
Computing and Informatics, Vol. 38, 2019, 421–453, doi: 10.31577/cai 2019 2 421

RDGC: A REUSE DISTANCE-BASED APPROACH
TO GPU CACHE PERFORMANCE ANALYSIS

Mohsen Kiani, Amir Rajabzadeh

Department of Computer Engineering and Information Technology
Engineering Faculty, Razi University
Taghe-Bostan, Kermanshah, Iran
e-mail: {kiani.mohsen, rajabzadeh}@razi.ac.ir

Abstract. In the present paper, we propose RDGC, a reuse distance-based perfor-
mance analysis approach for GPU cache hierarchy. RDGC models the thread-level
parallelism in GPUs to generate appropriate cache reference sequence. Further,
reuse distance analysis is extended to model the multi-partition/multi-port paral-
lel caches and employed by RDGC to analyze GPU cache memories. RDGC can
be utilized for architectural space exploration and parallel application development
through providing hit ratios and transaction counts. The results of the present
study demonstrate that the proposed model has an average error of 3.72 % and
4.5 % (for L1 and L2 hit ratios, respectively). The results also indicate that the
slowdown of RDGC is equal to 47 000 times compared to hardware execution, while
it is 59 times faster than GPGPU-Sim simulator.

Keywords: GPU cache memory, reuse distance analysis, performance modeling,
hit ratio

Mathematics Subject Classification 2010: 68M20

1 INTRODUCTION

Many modern high performance computing systems rely on GPUs along with CPUs
to deliver high amounts of computing power. Since GPU usage is no longer limited
to the graphical processing applications, architectures of modern GPUs are modified
towards the benefit of general computations. One of the most significant changes in
GPU architectures is the utilization of cache memories in GPUs [1]. Cache memories

422 M. Kiani, A. Rajabzadeh

can alleviate the traditional problem of memory wall through exploiting the data
localities which inherently exist in many general applications. Modern GPUs employ
two levels of hardware-managed cache memories. Although cache hit ratios in GPUs
are not generally as high as CPUs, the overall GPU performance is highly affected
by cache performance in many data parallel applications [2]. In modern CPUs,
approximately one-third of the chip area is devoted to cache memories, while the
per-core cache size in GPUs is very limited. Moreover, since GPUs use thread
switching, a huge number of in-flight threads run concurrently, what results in many
attempts to access cache memory lines and causes cache thrashing. Hence, given the
limited size of the available cache memory in GPUs, the detailed cache performance
modeling is essential. For instance, hardware architects who intend to organize
cache memories and application developers who work toward optimum application
implementation would highly benefit from detailed cache performance modeling.

There are three main approaches to evaluating how processors function: mea-
surement, simulation, and mathematical performance modeling [3]. To evaluate
GPU cache memory performance, appropriate tools and techniques should be de-
veloped based on the architectural characteristics of GPUs. It should be noted that
the existing CPU cache performance modeling techniques are not applicable for
GPUs and require considerable modifications prior to use because of the substantial
architectural differences between CPUs and GPUs.

In the present paper, a reuse distance-based approach, called RDGC, is proposed
to analyze the performance of GPU cache memory hierarchy. RDGC embodies two
models: logical and physical. In the former, the trace information is first extracted,
then compressed, and finally ordered logically. In this case, the trace memory ac-
cesses ordering is performed regardless of the GPU physical resource limitation, i.e.,
for unlimited number of processing resources. Hence, the logical model is GPU
independent. In the latter case, the physical limitations of a specific GPU, which
are essential to the performance estimation of a given GPU, are modeled to define
the cache reference sequence. The extended reuse distance (RD) analysis algorithm
proposed by the present study is then applied by the physical model to generate the
performance metrics for the cache reference sequence. The merit of using these two
separate models is that the logical model is not specific to any GPU generation, and
its outputs can be used for any GPU machines modeled by the physical model.

Given that GPUs place emphasis on parallelism and the fact that GPU caches
may have multiple banks with multiple access ports, RD analysis algorithm [4] was
extended in the present study to model such cache memories. In addition, since
GPUs employ two levels of cache memories, two cache levels are modeled by RDGC:
per-SM (Streaming Multiprocessor) private L1 caches and shared L2 cache.

RDGC provides hardware architects with exploration of GPU cache design
space. Additionally, the presented method can be used by application developers
to optimize the data locality exploited by cache memories. To analyze the per-
formance of GPU cache memories, different cache design parameters were modeled,
including capacity, associativity, block size, bypassing, mapping (indexing) function,
and replacement policy. Further, several mapping policies of thread blocks to SMs

RDGC: A Reuse Distance-Based Approach 423

were modeled. Finally, the effects of L2 parallelisms were investigated. Moreover,
the RDGC was validated against the performance counters provided by NVIDIA’s
NVPROF profiler. The Polybench/GPU applications [5] and several applications
selected from Rodinia benchmarks [6] were executed on a Maxwell and a Kepler
GPU, and the results provided by NVPROF were used to validate RDGC. Further,
the performance of a selection of applications were evaluated for different cache
memory parameters and GPU thread mapping policies.

RD analysis has been adapted for GPU cache memories in studies conducted
by Tang et al. [7] and Nugteren et al. [8], in which only a single cache level (L1)
is modeled. In this paper, the RD model presented by [8] was extended to in-
clude cache parallelism, i.e. multi-port and multi-bank cache memories. In addition,
compared to previous studies, the present work is more comprehensive, and two
levels of cache memories with different cache parameters are analyzed. Instead of
solely generating hit ratios, the transaction counts were also provided by the model
as a performance metric which is essential when modeling average memory access
time [9]. Furthermore, RDGC was validated for newer GPU generations.

