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Abstract. Materialized views are important for optimizing Business Intelligence
(BI) systems when they are designed without data cubes. Selecting candidate
queries from large number of queries for materialized views is a challenging task.
Most of the work done in the past involves finding out frequent queries from the
past workload and creating materialized views from such queries by either manually
analyzing workload or using approximate string matching algorithms using query
text. Most of the existing methods suggest complete queries but ignore query com-
ponents such as sub queries for creation of materialized views. This paper presents
a novel method to determine on which queries and query components materialized
views can be created to optimize aggregate and join queries by mining database
of query execution plans which are in the form of binary trees. The proposed
algorithm showed significant improvement in terms of more number of optimized
queries because it is using the execution plan tree of the query as a basis of selec-
tion of query to be optimized using materialized views rather than choosing query
text which is used by traditional methods. For selecting a correct set of queries
to be optimized using materialized views, the paper proposes efficient specialized
frequent tree component mining algorithm with novel heuristics to prune search
space. These frequent components are used to determine the possible set of candi-
date queries for creation of materialized views. Experimentation on standard, real
and synthetic data sets, and also the theoretical basis, proved that the proposed
method is able to optimize a large number of queries with less number of mate-
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rialized views and showed a significant improvement in performance compared to
traditional methods.
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1 INTRODUCTION

Most of the BI systems are implemented using data cube architecture. Generation
of data cubes for processing user queries helps in reducing time, but has storage and
data synchronization overheads. In some cases, storage overheads are so large that
it becomes extremely prohibitive to generate a cube. If it is not feasible to generate
a cube, the user queries are processed using on the fly aggregation. The “on the fly”
aggregation demands very good query optimization, which otherwise would lead to
high response time for user queries. Query optimization [31] plays a vital role in
such BIS. Most of the time, the query optimization is done using techniques like
indexing, but unfortunately this technique is not able to optimize aggregate queries.
Hence, the idea of materialized views has been proposed to optimize such queries.
A materialized view [17] is like a normal view with storage used for storing results
of a view query. When a materialized view is referred, rows are directly retrieved
from the storage rather than the execution of the query again, thereby reducing the
processing time of the query. The stored rows of materialized view are refreshed
when base tables of materialized views are updated to keep the data synchronized.
Thus, materialized views have data synchronization costs which may reduce the
overall advantage of improving query response time [29]. If the system has many
materialized views, then the performance of the system deteriorates due to high data
synchronization overheads. Therefore, it is necessary to have a minimum number of
materialized views to improve the queries, which otherwise cannot be optimized by
conventional methods.

The aim of this paper is to create a set of materialized views with minimum
cardinality, which can optimize most of the queries. Our approach is to find fre-
quent components in queries and create materialized views on them to optimize
them. Such frequent components may represent frequent subqueries. The tradi-
tional approaches like approximate string matching algorithm [2] will not be useful
here because similar queries may not have the same text. For example, if two differ-
ent queries have the same subquery, then by using normal string matching technique,
the queries are treated differently. Therefore, we propose a new approach of find-
ing frequent components in queries by analyzing the query execution plan rather
than query text using data mining techniques. Most of the database management
systems construct query execution plan in the form of a binary tree. This paper
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uses this property to build a recursive tree mining algorithm to find the frequent
components of a query. In most of the applications, the query workload follows
80–20 rule, i.e., almost 20 % queries form 80 % of the work load. As the number
of queries increases, the probability of a query component to repeat also increases.
The creation of materialized views on these frequent components will result in the
overall optimization of queries that reuse the same components. Generalized graph
mining algorithms like G-Span are already developed to obtain frequent graphs from
a memory dump of graphs [30]. However, this is a highly generalized algorithm and
such conventional graph mining algorithms are not useful for mining the “execution
plan tree components” because of the specialized nature of these trees. Node in the
tree represents an operation, whereas the level of the node indicates the order in
which the operation is performed. In this paper, we have proposed a new tree mining
algorithm for identifying the frequent tree components in a set of such specialized
trees.

The algorithm proposed in this paper analyzes multiple queries and recom-
mends queries as well as query components. Creation of materialized views on
these components will result in the optimization of all the queries having these com-
ponents. Many database systems contain hundreds and even thousands of tables.
Such database applications may have millions of queries [1]. These queries may have
many frequent components. Mining of frequent components that can be translated
as candidate queries is a challenging task [4]. The proposed tree mining algorithm
for finding these components should be able to handle the work load by pruning the
search space efficiently.

For a given workload, we have found that the candidate queries using our method
are more in number as compared to the queries resolved using the conventional
method. We have also shown that the materialized views created using candidate
queries used by our algorithm show a considerable improvement in terms of “reduc-
tion of the logical block reads (GAIN MEASURE)” as a performance measure [12].
The contributions of the proposed work are as follows:

1. We have introduced the creation of a materialized view based on query compo-
nents and subqueries rather than creating it only on the full query.

