 = 17; t5 = 30 δ4 = 0 and n4 = 4

t5 = 30; tq = 100 δ5 = 1 and n5 = 8

Table 2. LoC calculation example

The result corresponds to the fragmentation occurred in the system of the in-
terval time tq − t1 = 100 (6.6 % of system fragmentation).

7.4 Utilization

In simulation studies, the utilization rate (U) of clusters is simply an indirect mea-
sure of Makespan [42, 45], calculation is given by Equation (4):

U =

∑w
j=1 sj × rt(j)

Makespan×N
(4)

where U is the clustering utilization rate, sj represents the task number of a job Jj
and, consequently, as each job task must be performed in a separate processor at
the same time, sj also expresses the number of processors required to execute it,
and Makespan is the difference between the initial execution time of the first job
and the end time of the last one.

8 SIMULATION AND ANALYSIS OF RESULTS

8.1 Input Parameters

Simulations were carried out on GSMSim system, Java implemented, which was
developed in the GrPeC Laboratory of UFC, allowing entity simulation in parallel
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and distributed computing systems, such as users, applications, resource managers
and schedulers.

The simulation environment used for the experiment consists of heterogeneous
clusters with 128 and 256 processors, respectively, belonging to the same adminis-
trative domain. GD receives the necessary information from each cluster. Commu-
nication among processors is a free containment. What is more, latency (Section 3)
is included in the job time service.

The simulator receives a workload as input and, according to scheduling policy
of the current scheduling, makes a decision in order to meet the user demands. For
environment analysis, many traces extracted from a real distributed environment
were used [32, 33]. In addition, many tests were performed with heterogeneous and
homogeneous environment using different workloads. However, in this article, the
workload installed in the GSMSim is from the repository [32], which is provided
by the HPC Systems of the San Diego Supercomputer Center group (SDSC). This
SDSC load consists of 3 000 jobs totalling 140 441 tasks, which are described in tuple
(idj, atj, sj, ptj) (Subsection 3.1). These jobs have very different small, medium, or
large characteristics, such as: 1 860 jobs require 32 processors; 30, 90, 60, 60, 570
and 330 jobs require 1, 2, 4, 8, 64 and 128 processors, respectively. Therefore, on
average, 366 tasks are handled by each processor.

For simulation, two scenarios were proposed: (i) In the first scenario (S1), it
was used the OLB algorithm in LD, in order to assign tasks to queues in a random
way to available processors; (ii) in the second scenario (S2), it was used the JSEQ
algorithm in LD, in order to assign task to queues, according to tasks execution time
on processors.

It is worth mentioning that the scheduling queues: AFCFS, LJFS and LXF
(without migration) and AFCFSm, LJFSm and LXFm (with migration) were ap-
plied both in S1 and S2. For each scenario, ten simulations were executed and from
that it was made the calculation of the average values of waiting times, response
times, clustering percentage use and LoC. In each scheduling algorithm, previously
mentioned, a 95 % confidence interval for average response time was used.

In the next section we present the results of simulations performed using the met-
rics described in Section 7. These results describe the impact on system performance
mentioned above, regarding the migration applied in gang schedulers: AFCFS, LJFS
and LXF. Furthermore, the impact of OLB (scenario S1) and JSEQ (scenario S2)
in LD will be analyzed.

8.2 Average Response Time vs. Number of Executed Jobs

8.2.1 Scenario S1 – Using OLB Algorithm and Queue Schedulers

Figure 9 (scenario S1) shows the ART, using OLB algorithm and schedulers
AFCFS, LXF and LJFS, and AFCFSm, LXFm and LJFSm, respectively, in which
the x-axis represents the quantity of executed jobs. In this scenario, AFCFS algo-
rithm submitted the lowest ART in all ranges of executed jobs regarding to LXF and
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LJFS. LXF policy showed better results regarding to LJFS. This is justified because
LXF policy tends to favor jobs that have higher XF (Subsection 5.3), differently
from LJFS, which aims to benefit larger jobs, since it is not always true that the
system offers processors to meet the smaller jobs causing an increase in response
time.

Figure 9. Scenario OLB – ART versus number of executed jobs

As shown in Figure 9 and Table 3, AFCFSm, LXFm and LJFSm algorithms
show a significant decrease in ART concerning them without migration. This shows
that using migration causes a big impact on response time. Therefore, the sug-
gested method was able to use available processors more efficiently reducing the
jobs response time. AFCFSm policy visibly presented the best result.