The utilization of cycle-accurate simulators for architectural space exploration
is immensely popular with hardware architects. However, simulators are extremely
slow and it is exceedingly time consuming to investigate the performance of different
cache configurations using a cycle-accurate simulator. The slowdown of GPGPU-
sim (V 3.2.2), as a popular simulator, is around 2760000 times for the workload in
the present study. Applications with run-times of several milliseconds took hours
to be simulated. RDGC has an average simulation slowdown of 47K times, thereby
generating the demanded results within several minutes. In addition, the RDGC
computations have a degree of parallelism and can be accelerated by parallel pro-
gramming [10], whereas parallelizing simulators is challenging [11]. In addition,
since we use RD analysis, the results of one simulation can be used to predict other
cache organizations [12, 9], or it can be employed as a basis to estimate the total
processor performance and power [13]. Consequently, RDGC can be used to narrow
down the broad architectural space of cache organizations, and the optimal archi-
tecture candidates can be later simulated in more details. Last but not least, the
older GPU generations are usually simulated by GPU simulators, but their pace
of evolution is not in line with GPUs. For instance, the NVIDIA Fermi GPUs are
simulated by GPGPU-Sim, while RDGC is designed based on the newer Maxwell
GPU generation.

The main contributions of this paper are summarized as follows:

1. A reuse distance analysis algorithm is proposed for modeling the multi-port and
multi-bank cache memories. Further, the effects of Miss Status Holding Registers
(MSHRs) and cache memory latency are included in the presented model.

2. An appropriate model is developed to model the GPU thread level parallelism
and generate the cache reference sequence.

3. Different cache organizational parameters are analyzed in this paper.

424 M. Kiani, A. Rajabzadeh

4. The effects of L2 cache parallelism in terms of multiple cache partitions and
banks are analyzed to quantify the effects of parallelism on the resultant reuse
profile.

The present paper embodies the following sections: Section 2 deals with litera-
ture review, and a background on NVIDIA GPUs and RD analysis is presented in
Section 3. Next, RDGC is explained in Section 4. Later, the evaluation results are
presented and discussed in Section 5, and finally, the paper is concluded in Section 6.

2 RELATED WORK

A great deal of studies have been conducted about cache performance modeling in
CPUs, whereas the very same subject has not been dealt extensively in the case of
GPUs. In the following, we review the related researches to the context of our study.

2.1 GPU Cycle-Accurate Simulators

Hardware architects rely on cycle-accurate simulators to explore the architectural
space of GPUs, but its main limitation is the extreme slowdowns of simulators.
Although detailed results are provided by simulators, they may fail to provide good
insights into some detailed results about the architectural aspects of processors.
Further, architectural space exploration with cycle-accurate simulation is very time
consuming since it requires to simulate every one of architecture candidates. Some
of the prime examples of GPU simulators are GPGPU-sim [14] and Multi2Sim [15].

2.2 Analytical and Empirical Performance Models

An analytical performance model was introduced for GPUs by Hong and Kim [16],
but its main problem was that the cache memory effects were not addressed in the
proposed model. Later, the said model was extended by Sim and Kim [17] to include
the effects of cache memories, which were supposed to be known in advance. In an-
other study performed by Baghsorkhi et al. [18], a hierarchical memory model, based
on statistical sampling and trace file analysis, was proposed to predict the perfor-
mance of the GPU’s memory hierarchy. To generate an appropriate memory access
sequence, the Monte Carlo simulation method was exploited by the authors of the
said study. In another study performed by Huang et al., known as GPUMech [19],
the interval analysis technique was extended, in which the parameters affecting
the performance of GPUs were modeled, including the effects of multithreading,
MSHRs limitation, and DRAM bandwidths. To determine the sequence of memory
accesses, the Round Robin (RR) and Greedy-Then-Oldest (GTO) policies were em-
ployed. GPURoofline [20] is an empirical approach for performance evaluation and
optimization of GPU applications towards observing the performance bottlenecks
of applications and manually optimizing the performance of applications. Machine
learning was adopted by some researchers to develop predicting performance models

RDGC: A Reuse Distance-Based Approach 425

for GPUs. For example, Dao et al. [21] concluded that linear analytical models fail
to capture the effects of GPU memory systems and presented a machine learning-
based model for GPUs that run the OpenCL kernels to accurately estimate the
performance of running kernels. Recently, Kiani and Rajabzadeh proposed a model
to approximate the locality in CUDA kernels with regular access patterns [22].

2.3 Reuse Distance-Based Cache Performance Modeling

Multicore CPUs: Although RD analysis is basically designed for single thread
analysis, the prevalence of multicore CPUs has motivated many researches to-
ward employing RD analysis for multicore CPUs. Both private and shared
caches may exist across a multicore cache hierarchy, each requiring proper mech-
anisms to calculate the reuse profile. Ding and Chimbili [23] proposed a locality
estimation model for multi-threaded applications. The authors modeled thread
interleaving and data sharing to profile the locality in shared caches. Similarly,
Jiang et al. [24] extended RD profile for shared caches by introducing Concur-
rent Reuse Distance (CRD) profiles. Their work relies on probabilistic models
to estimate CRD profiles from the individual threads memory references. As
the authors pointed out, in contrary to RD profiles, CRD profiles are not ar-
chitecture independent. However, in many applications with similar memory
behaviors across threads, CRD can be considered as a virtually hardware inde-
pendent metric and once acquired for a given architecture, it can be estimated
for other architectures [12, 9]. Schuff et al. [25] consider both private and shared
caches in multicore systems and extended RD analysis to account for write-
invalidation in private and inter-core data sharing in shared caches. Moreover,
Wu and Yeung [26] consider loop-level parallelism in which the threads exhibit
very similar memory behaviors. The authors used CRD profiles to predict reuse
profiles for different core counts in Large-scale Chip Multi-Processors (LCMPs).
Their method is useful to conduct core count and problem size scaling analysis.
Later Wu and Yeung [12, 9] extended their prior work by employing Private
RD (PRD) along with CRD profiles to explore the cache hierarchy architectural
space in multicore CPUs. They show that using RD profiles the average mem-
ory access time, which is one of the most important performance parameters
in CPUs, can be estimated using simple analytical models. Recently, Badamo
et al. [13] employed RD analysis and analytical modeling to predict the perfor-
mance and power consumption and identify power-efficient cache organizations
in LCMPs.