2. We have proposed a method of finding query components by analyzing execu-
tion plans of past query workload rather than analyzing query texts. This is
a fundamental change in approach as compared to traditional methods because
it helps in getting a larger set of queries which can be optimized with a lesser
number of materialized views and thus improving system performance to a very
large extent.

3. We have proposed new tree mining algorithms for specialized trees, which rep-
resent query execution plans to handle large query loads by providing efficient
pruning techniques to reduce search space. We have also provided correctness
proof of our newly designed algorithm and proved that it will mine all necessary
frequent subcomponents from the given set.
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4. We have done exhaustive experimentation on standard, real and synthetic work-
load to show that the number of candidate queries reported by our algorithm
is expected to be higher than the number of candidate queries reported by the
state of the art algorithms by the traditional methods.

The rest of the paper is organized as follows: Section 2 describes the related work,
followed by Section 3 which describes the proposed work and the algorithm in detail.
Section 4 describes how the output of the tree mining algorithm helps to create
materialized views, Section 4 describes the experimentation and results and Section 5
contains the conclusion and future work.

2 RELATED WORK

View materialization is a widely-used strategy employed in data warehouses of
the Business Information System to improve the performance of decision support
queries. Decision support queries are highly complex in nature and make heavy use
of joins and aggregations. Moreover, solving decision support queries involves com-
putations on huge volumes of historical data, as these queries are more inclined to
find trends rather than individual facts. Historical data is continuously generated by
multiple fast operational OLTP (Online Transaction Processing) systems and gets
accumulated in warehousing systems. Since access to a materialized view is faster
than computing the views on demand, using the materialized view can speed up the
analytical query processing in a data warehouse. Hence, naturally it is desirable to
materialize all the possible views in a data warehouse, but this is not feasible be-
cause of resource constraints such as disk space, computation time and maintenance
cost. Especially, creation of materialized views incurs an overhead after update of
the base database objects which demands refreshing of all the affected materialized
views.

Hence, to acquire a quick response to analytical queries within the system’s
resource constraints, selection of a proper set of views to materialize is an im-
portant decision while designing the warehousing system. The most commonly
used technique is materializing frequent queries, which are obtained by text match-
ing [13].

Gong in his paper [13] proposed clustering based dynamic materialized view
selection algorithm (CBDMVS). It finds a cluster of SQL queries using a similarity
threshold τ and if a new query’s similarity is below τ for all the existing clusters,
then a new cluster is formed. Similarity between queries is measured based on
certain parameters like base table sets, equivalence connectivity conditions, scope
connectivity conditions and output column sets. These queries are mined using
text mining. CBDMVS dynamically adjusts the materialized view set, by replacing
views with lowest gains where the system lacks storage space for the new query.
Basically, it not only improves the overall query response time, but also reduces the
computational cost that is spent while updating materialized view. Rajyalakshmi
in paper [26] proposed association rule mining based materialized view selection
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algorithm (ARMMVVM) for improving the performance of materialized view selec-
tion and materialized view maintenance using association rule mining. It integrates
the technique of improving query response time by using frequent mining algorithm
along with adjustments of the view set.

Sohrabi and Ghods in their paper [28] explored the view selection problem as
a two-step process where, the first step is finding the candidate views and the second
step decides the final view set from a set of candidate views under the system
resource constraints such as storage space and view maintenance cost. This paper
discussed the usage of Directed Acyclic Graphs (DAGs) and data cube lattice in
candidate generation step, and various heuristic algorithms in the view selection
step. The authors also proposed a novel algorithm based on frequent item set
mining technique which aims at minimizing the view creation and maintenance
cost. Paper [14] proposed a systematic review of various view selection techniques
in which various techniques are compared in terms of memory storage space, cost,
and query processing time. By means of this review of available literature, the
authors have drawn several conclusions about the status quo of materialized view
selection and a future outlook is predicted on bridging the large gaps that were
found in the existing methods.

In paper [27], the authors proposed a greedy materialized view selection algo-
rithm, which extracts query-processing and view maintenance cost related infor-
mation from multiple query processing plans into a table-like structure and the
algorithm also computes the optimal view set. In paper [21], the authors pro-
posed a similarity interaction operator-based particle swarm optimization (SIPSO),
in which materializing an appropriate subset of views was suggested for achieving
acceptable response times for analytical queries. The proposed SIPSO-based view
selection algorithm (SIPSOVSA) selects the Top-K views from a multidimensional
lattice. Paper [5] proposed a game theory based framework for the materialized
view selection. In the proposed framework, query processing and view maintenance
costs play a game against each other as two players and continue the game until
they reach the equilibrium.