Number Average Response Time (ART) – Seconds
of Jobs AFCFS AFCFSm LXF LXFm LJFS LJFSm

500 40 133.44 10 719.64 57 826.43 26 209.00 82 580.55 46 161.78

1 000 85 287.65 19 498.69 118 982.20 59 897.42 197 405.05 113 076.48

1 500 116 247.61 29 175 47 171 619.96 90 376.76 307 561.28 200 460.79

2 000 164 252.48 35 410.80 240 306.39 116 669.94 397 360.80 277 986.15

2 500 190 661.94 42 315.17 298 628.58 147 463.46 492 325.32 337 005.26

3 000 185 395.03 40 170.85 301.549 44 165.735 51 465 193.56 333 426.95

Table 3. Scenario S1 – using the OLB algorithm and queue schedulers
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8.2.2 Scenario S2 – Using JSEQ Algorithm and Queue Schedulers

In Figure 10 (scenario S2), it is shown the ART using JSEQ algorithm and schedulers
AFCFS, LXF and LJFS, and AFCFSm, LXFm and LJFSm, respectively, in which
x-axis represents the quantity of executed jobs. In this scenario, AFCFS algorithm
had been presented the lowest ART in all quantities of jobs performed regarding to
LXF and LJFS. LXF also showed better results regarding to LJFS. According to
Subsection 8.2.1, LXF tends to favor jobs with higher XF.

Figure 10. Scenario JSEQ – ART versus number of executed jobs

AFCFSm, LXFm and LJFSm algorithms in S2 (Table 4) have confirmed that the
migration technique reduces response time, because it uses the available processors
more efficiently.

Comparing results of AFCFS, LXF and LJFS algorithms in scenarios S1 and S2
(Tables 3 and 4), it is noted that in S2, ART is considerably reduced regardless of the
scheduler queue used. This shows that JSEQ distributes tasks in queues more fairly.
The information on total value of the task processing, i.e., the task processing time
in queue plus the existence or not of the task that is running on processor, imply
the task waiting time reduction and, consequently, the response time. On the other
hand, algorithms with migration in scenario S1 (Figure 9) present ARTs similar
to S2.

Based on the above, the results of AFCFSm, LXFm, and LJFSm in both sce-
narios are satisfactory, since they have reduced ART using the migration proposed
mechanisms.
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Number Average Response Time (ART) – Seconds
of Jobs AFCFS AFCFSm LXF LXFm LJFS LJFSm

500 22 432.98 11 940.57 43 339.01 27 840.66 76 982.39 50 044.96

1 000 61 298.36 20 463.54 92 728.93 62 541.50 170 497.66 119 391.59

1 500 87 077.07 29 937.91 138 066.91 93 214.22 265 064.16 215 580.81

2 000 120 630.94 36 003.33 193 861.07 117 629.26 355 929.28 284 934.41

2 500 149 538.01 41 998.61 242 923.46 147 423.36 445 306.99 349 568.18

3 000 143 846.61 40 030.39 245 386.95 162 278.49 429 514.51 340 029.61

Table 4. Scenario S2 – using the JSEQ algorithm and queue schedulers

8.3 Loss of Capacity in the System

8.3.1 Scenario S1 – Using OLB Algorithm and Queue Schedulers
and Scenario S2 – Using JSEQ Algorithm and Queue Schedulers

In Figure 11 (scenario S1) and Figure 12 (scenario S2), the Loss of Capacity (in
percentage) in the system is detailed. Comparing both graphic scenarios, the results
of scheduling policies AFCFS, LXF and LJFS, and AFCFSm, LXFm and LJFSm
showed equivalent LoC percentages. Using OLB or JSEQ implemented in LD does
not influence the LoC metric results.

Figure 11. S1 – (%) LoC in the system

Figure 12. S2 – (%) LoC in the system
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In scenarios S1 and S2, the AFCFS, LXF and LJFS algorithms cause ap-
proximately on average LoC = 50 % in the system. Analyzing AFCFSm, LXFm
and LJFSm, respectively, AFCFSm presents percentages of LoC = 3.48 % and
LoC = 3.39 %, lower results regarding to LXFm (LoC = 16.63 % and LoC = 16.2 %),
and LJFSm (LoC = 9.63 % and LoC = 6.89 %). This implies that AFCFSm
dispatches jobs more effectively, minimising system fragmentation. LXFm tends
to present greater fragmentation concerning to LJFSm. The results confirm that
scheduling algorithms with migration minimizes system fragmentation.