Acquiring RD profiles for every possible cache organization is costly thus some
techniques have been developed to reduce the analysis time. The first tech-
nique is prediction through which the RD profile is acquired for several hard-
ware configurations and then predicted for all other configurations, hence ex-
tensively reduces the analysis cost [26]. Another alternative is using statistical
sampling methods. In this technique, a small yet representative subset of the

426 M. Kiani, A. Rajabzadeh

memory references is analyzed which yields a similar profile achievable through
full analysis [27]. In addition, RD analysis can be accelerated through paral-
lel execution [10]. It should be noted that applying prediction, sampling, and
parallelization techniques is not straightforward in the case of cycle-accurate
simulation [11].

GPUs: GPU threads execute the same code (Single Instruction Multiple Threads),
thus threads generally exhibit similar memory behaviors. Further, no coherency
protocol is employed at L1 level, and only one shared L2 exists in GPUs (see
Section 3). Consequently, when adapting RD analysis for GPUs, there is no
need to model coherency effects as modeled in multicore CPUs.

Some researchers adapted RD analysis for GPU kernels. In [8], RD analysis algo-
rithm was extended for GPUs to evaluate the performance of L1 cache memory.
In addition, the trace file was generated by Ocelot and the access sequence
was defined based on the RR scheduling policy. The results demonstrated that
hit ratios were chiefly governed by cache capacity, associativity, and block size.
However, they do not consider cache level parallelism, and, as the result of the
present study shows, cache parallelism can significantly change the achieved
reuse distance values. In addition, the authors do not model write accesses and
in this article we include writes by considering write-evict policy (which is the
policy used in GPUs). Further, Tang et al. also proposed the reuse distance-
based algorithm for L1 cache analysis [7]. The problem was divided into two
parts. Firstly, a stack (reuse) distance algorithm was developed for a single
CUDA block in which the RR policy was assumed for warp scheduling. Sec-
ondly, the contention effects, caused by the simultaneous execution of multiple
blocks on the very same SM, were modeled. Tang et al., however, do not give any
detail regarding the way they modeled the GPU physical limitations. Moreover,
they do not model the effects of MSHRs. Recently, RD analysis was employed
by Wang et al. to analyze the access patterns of GPU applications [28]. They
provide reuse distance breakdown calculated from the memory access informa-
tion generated by GPGPU-sim. Since their approach relies on GPGPU-sim to
generate the memory access information, a considerable time should be devoted
for memory trace extraction, thus it is not a time-efficient approach. All in all,
RD analysis in the context of GPUs is in its early stages and as a step forward,
we try to enhance the existing algorithms by including both cache levels, cache
parallelism, and modeling write accesses.

2.4 GPU Cache Memory Organizational Space Exploration

One of the main objectives of the present study is the analysis of the behaviors of
cache memories in GPUs in the case of different cache organizations. The organiza-
tional space of cache memories and the architectural techniques for cache memories
have been investigated in many previous studies [29]. Warp scheduling [30], cache
prefetching [31], cache bypassing [32] and cache indexing [33] are among the most

RDGC: A Reuse Distance-Based Approach 427

important areas in cache memory organizational investigation that have received
a great deal of attention.

3 FUNDAMENTALS: NVIDIA-GPU, CUDA, AND RD ANALYSIS

NVIDIA GPUs: NVIDIA GPUs consists of several streaming multiprocessors
(SMs), memory controllers, and an L2 cache memory connected to an off-chip
global memory shared between the SMs via an interconnection network. Each
SM is composed of processing and memory resources. The former includes pro-
cessing cores, load/store units, special function units (SFUs), and the latter
includes a register file, a shared memory, and an L1 cache. The internal or-
ganization of SMs and memory hierarchy varies from one GPU generation to
another.

Compute Unified Device Architecture (CUDA): This programming model
was developed by NVIDIA for its GPUs towards the development of scalable
GPU applications [34]. A CUDA application can be performed on different gen-
erations of CUDA-enabled GPUs, possibly with different number of computing
resources. In the CUDA programming model, computations are done via sev-
eral parallel kernels. Each kernel consists of a grid of thread-blocks (blocks for
the sake of brevity), where each block is carrying a number of threads. Since no
inter-block data dependencies exist in CUDA kernels, the blocks can be executed
in any order.

CUDA Memory Model: Logically, in addition to the registers devoted to each
thread, each of them possesses a private memory space. A shared memory space
is shared between all of the threads in the same block. The global memory is
accessible from all of the threads of all blocks.

CUDA Execution Model: When a CUDA kernel is launched on a GPU, the
kernel blocks are first mapped onto the GPU SMs. Each SM is capable of
performing a given number of blocks concurrently. If the number of mapped
blocks exceeds the limit, the extra number of blocks stall until the in-flight
blocks are completed. When a block starts executing on a SMs, it is divided
into several warps that consist of 32 threads. Ready warps are scheduled onto
the available intra-SM resources by warp schedulers. A warp may be stalled, for
example, due to a memory reference or an instruction dependency. The number
of in-flight warps in a SM is also limited and can further restrict the number
of in-flight blocks. The number of warp schedulers and their scheduling policies
are different from one GPU generation to another.