The authors in paper [20] talk about a uniform query framework that can be
used for traditional relational databases and NOSQL databases. This query frame-
work can also perform joins, aggregates, filter on the data from various data sources
in a single query. Hung et al. in their paper [18] proposed a cost model, having
well-defined gain and loss metrics used for deciding the member views in a view set.
For candidate generation, data cube is represented as lattice, and lattice is expressed
in the vector form. This vector is then used to search for other dependent views.
Afrati in the paper [1] addresses the problem of view selection for aggregate queries
considering rewritings with multiple view sub-goals and multi-aggregate views. This
paper explains how to answer aggregate queries using aggregate views by construct-
ing equivalent rewritings and how to optimally select aggregate views to materialize,
for use in those rewritings.

The authors in the paper [15] present a greedy view selection algorithm in
AND/OR view graphs, which describes all possible ways to generate warehouse
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views. It describes different approaches to address the view selection problem, se-
lects the best query path which can be maximally utilized to optimize the response
time of most of the queries, under the maintenance cost constraints. In the pa-
per [25] the authors present the heuristics to determine the additional set of views
to materialize under given storage constraints to reduce the overall maintenance cost
of all the views. The algorithms aim at minimizing the query response time and view
maintenance overheads under the given storage constraints. The paper [19] proposes
a greedy-repaired genetic algorithm which selects a set of materialized cubes from
the data cubes under storage space constraints, in order to reduce the amount of
query cost as well as the cube maintenance cost.

In a paper [22] authors gave importance on integration of computational methods
for design optimization based on data mining and knowledge discovery. This paper
proposes to use radial basis function neural networks to analyze the large database
generated from evolutionary algorithms and to extract the cause-effect relationship,
between the objective functions and the input design variables. Gupta and Mumick
in the paper [16] developed a method to deliver the optimal set of views to optimize
the total query response time for a given workload under constraints that the selected
set of views should incur less collective maintenance overheads than the specified
amount of maintenance time. The paper proposed approximation greedy algorithm
for query load having view OR graphs and A* heuristics algorithm for query load
with general AND-OR view graphs. This paper has kept the storage constraints out
of all the equations.

The authors in the paper [3] proposed a framework for materialized view se-
lection that exploits data mining technique (clustering), to determine clusters of
similar queries. The paper also proposed a view merging algorithm that builds a set
of candidate views, by iteratively building the lattice of views. To determine the
final view set, a greedy process was used where the selection criteria considered
cost of storing and accessing data from views. Ashadevi in her paper [4] presented
a critical survey of the past and present methodologies and solutions for the view
selection problem.

Mohania and Kambayashi in the paper [24] showed that the warehouse views
could be made self-maintainable if additional auxiliary relations were derived from
the intermediate results of view computation in the warehouse. This paper proposed
an algorithm for determining what auxiliary relations needed to be materialized to
make a materialized view self-maintainable, i.e., maintainability could be viewed as
an incremental process that computes the updates to both the materialized view
and the additional relations.

Daneshpour and Barfourosh in their paper [9] proposed a dynamic view man-
agement system to select materialized views with new and improved architecture,
which could predict incoming queries through association rule mining and three
probabilistic reasoning approaches: Conditional probability, Bayes’ rule, and Näıve
Bayes’ rule.
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3 PROPOSED WORK

3.1 Problem Statement

A materialized view is a proven technique to optimize queries such as aggregate
queries which otherwise cannot be optimized using conventional optimization tech-
niques like indexing or clustering. Since materialized views have additional storage
and data synchronization overheads it is better to create less number of materialized
views. If a query load consists of millions of queries, it is very costly to create mate-
rialized view. It is reasonable to use less number of materialized views for optimizing
computationally intensive queries.

3.2 Theoretical Analysis and Motivation

Matching query text can be used to find out frequent queries, but this approach
may not work if the queries are written differently or, if several queries are doing
similar operations. For example, the following queries, i.e. queries Q1 and Q2, are
computationally similar to query Q3, but their textual representations are different.

Q1: select avg (salary) from emp company group by cname;

Q2: select max (salary) from emp company group by cname;

Q3: select max (salary), avg (salary) from emp company group by cname.

Unlike the tree mining algorithm, the string matching algorithm will not be able to
find any correlation between these queries. But, if we create materialized view for
the query Q3, both the queries Q1 and Q2 will get optimized. Another example
could be queries that are different, but they use the same subqueries. For example,
the following queries are different, but use the same subquery.

Q4: select ename from emp company where salary > all (select avg (salary) from
emp company);

Q5: select cname from emp company where salary > all (select avg (salary) from
emp company).

Both the queries are using the same subquery, but they are not textually similar.
Both can be optimized by creating materialized view of the subquery. The text
matching algorithm which is used by traditional researchers will fail to detect such
kind of commonality amongst the queries Q4 and Q5. To overcome this problem we
have used the execution plan tree as a basis for finding similarity between trees and
detecting similar subqueries because of the following facts.