8.4 Cluster Utilization Rate

8.4.1 Scenario S1 – Using OLB Algorithm and Queue Schedulers
and Scenario S2 – Using JSEQ Algorithm and Queue Schedulers

In Figure 13 (scenario S1) and Figure 14 (scenario S2), it is shown the percentage
of cluster utilization regarding to interaction number. It is considered an interac-
tion the job arrival to the GD and its completion. Comparing scenarios S1 and
S2, AFCFS, LXF and LJFS and AFCFSm, LXFm and LJFSm algorithms present
similar average use of resources.

Figure 13. Scenario S1 – utilization rate (%)

In AFCFS, LXF and LJFS, in Figures 13 and 14, the clustering use average
remains constant in intervals of 1 000–4 900. AFCFS presents lower percentages
regarding to LXF and LJFS. This is because the algorithm tends to favor smaller
jobs, generating an increase in idle processors. But LXF and LJFS have better
results in the clusters use. Analyzing AFCFSm, LXFm and LJFSm, Figures 13
and 14, confirmed that algorithms with migration strategy are more efficient when
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Figure 14. Scenario S2 – utilization rate (%)

it comes to the use of resources. In addition, we can see in Figures 13 and 14 that
after 5 000 interactions a considerable decline happens; this implies that all jobs
have been serviced and the processors are becoming available.

9 CONCLUSIONS AND FUTURE WORK

This study has proposed and implemented a Multicore Multicluster GSMSim sim-
ulation system, using a two-layer hierarchical structure, GD and LD. GSMSim was
developed in order to analyze the scheduling performance in different situations,
as well as the environment behavior in different contexts. In LD, two scenarios
were implemented and adapted, OLB (S1) and JSEQ (S2), in order to distribute
tasks efficiently in the system, which act before scheduling queues. Additionally,
the schedulers AFCFS, LXF and LJFS were used and adapted to gang technique
for scheduling tasks in processor queues. As aforementioned, such schedulers cause
environment fragmentation, therefore, migration mechanisms were implemented in
order to minimize this problem. In the experiment analysis, performance metrics
were used aiming to assess the scheduler behavior in different situations.

In scenario S2, the tasks were distributed more efficiently in queues, minimizing
the task waiting time. As a consequence, the scheduling queues AFCFS, LXF and
LJFS showed the most significant results regarding to ART metric in scenario S1.
In these scenarios, AFCFSm, LXFm and LJFSm presented satisfactory ARTs. This
implies that the suggested migration technique was able to use idle processors more
efficiently, thereby reducing system fragmentation. Adapted by nodes in this con-
text, the metric LoC measures the impact that schedulers cause in the system,
regarding to fragmentation. Results obtained (Figures 11 and 12), in AFCFS, LXF
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and LJFS cause ≈ 50 % of system fragmentation. In the proposed mechanisms, the
fragmentation was considerably reduced in AFCFSm (3.48 % and 3.39 %), LXFm
(15.63 % and 16.2 %) and LJFSm (9.63 % and 6.89 %) (Figures 11 and 12). Re-
garding to clustering metric (Figures 13 and 14), it was confirmed that migration
technique reduces the number of idle processors in the system, as well as fragmen-
tation.

The results showed that there was a fragmentation reduction using task migra-
tion among processor queues in a heterogeneous multicluster environment, as well
as a better use of them, implying operating cost reduction on the part of providers,
meeting the expectations of users QoS. It is worth pointing out that scenario S2 pre-
sented satisfactory results in all metrics, unlike S1, which in ART metric (AFCFS,
LXF and LJFS) was not as efficient. AFCFSm presented the best results in both
scenarios.

As future work, a wide research may be carried out in the scheduling field for
computational grids. In this study, only OLB and JSEQ algorithms were used in LD.
Then, we intended to apply other heuristics in order to analyze the system behavior
in different approaches. Besides, a new scheduling heuristics for applications such as
DAG could be created. In another perspective, the migration techniques applied in
AFCFS, LXF and LJFS could be implemented in other schedulers, e.g., in genetic
algorithms, comparing them with the ones used in this work. Moreover, a proposed
model validation in real context was evaluating a large number of experimental
results.
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