3.1 Cache Memory Hierarchy of Maxwell GPUs

In Maxwell GPUs (GM), L1 and Texture caches are integrated. Each SM has
a total of 48 kB of L1/Texture cache divided into two 24 kB slices, where each slice
is shared by a group of 64 processing cores. In addition to data caching, L1 cache is

428 M. Kiani, A. Rajabzadeh

also used for register spilling during the execution. L2 cache, consisting of a number
of partitions/banks, is shared among all SMs, and all the global memory accesses
go to the main memory through the L2 cache. Memory addresses are interleaved
among the banks. Maxwell GPUs have several L2 partitions, where each partition
consists of two 128 KB banks. An overview of memory hierarchy of Maxwell GPUs
(GM) is presented in Figure 1 a). Moreover, the structure and mapping of L2 cache
memory of GTX 970, which is used in our evaluations, are shown in Figure 1 b).

L1 caches bypass all the global write memory accesses (a write hit imposes
an eviction), while the global read memory accesses can be optionally cached into
or bypassed from the L1 depending on the bypassing strategy (not all the NVIDIA
GPUs are capable of optional L1 global caching [35]). The bypassing strategy can
be defined by compiler flags at the time of compilation.

Miss Status Holding Registers (MSHRs) are a set of registers that track the
outstanding missed accesses. A missed access is first compared with the existing
content of allocated MSHRs. Consequently, if the requested address is already
present in a MSHR (requested by a prior access), the new access will be merged with
the existing one, otherwise, a free MSHR will be assigned to the access. When the
requested cache block arrives from the backing store, the reserved MSHR becomes
free and cache will be filled using the arrived block. The number of MSHRs assigned
to each cache is limited, and a reservation fail happens when a missed access does not
obtain a MSHR. In this case, the missed access keeps trying to obtain a free MSHR
in the next cycles, and the issuing load/store unit stalls during the reservation fail.
In addition to the number of MSHRs, the maximum number of per-entry merges is
also limited. MSHRs have an important role in delivering the non-blocking cache
property, thereby highly affecting the performance of the memory [36]. Accordingly,
MSHRs should be modeled as part of modeling the performance of cache memories.
Further, it should be noted that the atomic instructions that are handled at L2 level
are not considered in the present paper.

3.2 Reuse Distance Analysis

The aim of reuse distance (RD) analysis [4] is to profile the locality of applications.
In addition, RD analysis can be used for modeling the cache performance of fully-
associative caches with LRU replacement policy. The memory sequences (trace) of
accessed cache blocks (or memory addresses) are analyzed to calculate their RDs.
The value of RD for a given access to an address is calculated as the number of
unique accessed addresses between the current and previous access. Although RD
can be calculated with either of memory addresses or cache block granularity, the
latter is considered in the present study.

Basically, the main property of RD analysis is its hardware independence. How-
ever, for a LRU cache with a given number of blocks, the resulting hit ratio of
an application can be calculated based on the RD values of memory accesses. For
a fully associative cache with K cache blocks, an access is a hit if its RD value is less
than K, otherwise it is a miss. Based on the RD analysis algorithm, the RD value is

RDGC: A Reuse Distance-Based Approach 429

24KB L1/Tex

MSHRs

128KB

128KB

128KB

128KB

128KB

128KB

Main memory

Mem.
 Controller

MSHRs MSHRs

SM1

LD/ST

24KB L1/Tex

24KB L1/Tex

MSHRs

SMP

24KB L1/Tex

128KB128KB

128KB

Main memory1KB

128KB

128KB

128KB

256B

128KB

128KB

128KB

128KB

a b

L2

L2

Mem.
 Controller

Figure 1. Overview of memory hierarchy of NVIDIA Maxwell GPUs [35], and two-level
address mapping scheme of L2 in GTX 970

equal to infinity for the first access to an address, and therefore, access with infinite
RD values represent the cold misses. When the intention of RD analysis is hit ratio
calculation, a MRU stack is considered that its first block is the most recently used
one. An array of counters (denoted by C[K + 1]), which consists of K+1 counters,
is used to count the hits and misses of the memory accesses, where C[n] holds the
number of accesses with RD values of n. C[K] holds the number of accesses with
RD > K missing the cache. Given the counter values of a cache with K blocks, the
hit ratios of caches with fewer K blocks (e.g., K ′) can also be calculated through
summing up the first K ′ counters.

As for the set-associative cache memories, the same set of counters can be used
for all the cache sets. In the present paper, RD analysis was used to model the
performance of set-associative cache memories, and the same set of counters were
employed for all cache sets. In Table 1, a typical example is given for RD calculation.
In the case of caches with four blocks, the hit ratio equals 50 % without any capacity
miss, while for a cache with two blocks, the hit ratio equals 25 %.

Step 0 1 2 3 4 5 6 7

Sequence A B C D A A D C

RD ∞ ∞ ∞ ∞ 3 0 1 2

The alphabet letters stand for the accessed cache blocks

Table 1. An example for RD analysis

430 M. Kiani, A. Rajabzadeh

4 RDGC PERFORMANCE MODEL

RDGC, short for reuse distance-based GPU cache, aims to model cache performance.
In this method, cache memory hierarchies are analyzed through processing mem-
ory access sequences. To do so, the extracted memory trace of parallel blocks are
converted into coalesced warp serial access and then analyzed by the RD algorithm
that is presented in Section 4.4. In Figure 2, two components of RDGC, namely
logical and physical models, are shown.

To analyze the cache performance, the logical model provides the memory access
information which is independent of GPU. Then L1 and L2 cache memories are
analyzed by the physical model based on the logical trace information along with
the physical cache parameters and GPU specifications.