1. If the two queries are similar, then their execution plans trees are also the same.

2. If the two queries are having the same subquery, then their execution plan trees
are having the same subtree components.
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With tree mining, we will be able to find a common subtree in the query plan trees
of Q4 and Q5. Therefore, the problem statement is defined as “To find a set of
materialized view queries” [4] from the existing query load by mining database of
query execution plans such that:

1. The set of materialized views should optimize a large number of time consuming
queries.

2. The set should have low cardinality to avoid storage overheads and data syn-
chronization costs.

Once “execution plan tree” is decided as the basis of similarity then the next chal-
lenge is to design algorithm which efficiently mines frequent tree components from
the set of millions of trees. General frequent itemset mining or graph mining algo-
rithms cannot be applied because of specialized nature of plan trees. So the spe-
cialized frequent tree algorithm is designed by providing heuristics and correctness
proof of the algorithm is provided.

3.3 Terminologies and Examples

In this section, we first define a few terminologies used for explaining our tree mining
algorithm which is used to mine database of query execution plans which are in the
form of binary trees.

View: A view is a derived relation, defined by a query in terms of base relations
and/or other views.

Materialized view: A view is said to be materialized if its query result is persis-
tently stored, otherwise it is said to be virtual. We refer to a set of selected
views to materialize as a set of materialized views.

Workload: A workload or a query workload is a given set of queries, Q = {Q1, Q2,
. . . , Qn}. Each query in the query workload can be described using its frequency
and cost of execution.

View selection: Given a database schema and a query workload, the objective
is to select an appropriate set of materialized views to improve performance
of database in processing the workload, i.e. in executing queries in the work-
load. The ideal view set can comprise queries which are useful in optimizing the
performance of a large number of queries in the workload.

Tree: Tree is a directed acyclic graph denoted as T (R, V, L,E), where V is the set
of nodes in T ; R is one of the node of T and is the root of T ; L is the set of the
labels of the nodes; and E is the set of directed edges in T . All trees considered
in this paper are rooted labeled trees.

Query and query plans: Every query has a query plan associated with it. A query
plan shows the execution path of the query [12]. Most of the Database Manage-
ment Systems (DBMS) use binary trees to represent the query execution plans
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where leaves indicate the data source and node indicates the type of operation
such as join. Though we have designed an algorithm based on the assumption
that the query plan is in the form of binary tree, the algorithm can be easily ex-
tended for generalized plan tree. Figure 1 indicates query plan for the following
query.

Select e.ename, e.city from employee e where e.ename in (select c.ename from
emp company c where c.cname = ’ACC’ and c.salary > (select avg (salary) from
emp company)).

SELECT

HASH JOIN- RIGHT SEMI

VIEW VW _NSO_1 TABLE ACCESS EMPLOYEE
TABLE FULL

TABLE ACCESS EMP_COMPANY
TABLE FULL

SORT AGGREGATE

TABLE ACCESS
EMP_COMPANY TABLE FULL

 

Figure 1. Query plan for the query

Each node in the query plan tree represents an operation. We extract these
query plans from all the queries present in the query load. These plans constitute
the tree database (TDB) which is used as an input for the tree mining algorithm.
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3.3.1 Query Subtree and Supertree

Consider the two trees T (R, V, L,E) and T ′(R′, V ′, L′, E ′) based on tree definition in
Section 3.2.5. Assuming T ′ as a subtree (embedded tree) of T (T ′ ⊂ T ). It implies
that V ′ ⊂ V , E ′ ⊂ E, L′ ⊂ L, L′(V ) = L(V ). If (v1, v2) ∈ E ′ and v1 is the ancestor
of v2 in T , then it is preserved in T ′ also. If T ′ is subtree of T then T is called
a supertree of T ′.

In our paper we are considering only those embedded trees whose set of leaf nodes
is a subset of leaf nodes of a tree. Any embedded tree which does not terminate
strictly at the leaf level of an enclosing supertree is not considered a valid subtree.
Only such subtrees represent a valid query component like subquery or part of query
on which materialized view can be created. Figure 2 indicates the subtree.

A

D E

F G

H I

 

Figure 2. Subtree which represents a subexpression or a subquery

3.3.2 Tree Database (TDB)

It is a set of query execution plan trees collected from traces of database management
system. The dataset containing query plans is in the form of binary trees. This data
can be easily obtained from the trace utility provided by database management
systems. The trace utilities normally dump data in relational tables which includes
sql query text, query execution plans. Each query plan in the TDB is associated with
an identifier (SQL ID). It also provides information like number of logical reads, cost
of query and number of executions of each query. All such information is available
in the dynamic dictionary views which can be easily extracted. The tree database
which is extracted from such views is referred to as the query workload.