E
x
tr
a
c
ti
o
n

R
e
d
u
c
ti
o
n

O
r d

e
ri
n
g

Kernel
Trace
 info

Logical model
Cache arch.

info

GPU arch.
info

Physical
 model

Trace �le, NB, Bdim, L

One time execution

Metrics (Hit ratio),
Counters (#Transactions)

Figure 2. The RDGC components

4.1 Logical Model

To analyze the performance of kernels, the per-thread raw information is first ex-
tracted by the logical model. Then the trace file is reduced, and finally the accesses
are ordered based on the logical execution model of CUDA. The three phases of the
logical model are as follows:

Trace extraction. In the present study, the per-thread memory trace information
is extracted through manual probing then executing the kernel. A considerable
number of concurrent threads are performed by GPUs. Thus, recording the
detailed information for each thread seems impractical and only represents the
execution ordering on a specific device. Further, even recording the raw infor-
mation of all GPU threads at once requires large buffers to store the recorded
information temporarily during the trace generation. Consequently, to keep the
trace file independent of GPU and to avoid large buffers, the following approach
was adopted:

1. Only the raw memory access information (without time stamp) was recorded,
and no information was recorded about the thread and instruction ordering
and the block to SM mapping. Later, different block mapping and warp
scheduling policies can be enforced by the physical model.

RDGC: A Reuse Distance-Based Approach 431

2. According to CUDA, blocks can be executed in any order, thus they were
separately traced to further alleviate the buffer size. Recording the access
information of all the blocks at the same execution run requires a consid-
erable memory space. By separate block trace extraction, the kernel can
be launched multiple times, where the information of only several blocks is
recorded in each launch.

In Figure 3, the organization of the trace file is depicted, in which each line in
the trace file contains the access information of one thread, denoted by ACC.
ACC is a five-tuple set in the form of ACC = {AN,BID,TID, S, ADD}, where

• AN denotes a per-block access number assigned to each access of the block,

• BID is a unique block ID which is assigned to each thread block,

• TID represents the per-block thread identifier,

• S is a Boolean access specifier to define whether the access is a read or
a write, and

• ADD denotes the accessed global memory address.

In Figure 3 an example is shown for M blocks and N threads per block (BID =
{0, . . . ,M − 1}, TID = {0, . . . N − 1} where L denotes the maximum number
of accesses within each thread (AN = {0, . . . , L− 1}). It should be noted that
not all the threads within a block necessarily appear in the trace file, e.g., due
to a warp divergence.

Block(0)

Block(1)

Block(M-1)

...

Access(0)

Access(1)

Access(L-1)

...

Thread(0)

Thread(1)

Thread(N-1)

...

Block(i) Access(i)Trace file

a

AN BID TID S ADD

0 0 t R/W address

1 0 t R/W address

...

L-1 0 t R/W address

0 1 t R/W address

1 1 t R/W address

...

L-1 1 t R/W address

….....

0 M-1 t R/W address

1 M-1 t R/W address

...

L-1 M-1 t R/W address

R/W: Read or Write specifier
t: Thread indexes (0 to N-1)

b

Figure 3. a) The hierarchical structure, b) and overview of the memory trace file

Trace File Reduction. For a kernel with high levels of memory access, the size of
the trace file tends to grow rapidly. To alleviate the space overhead of a trace
file and to accelerate its processing speed, the generated trace files are reduced
through converting the thread access to the coalesced warp access. Moreover,
the information of a warp access is stored by each line of the reduced trace
file as {AN,BID,WID, S,NT, {ADD}}, where WID is the warp index that is
calculated by dividing the thread indexes to the warp size (i.e., 32). Further, NT

432 M. Kiani, A. Rajabzadeh

denotes the number of active threads of the warp, and the accessed addresses
are stored in {ADD}. As a result, the size of the trace files dropped by 2.3 times
in the workload used in this paper.

Trace File Ordering. The memory accesses are ordered by the logical model with-
out enforcing any physical limitations. No GPU related parameters, e.g., warp
scheduling policy, are modeled at this step. In the logical model, it is assumed
that the accesses to all blocks with the same access numbers (AN) can be ex-
ecuted in parallel with each other. The trace file is ordered according to ANs.
Additionally, since the trace files are huge and stored on disks, their ordering
is a time consuming operation. In addition to the logically-ordered trace files,
grid dimensions (denoted by NB), block dimensions (denoted by Bdim), and
maximum numbers of per-thread accesses (denoted by L) are generated by the
logical model.

4.2 Physical Model

In addition to the trace file information, GPU and cache memory architectural
information (listed in Table 2) are received by the physical model. The physical
model calculates the MRU counters and then the L1 and L2 cache hit ratios and
transaction counts are calculated from the MRU counters. Figure 4 shows the work-
flow of the physical model. In this figure, C1R/C1W and C2R/C2W denote L1
and L2 cache memory MRU counter arrays for read and write accesses, respectively.
Further, the trace files are depicted as dashed rectangles, and the RD analysis,
described in Section 4.4, is employed within the physical model to calculate the
MRU counters.

Trace
 info

Cache arch.
info

GPU arch.
info

 Block
mapping,

Trace
retrieval

L1 cache analysis (Algorithm 2)

L1
 accesses
File (SM-i)

L1
Accesses
analysis

L1
 Miss,

bypass

L2
Trace
Const.

L2
 Accesses

!le

L2
cache

analysis

Metric
calculation

Physical model (Algorithm 1)

For all Sms (1 to P)

C1R, C1W

C2R,
C2W

Metrics

Figure 4. The structure of the physical model

The physical model operates according to Algorithms 1 to 3. As shown in
Algorithm 1, the per-SM L1 cache memories are first analyzed (line 3), and the MRU
counters (denoted by C1R and C1W , for read and write accesses, respectively) are
updated accordingly. C1R and C1W are counter arrays with K1 elements (K1 is
the L1 cache associativity), used cumulatively for all L1 caches. After analyzing the
L1 caches, the L2 cache trace file is constructed through retrieving and analyzing
the missed or bypassed L1 accesses (line 5) to calculate the L2 MRU counter arrays
(denoted by C2R and C2W) (line 6). Finally, the output metrics (see Section 5)
are calculated based on the MRU counters.

RDGC: A Reuse Distance-Based Approach 433

Parameter Value/Options Comment

Capacity S Capacity of the cache

Associativity K Cache’s associativity

Block size B Block size in bytes

Parallelism Partition Number of cache Partitions
Bank Number of cache banks per each partition
Port Number of ports per each cache bank

Indexing function MOD Modulo indexing
SMODn Shifted MOD: [i+m+n, . . . , i+n] index bits

used instead of [i+m, . . . , i] (m, n are #shifts
and index bits [37])

PRI Prime modulo Indexing [33]
XOR Xor based indexing

Replacement2 LRU Least Recently Used
LFU Least Frequently Used
FIFO First In First Out
RANDOM Random

Bypassing policy WON Writes ON, bypass all the write accesses
RWON Reads and Writes ON, all accesses are by-

passed
OFF Bypassing disabled

MSHR #MSHR sets Number of MSHR sets
MSHR Size Number of MSHRs per each MSHR set
Max#Merges Maximum number of merges per MSHR

Resources P Number of SMs of the GPU
n scheduler Number of Schedulers per SM
MAXCW Max number of in-flight warps
MAXCB Max number of in-flight blocks

Blocks-SM mapping RR Round-Robin
BPART1/2 Partitioning, partitions of four/eight blocks
RAND Random

1 Cache parameters are defined for both the L1 and L2
2 For non-LRU policies, only hit ratio is calculated and the counters do not contain
the corresponding RD values.

Table 2. Cache and GPU related inputs to the physical model1

4.3 L1 Cache Analysis

The L1 cache analysis algorithm is shown in Algorithm 2. In this algorithm, first,
the assigned blocks to the SM are defined based on the given mapping policy (line 1).
Then, the access information of the blocks is retrieved from the trace file and stored
in a file, called L1 access file (line 3), which is analyzed according to the execution
model of the GPU to calculate the MRU counters. In the algorithm, B is an array
that contains the block indexes of the SM, and BSM denotes the number of blocks

434 M. Kiani, A. Rajabzadeh

mapped to the SM. As noted before, due to the resource limitations, the number
of warps and blocks that can be simultaneously executing on each SM is limited.
The maximum in-flight warps and the maximum in-flight blocks per each SM, which
are GPU specific parameters, are denoted by MAXCW and MAXCB, respectively.
Further, CB denotes the number of in-flight blocks on a SM that is defined based on:

1. two kernel-related parameters: grid dimension (denoted by NB) and block di-
mension (denoted by Bdim);

2. two GPU-related parameters: maximum number of in-flight blocks (denoted by
MAXCB) and maximum number of in-flight warps (denoted by MAXCW).

Algorithm 3 is used to define both CB and the number of iterations (denoted by
Nitr) required to analyze all the blocks. The number of blocks of the SM (denoted by
BSM), is defined based on the chosen blocks to SM mapping policy. In Algorithm 2,
when CB and Nitr are defined through invoking Algorithm 3 (line 4), the analysis is
performed Nitr times, each time for the maximum of CB blocks, through retrieving
and processing the information of the in-flight blocks. In each iteration, the order
of accesses is the very same order defined by the logical model.

To analyze each access within an inflight-block, the information with memory
address granularity is converted to a coalesced cache block access. The coalesced
access information of one or more warps (depending on the number of schedulers per
SM, n scheduler) is stored within a list (denoted by W), and then the RD analysis
is applied to W (line 11). Once all in-flight blocks are analyzed, they will be retired
and a new set of blocks (if any) will be processed (line 5 to 15) to analyze all BSM
blocks of the SM.

Due to space limitation and its similarities to L1 analysis, the L2 analysis algo-
rithms are not covered here.

Algorithm 1: Physical model
Input: Trace, cache parameters, GPU specification
Output: Metrics

initialize();
for sm := 1 to P do

L1 cache analysis(sm,Trace); /* Update C1R, C1W . Algorithm 2 */
end for
L2 trace construction();
L2 cache analysis(); /* Calculate C2R, C2W */
Metrics = calculate metrics(C1R,C1W,C2R,C2W);

4.4 RD Calculation for Parallel Cache Memories

In this section, an RD analysis algorithm is proposed for parallel caches with multiple
banks and access ports. Since GPU hardware parameters affect the resulting RD

RDGC: A Reuse Distance-Based Approach 435

Algorithm 2: L1 cache analysis
Input: sm, Trace,
Output: Update C1R, C1W
1: {B,BSM} = block mapping(sm,NB); /* Define the blocks of the SM */
2: WpB ← d Bdim

Wsizee
3: L1 accesses = trace retrieval(B,BSM,Trace);
4: {CB,Nitr} = define concurrent blocks(WpB,BSM); /* Algorithm 3 */
5: for i := 0 to Nitr− 1 do
6: get inflight trace(B,L1 accesses); /* retrieve access info of the in-flight

blocks */
7: for j := 0 to L− 1 do
8: for k := 0 to CB − 1 do
9: for l := 0 to dWpB/n schedulere − 1 do

10: W = create access list(i, SB[k], l);
11: RD profile(W); /* Section 4.4 */
12: end for
13: end for
14: end for
15: end for

Algorithm 3: Defining concurrent blocks
Input: WpB,BSM
Output: CB,Nitr
1: CB ← BSM
2: if BSM > MAXCB then
3: CB ←MAXCB
4: end if
5: if WpB × CB > MAXCW then
6: CB ← bMAXCW

WpB c
7: end if
8: Nitr← dBSM

CB e
9: return CB,Nitr

values, it is no longer a hardware independent algorithm. As explained above, the
physical model properly generates the warps to cache access sequence. Therefore,
the cache reference sequence is known in this stage, however, the sequence is not pure
serial and satisfies cache level parallelism (several warp schedulers issue coalesced
accesses). The coalesced accesses are mapped onto the cache banks and ports.
The proposed RD analysis method is similar to the method introduced in [8]. The
following summarizes the differences of the present study with the mentioned work.