3.3.3 Support

Given the tree database TDB, assuming a tree T ∈ TDB, and S ′ is a subtree of T ,
then support of subtree S ′ equals to the number of instances of S ′ in TDB including
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the instance(s) in T . The task of frequent subtree mining from TDB with given
minimum support σ is to find all the candidate subtrees that has support at least
equal to σ. The support for subtree given in Figure 3 in the database given in
Figure 5 is 2.

A

D E

Figure 3. Support of a subtree (i.e. a subquery) is the number of its occurrences in all the
query plans

The subtree A-D-E is present in two trees shown in Figures 5 and 6.

B

A C

D E

F

A G

D E

A

D B

Figure 4. Sample tree dataset (4.1, 4.2, 4.3)

3.3.4 Threshold and Frequent Subtree

It is the minimum support value which qualifies the subtree to be get included into
a list of frequent sub-trees. If the support of a sub-tree is greater than or equal to
the specified threshold (% value of total trees), then that subtree is called a frequent
subtree. The support of subtree S given in Figure 3 is 2. If threshold is 2, then
sub-tree S is frequent. If the minimum support value is decreased then more trees
will be qualified as frequent trees and more number of materialized views will be
created. If more materialized views are present then the high synchronization cost
of the materialized views will have adverse impact on performance so the minimum
support value should be carefully chosen according to requirement of application.
In this paper, for experimentation, the support value is chosen as 50 % so that the
optimization is done with less number of materialized views. If the application is
having a large number of transactions then this value can be increased to create less
number of views, and if the application is having only a large number of retrievals
where materialized view synchronization cost is negligible then the support count
can be decreased to optimize more queries using materialized views. The value of
50 % allows the user to check performance and adjust it according to the nature of
the application.
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3.3.5 Maximal Frequent Subtree

The subtree S of any tree T is said to be maximal frequent subtree if S is frequent
and there is no supertree S ′ of S in tree T such that S ′ is frequent. In other words,
there does not exist any frequent tree whose subtree is S. If materialized view is
created on maximal frequent subtree then large part of the query is optimized [30].

3.3.6 GAIN Measure (GM)

It is percentage reduction in the number of logical block reads after a query set
is optimized using materialized views. For example, a user fires a query “Select
sum (salary) from employee group by department name” then it will require 2 000
logical block reads if the table “employee” occupies 2 000 blocks on the disk. If the
materialized view is created on the same query then it will store department wise
salary which will take very less space on the disk. If the size of materialized view is
10 blocks then the percentage reduction (GM) is (1 990/2 000) ∗ 100.

3.4 Tree Mining Algorithm

The proposed algorithm for mining frequent subtrees uses a recursive bottom up
approach, i.e., it traverses the search space in a bottom up manner starting from
the leaf. The method to mine the components is given below.

Input
TDB: Set of query execution plans
δ: Support Threshold
Output
FTDB: The list of frequent components (Subtrees) in trees and list of queries
associated with them.

3.4.1 Preprocessing

As, all the queries do not require optimization using materialized view, queries which
have very less cost, or which are very infrequent do not need to be optimized using
materialized views. To reduce the query load, the following preprocessing is done.

• Query cost is calculated in terms of the number of logical block reads. The
query is placed in the experimental load if (number of logical reads)∗ (frequency
of query) is greater than some threshold (theta).

• If the base tables of queries are frequently updated then refresh cost of materi-
alized view is high and such queries can be removed from experimental load.

• Within experimental load the queries are ordered using level of execution plan
tree.
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Variables
TreeNode: It is a data structure pointing to the node of the tree. All nodes in
a tree that are the children of TreeNode are accessible from this data structure.
In fact, each tree is represented by its root TreeNode.
TreeNode→ Left: Left node of TreeNode
TreeNode→ Right: Right node of TreeNode
N : number of query plans in dataset TDB
Tr: Parameter required for Threshold Pruning. Tr = N ∗ ((1− σ)÷ 100)
FrequentTreeMap<FrequentTree, List Of Sql Ids>: Map of frequent subtrees,
present along with their sql ids in which the subtrees are present.
TreeList: List in which all query plans are stored in the form of binary trees. In
this list, all elements are TreeNodes [refer]. All TreeNodes are pointing to root of
trees.
SQL Id List (T): List of all SQL IDs of which sql queries that includes component
subtree T .
MaximalFrequentSubtreeList: It is list containing all maximal frequent subtrees
encountered.