• Nugteren et al. modeled serial caches. However, cache level parallelism can
change the achieved RD profile (see Section 5.3.3) and the present work included
cache level parallelism.

436 M. Kiani, A. Rajabzadeh

• The authors only modeled L1 cache while both L1 and L2 caches are included
in our model. Further, more cache related organizational parameters are inves-
tigated in our work.

• Since L1 cache bypasses the write accesses, Nugteren et al. only considered read
accesses. However, for write-evict policy, ignoring the write accesses can cause
considerable errors in write intensive applications. In the present study, both
read and write accesses are included and L1 either caches read accesses (enabled)
or bypasses read and write accesses (disabled). When enabled, L1 follows the
write-evict policy [34].

• Nugteren et al. assumed that a reservation fail cancels the failed access while
other accesses of the same warp, possibly from later instructions, can proceed.
This means that load/store instructions may be executed out of order, which is
not realistic. In this paper, like some other researchers [36], a reservation fail
stalls the warp until all the accesses of the warp are serviced.

• In the mentioned research, the notion of latency miss is introduced to count the
event in which a miss encounters a pending previous miss to the same cache block
(which exists in a MSHR). In this article, since such requests are merged into
the existing MSHR, this parameter is equal to the number of merged requests.

• The probabilistic latency model introduced by the authors can repeatedly change
the access order while, as described in the following sub-section, the adaptive
latency model can produce smoother and more realistic latency values for the
missed accesses.

In Table 3, an example of RD calculation is shown for three warps that access
{A, B, C, D}, {E, F, G, H}, and {A, D} cache blocks, respectively. Each cache
block is mapped to one of the cache banks. The assumed cache has two banks
(B0, B1), each having two ports (P0, P1), and two MSHRs are shared between the
banks. Further, it is supposed that A, C, E, and G are mapped to B0 and the other
blocks to B1. Note that RD is calculated for each bank separately. The first row
of the table shows the steps of RD calculation. The next three rows demonstrate
the accessed blocks that mapped to each cache bank/port and their corresponding
RDs. In addition, the fifth row shows the number of free MSHR entries and the
next two rows illustrate the corresponding status of each access (hit (h), miss (m),
or reservation fail (rf)). Finally, the last row represents the updated cache blocks
which is done by the arrived blocks from the backing store. It is assumed that there
are two warp schedulers that coalesce and issue the warp accesses.

Each step of RD calculation includes two phases. In the first phase, the requested
blocks are mapped onto the cache banks (according to a given mapping scheme) and
access the banks through the available ports (if any). If an access misses the cache,
a MSHR entry is reserved when possible, otherwise (denoted by rf in Table 3), the
failed access will keep trying to reserve an MSHR in the subsequent steps.

In the second phase, the state of the cache is updated by the cache blocks arriving
from the backing store, their assigned MSHR entries become free and update the

RDGC: A Reuse Distance-Based Approach 437

cache state so that they are available in the next steps. It should be noted that
a hit access also causes some cache updates. In Table 3, the latency of missed
access equals two steps. Hence, the requested block by a missed access in the ith

step arrives at the end of the step i+1 and updates the cache state. As a result,
this block will be available from the step i+2 forward. It should be noted that
’step’ denotes a virtual notion and is not the same as clock cycle. It can be used,
nevertheless, as a performance criterion in RD calculation.

The number of cache banks and access ports of each bank can alter the resulted
RDs, thus their inclusion in the model is necessary. In the proposed algorithm, to
define the exact warp sequence, the following assumptions are considered:

• Warps with smaller indexes have higher priorities in accessing banks and MSHRs.

• Warp schedulers stall until all issued accesses are resolved [36].

• In each step, multiple accesses can be inserted to or removed from the MSHRs.

• Multiple cache blocks can arrive from the backing store within the same step
and fill the cache at the end of that step. In this case, the cache state is updated
within the same order that the arrived access has been inserted into the MSHRs.
This order affects the subsequent RD calculations.

Step 0 1 2 3 4

B0 P0 A E E – A
P1 C G G – –

B1 P0 B B F F D
P1 D D H H –

∞ – ∞ – 3
RD ∞ – ∞ – –

∞ – ∞ 2
∞ – ∞ –

#Free MSHR 0 0 0 0 2

Status, B0 m rf m – h
m rf m – –

Status,B1 rf m rf m h
rf m rf m –

Update – A B E F
– C D G H

Table 3. An example of RD calculation in Parallel cache memories

4.4.1 The Latency Model for RD Calculation

In the RD analysis algorithm, an appropriate model is required to properly define the
latency of missed accesses, based on which the cache state is updated. The values of
access latency within a real GPU depend on many parameters, e.g., the instruction

438 M. Kiani, A. Rajabzadeh

mix, memory access pattern, and the L1-L2 and L2-main memory bandwidths.
The probabilistic model used by Nugteren et al. can produce substantially different
latency values for two close accesses and even may re-order them, thus we ignore
this model. Instead, two types of latency models are tested in the present study.
The first latency model sets the latency of the missed accesses to a fixed value,
whereas the second is an adaptive model that calculates the latency values based
on some dynamic run-time statistics and can provide smoother and more realistic
latency values than a probabilistic model. For L1, the latency is calculated by the
adaptive model as K1+K2× #MSHR Busy×#active SMs

L2P
, where K1 and K2 are constant

values, #MSHR Busy represents the number of outstanding misses, #active SMs
is the number of active SMs during the execution, and L2P denotes the L2 cache
parallelism. The constant values should be defined according to the GPUs data
transfer bandwidths. It should be noted that the possible bottlenecks are ignored in
the proposed model at L2-main memory transfers. A similar model can be derived
for L2. We performed an analysis to investigate the effects of the mentioned latency
models on the resultant performance parameters and presented the analysis results
in Section 5.1.