Algorithm: FrequentTreeMiner
Preprocessing;
FrequentTreeMap = ();
MaximalFrequentSubtreeList = ();
begin
for i = 0; i < N ; i++ do

MineSubTree(TreeList[i]); . (1)
end for

3.4.2 Analysis

For each query execution plan, all components are searched and if the component is
frequent then it is inserted in the frequent tree set as given in step (4) of the algo-
rithm. For each component, searching is done by calling function searchsubtree ()
in step (6), which tries to find out whether the tree component is a subtree of the
existing tree and then the database of all the search trees is scanned as given in

Function: MineSubTree . The function MineSubTree returns
a query list which contains the subtree T only if T is frequent subtree, otherwise
it returns a null list.
Input
TreeNode: Tree which is to be tested as maximal subtree
Output
FrequentTreeMap: List of frequent subtrees
Status: Boolean variable to indicate whether specified tree is maximal subtree.
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Function MineSubTree (TreeNode) return boolean
if T is null then

return true
else

if T is already subtree of any tree in MaximalFrequentSubtreeList then . (2)
return true

else
if MineSubTree (T → left) and MineSubTree (T → right) then . (3)

if CheckSubtreeIfFrequent (T ) then
FrequentTreeMap. Insert (T, SQL Id List(T )); . (4)
return true

else
return false

end if
end if

end if
end if

Function: CheckSubtreeIfFrequent (TreeNode) . The
function CheckSubtreeIfFrequent (TreeNode T ) will check if support of the T is
greater than threshold, i.e., if T is frequent.
Input
TreeNode: Tree representing query plan or component of query plan
Output
Status: Boolean variable indicating whether the given tree is frequent.

Function CheckSubtreeIfFrequent (TreeNode T ) return boolean
startIndex = index for tree next to tree that contains component T .
count = 1;
for i = startIndex; i < N ; i++ do . (5)

if searchSubtree (TreeList[i], T ) == True then . (6)
count = count + 1 . (7)

end if
end for
if count >= ceil (Tr ∗N) then return true; else return false;
end if

Function: searchSubtree (TreeNode T , TreeNode subT)
This function checks whether any tree subT is present in tree T (subT represents
the TreeNode, i.e., root node of tree to be searched as explained earlier and
similarly, T represents TreeNode, i.e., root of tree in which subT is to be searched).
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step (5). Step (1) executes N (size of query database) times while step (3) which
recursively searches for each component in tree executes (L − 1) times where L is
level of the tree. For each component, the database of query plans is searched in
step (5) which will also be executed N times and each such search at step (6) takes
time proportional to (L − 1). Therefore, the total complexity of the algorithm is
(N ∗ (L − 1))2. To get all frequent components, the usual method is to enumerate
all components that are in the dataset, and count the support of these item sets,
and decide whether they are frequent or not. However, when the number of distinct
items is huge, the algorithm that explores the entire search space may be inefficient
due to the exponential increase in permutations. To avoid this problem, we employ
a few techniques to reduce the search space. Here L, level of the tree, is dependent
on the user query and it cannot be controlled, therefore the only way to reduce the
cost of the algorithm is to reduce “N” by considering only queries which require
performance improvement. Thus, N can be reduced using the following steps.

(1) Threshold pruning: While determining whether a new component is frequent
or not, after verifying Tr trees [where Tr = N ∗ (1 − Threshold/100)] without
a single instance of a new component, the new component is automatically
considered infrequent. A component which does not occur even once in Tr trees
(where Tr is Tr = N ∗ (1− Threshold/100) and N is the number of trees in the
dataset) is considered infrequent. This is because even if it occurs in every tree
after Tr trees, it still will not cross the threshold. Thus, new components are
not mined after Tr trees. This step can be introduced after step (7) as follows.
If (count < Tr) break.

(2) Bottom up pruning: If the component containing two children of a tree
node are infrequent then the component containing their parent will also be
infrequent. So, while parsing any tree, suppose we find one node infrequent,
we do not need to consider its parent, resulting in pruning the search space
significantly. This is implemented in step (3).

(3) Maximal frequent lookup pruning: If a component is already frequent then
there is no need to check it again as a lookup list of all maximal frequent subtrees
is maintained. Every time a component is encountered, it is first searched in the
look up list to check if it is a subtree of any other maximal frequent subtree,
if it is found in the list, no further checks are carried out to find it is frequent
or not, thereby reducing the search space drastically. In absence of the above
mentioned look up lists, for every instance of each frequent component, we would
have to search in the complete tree database resulting in huge inefficiency for
large datasets. This is implemented in step (2).

(4) Filtering based on data source: Step (3) ensures that all the query com-
ponents are searched and “for loop” specified in step (1) ensures that the whole
database of query plans is searched so that the algorithm ensures that if some
component is frequent then it is stored in the frequent set. If the component is
not frequent then it will not be inserted in the frequent set as given in step (4).
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The algorithm ensures that the output frequent set contains all possible frequent
components in the database and components that are not frequent will never
get a place in the output set.

3.5 Candidate Queries for Materialized View Creation

The aim of the proposed method is to find candidate queries for generating the
materialized views, which otherwise cannot be obtained by conventional state of
the art methods. The tree mining algorithm discussed in the previous section gives
frequently occurring subtrees (components) and list of queries associated with each
frequent subtree as an output. These frequent components are then analyzed and
used to create materialized views. The following examples shows how the candi-
date queries are obtained by the algorithm which otherwise cannot be obtained by
conventional methods. For example, suppose there are two queries:

Query 1: select e.cname from emp company e where e.salary > (select avg (salary)
from emp company) group by cname;

Query 2: select e.ename, e.city from employee e where e.ename in (select c.ename
from emp company c where c.cname = ’ACC’ and c.salary > (select avg (salary)
from emp company)).

The execution plans of both the queries are shown in Figures 5 and 6, respectively,
with the frequent component associated with them.

The materialized view mv2 is created on this frequent component as of the
queries on the schema of the data warehouse which contains five dimension tables
PRODUCTS:

select cname, max(salary), avg(salary), sum(salary), min(salary),
count(salary) from emp company group by cname.

The materialized view mv2 will optimize both queries.

4 EXPERIMENTAL EVALUATION AND RESULTS

The experimentation was performed on a 2.3 GHz Intel core i5 processor with 4 GB
main memory, running on Mac OS X. This experimentation was done using standard
query workload mentioned in [26] on Oracle 11g Database Management System.
The workload consisted of TIMES, CHANNELS, PROMOTIONS, CUSTOMERS
having 15, 31, 4, 8 and 15 attributes (columns), respectively. It also contains one
FACT table named SALES which contains two measures “QUANTITIES SOLD”
and “AMOUNT SOLD”. The performance on standard workload is compared to
the recent established algorithms MVFI [26], ARMMVVM [13] and CBMVS [28]
using GAIN measure (GM) [28] as a performance criterion. The optimization tests
were carried out using standard query workload of data warehouse in which size is
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SELECT( CNAME )

HASH JOIN- RIGHT SEMI

VIEW VW _NSO_1 TABLE ACCESS EMPLOYEE
TABLE FULL

TABLE ACCESS EMP_COMPANY
TABLE FULL

SORT AGGREGATE

TABLE ACCESS
EMP_COMPANY TABLE FULL

 

Frequent Component 

Figure 5. Query plan for Query1

Sr.
Dataset Size

View Selection Algorithms (Gain Measure)
No. MVFI ARMMVVM CBMVS Proposed

1 0.5 GB 5.5 5 4.4 6.1

2 1.0 GB 11 9 7.7 12.5

3 1.5 GB 17.4 13 10.5 19.8

4 2.0 GB 22.4 18 14.5 25.1

• MVFI – Materialized view selection based on frequent itemset mining algorithm.

• ARMMVVM – An association rule mining for materialized view selection.

• CBMVS or CBDMVS – Clustering based dynamic materialization view selection algo-
rithm.

• GM – Gain Measure.

Table 1. Comparison between recent algorithms with proposed algorithms on the standard
query workload
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SELECT ( ENAME, CITY )

HASH JOIN- RIGHT SEMI

VIEW VW _NSO_1 TABLE ACCESS EMPLOYEE
TABLE FULL

TABLE ACCESS EMP_COMPANY
TABLE FULL

SORT AGGREGATE

TABLE ACCESS
EMP_COMPANY TABLE FULL

 

Frequent Component 

Figure 6. Query plan for Query2

varied from 0.5 GB to 2 GB by controlling the number of rows in table SALES. The
result of the experimentation is given in Table 1.

The experimentation results in Table 1 indicate that there is large improvement
in GM compared to recent methods for all sizes of query work load by the proposed
method. We have also used synthetic and real life datasets for the experimentation,
to test the applicability of proposed method on varying types of queries. The real
data set is obtained from Management Information System of National Institute
of Technology, Nagpur. The majority of queries in almost all real life applications
consist of time consuming operations such as joins, aggregations and groupings,
hence we have taken query load which is a mixture of queries having such operations.
We have composed three query sets QS1, QS2 and QS3 having different composition
of join and aggregate queries. The tables referred in the queries use different columns
which are aggregated and grouped. We make sure to have more variations in datasets
in the form of aggregations and joins. The composition of data sets is described in
Table 2. The first row indicates query set QS1 executed on real database of “MIS-
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VNIT” which contains 2087 queries having 48 % join queries, 17 % aggregate queries
and 29 % queries using both joins and aggregates. The other query sets are shown
in successive rows.

Sr. No. QL DS N QJ QA QJA

1 QS1 Real MIS-VNIT 2 087 48 17 29

2 QS2 Synthetic 3 086 26 28 35

3 QS3 Synthetic 2 809 20 39 32

• QL – Query Load

• DS – Data Source

• N – Number of Queries (Total number of complex queries in the query workload)

• QJ – Percentage of queries involving only joins

• QA – Percentage of queries involving only aggregations

• QJA – Percentage of queries involving both joins and aggregations

Table 2. Dataset characteristics

The datasets were cached in the main memory during the algorithms processing
stage, to avoid high data access costs. The numbers of frequent trees which are
to be mined are controlled by parameter “frequency threshold”. If the threshold
is higher, then the algorithm produces less frequent trees and lesser number of
materialized views are created. Since the number of materialized views cannot be
large because of synchronization overheads, we have done the experimentation by
setting the threshold to 50 % of the total candidate trees (threshold is taken as
50 % with the assumption that around 50 % of the total workload will be having
frequent patterns. If more queries are to be optimized then the threshold can be
reduced). The performance is measured using GM. The performance results are
shown in Table 3 with different query loads. The proposed tree mining algorithm is
implemented in Java.

QL LR
View Selection Algorithms (Gain Measure)

MVFI ARMMVVM CBMVS Proposed

QS1 3 560 642 24.34 21.21 15.38 40.62

QS2 4 701 867 33.68 29.24 27.45 37.80

QS3 3 857 673 31.25 28.41 24.37 40.10

• QL – Query Load

• LR – Logical Reads before creation of materialized views

Table 3. Results showing comparative analysis of best known algorithms with proposed
algorithm on real and synthetic datasets described in Table 2

From Table 3, it is interpreted that the GM is considerably increased with the
proposed tree mining algorithm when compared to state of the art algorithms in all
types of query load because the proposed algorithm is designed to mine frequent
queries as well as frequent subquery components. It has also been observed that
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for the large datasets of query workload of the size 4 million, the improvement is
considerable.

4.1 Scalability

The scalability of the tree mining algorithm was analyzed by using query load of
three different sized datasets. The query load is obtained by using queries mentioned
in Table 2 multiple times. It was found that due to efficient pruning techniques,
the processing time increased linearly with size, though the worst case complexity
could be O(N2). The reason behind the experimental linearity is that if the tree is
already a part of the frequent tree, then the cost of finding the frequency of the tree
or the database scan is minimized.

Another reason for linearity could be that if a subtree is not frequent then its
supertree is also not frequent, hence there is no cost of extra database scan. The
performance of the algorithm is given in Table 4. In general, execution plans for
groupings and aggregations have trees of larger length and hence mining frequent
components takes more time. Since the algorithm is executed offline without any
hard time constraint, practically the execution time mentioned in the table is well
within acceptance level.

Datasets
No. of Queries in the Dataset

100 000 200 000 300 000 400 000

QS1 381 708 1 020 1 343

QS2 335 592 829 1 087

QS3 467 931 1 330 1 683

Table 4. Execution time of tree mining algorithm on different datasets with different sizes
(number of queries) of query load (time in seconds)

5 CONCLUSION AND FUTURE WORK

It is a challenging task to select a set of queries from a huge query load, for creating
materialized views. This is because such a set should not only be small, but should
also provide maximum benefit for optimizing most of the queries. Most of the earlier
methods rely on approximate text matching algorithms or finding frequent patterns
in queries which refers to same set of tables. Such an approach may not work if
frequent queries appear as sub queries.

In this paper, an attempt has been made to find frequent queries as well as
frequent subqueries. The proposed method uses “query execution plan” for finding
frequent query components instead of operating on query text. Such query plan is
represented as a binary tree which can then be extracted from dynamic dictionary
views which are provided by most of the databases and data warehouse systems,
making the proposed method feasible. In the proposed method, finding frequent
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components in a large set of queries is translated as finding frequent subtrees, and
efficient algorithms are proposed to extract subtrees with the correctness proof of the
algorithm. The proposed method suggests various pruning techniques to effectively
reduce the search space and to combat the huge query load. Certain queries which do
not require materialized views are preprocessed and removed from the experimental
load. The proposed method is compared with standard workload mentioned in the
literature and its performance is compared with the recent methods available in
the literature. The experimental evaluation indicates that the proposed method
gives better performance than all the recent methods irrespective of query load
size. The detailed study is done on real and synthetics data sets to check the
performance on various types of workloads. The experimental evaluation indicates
that the performance is improved to very large extent by the proposed method in
all types of query workloads.

In the future, the selected queries can be analyzed using data synchronization
costs of materialized views and total optimization can be done considering reduc-
tion of query cost and increase in data synchronization costs. The queries having
high data synchronization costs can be modified and optimized using conventional
methods and can be pruned in preprocessing steps.

REFERENCES

[1] Afrati, F. N.: Determinacy and Query Rewriting for Conjunctive Queries and
Views. Theoretical Computer Science, Vol. 412, 2011, No. 11, pp. 1005–1021, doi:
10.1016/j.tcs.2010.12.031.

[2] Al-Khamaiseh, K.—ALShagarin, S.: A Survey of String Matching Algorithms.
International Journal of Engineering Research and Applications, Vol. 4, 2014, No. 7,
pp. 144–156.

[3] Aouiche, K.—Jouve, P. E.—Darmont, J.: Clustering-Based Materialized View
Selection in Data Warehouses. In: Manolopoulos, Y., Pokorný, J., Sellis, T. K. (Eds.):
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