4.4.2 L1 and L2 Cache Parallelism Modeling

In the present paper, the default configuration of L1 caches were a double-ported
single-bank caches with a set of 32 MSHRs and the maximum number of eight
merges per entry. Further, L2 cache was modeled based on the organization shown
in Figure 1 (b), and four MSHR sets with 32 entries were used for L2. The first
three MSHRs sets were assigned to the first six L2 partitions (one MSHR set shared
between two partitions) and the last MSHR set was assigned to the last partition.

5 RDGC EVALUATION

In the present study, mainly, Polybench/GPU benchmark suite [5] is used as the
main workload. In addition, several cache intensive kernels were included from
Rodinia [6]. Polybench/GPU kernels immensely rely on the hardware managed
cache memories thus put more pressure on the cache hierarchy, which is the focus
of this paper. On the other hand, most other benchmarks heavily used shared
memory and thus most of the data transfers are handled by the shared memory.
Consequently, the hardware managed caches are only used to transfer the required
data to shared memory. As a result, such benchmarks may fail to properly stress
the L1 cache and especially L2 cache, which is an order of magnitude bigger than
L1 caches. It should be noted that, none of the used benchmarks utilized atomic
instructions, and texture caches. The benchmarks with their main specifications are
listed in Table 4. RDGC evaluation was performed within three steps. In the first
step, the latency models introduced in Section 4.4.1 were tested (Section 5.1). In the
next step, RDGC was validated by comparing its outputs with the values recorded
by the performance counters (accessed through NVPROF) on two GPUs including

RDGC: A Reuse Distance-Based Approach 439

a Kepler GT 740M and a Maxwell GTX 970 (Section 5.2). In the last step, different
cache organizational parameters, including cache capacity, associativity, block size,
mapping functions and replacement policies, were evaluated. In addition, multiple
blocks to SM mapping policies were evaluated and, finally, the effects of multiple L2
cache parallelism levels on the achieved RD values were analyzed (Section 5.3).

The outputs are provided by RDGC as several metrics. It should be noted that
in GT 740M GPU, L1 is disabled for both load and store accesses. Further, in GTX
970 GPU, the texture cache (denoted by tex in the figure) is the same as L1 cache.
As mentioned earlier, two compiling options are available for GTX 970: ”-Xptxas
-dlcm=cg” option to disable L1 and ”-Xptxas -dlcm=ca” option to enable the L1,
which in this case L1 only caches the read accesses. Although NVPROF provides
a metric to represent the texture cache hit ratios, this counter also counts the other
non-workload accesses, e.g., register spilling. Hence, this value is not the exact
value of the hit ratios of the requested workload data. In this work, L1 hit ratios
are calculated indirectly from other counters. The same phenomenon also occurs at
L2 level. Typically, since L2 is significantly greater than L1 and the fact that most
of the non-workload traffics are filtered at L1, the resultant errors are likely to be
negligible. The brief explanation of the output parameters calculated by RDGC is
as follows:

• L1 R Hit is the read hit ratio of L1, when L1 is enabled.

• L2 Hit is the hit ratio of L2 when L1 is enabled.

• L2 Hit L1B is the hit ratio of L2 when L1 is disabled (bypassed).

• L1 R Trans is the read transaction count of L1, when L1 is enabled.

• L2 Trans is the transaction count of L2 when L1 is enabled.

• L2 Trans L1B is the transaction count of L2, when L1 is disabled.

5.1 Latency Models Evaluation

In this section, the latency models, including the fixed and adaptive models in-
troduced in Section 4.4.1, are tested to reveal the effects of latency on L1 cache
performance. The analyzed system has eight SMs, 32 KB of four-way set-associative
LRU L1 caches with 32 B blocks, and a set of 32 MSHRs per L1 with maximum
of eight per-entry merges. Figure 5 shows the effects of latency on a) hit ratios,
b) reservation fails, c) MSHR address merges, and d) steps variations in RD calcu-
lation. For the adaptive model, four different values of (K1, K2) are tested including
(1, 0.125), (2, 0.25), (4, 0.5) and (8, 1) which are denoted by A1 to A4, respectively.
Furthermore, to observe the RD calculation performance, the variability of steps in
RD calculation is also given in the figure with respect to the number of step counts
of the fixed latency with value of one. As can be seen, by changing the latency, the
resultant merged and reservation fails are significantly changed, however, hit ratio
is not witnessed extreme changes. In the rest of this paper, A2 model is used (the
constant values are defined based on the GPU specifications).

440 M. Kiani, A. Rajabzadeh

Application Size (N) Kernels L RDGC GPGPU-Sim
slowdown (103) slowdown (103)

2DCONV† 4 096 2DCONV 10 212 3 084
2MM† 384 K1 3N 59.2 1 068
3DCONV† 256 3DCONV 12N 69.2 3 409
ATAX† 4 096 K1,K2 1 + 3N 56.4 6 546
BICG† 4 096 K1, K2 1 + 3N 45.6 2 663
CORR† 256 CORR (3N + 2)N + 1 2.7 190
COVAR† 256 COVAR (3N + 2)N 2.6 219
FDTD† 2 048 Step1, 2, 3 6, 4, 6 58.4 3 887
GESUMMV† 4 096 GESUMMV 8N + 2 64.8 5 043
GRAMSC.† 128 K3 7N2 1.5 91
MVT† 4 096 K1, K2 3N + 1 14.4 4 810
SYR2K† 256 SYR2K 5N + 1 80.3 9 900
SYRK† 256 SYRK 3N + 2 57 4 085
BP‡ 262 144 K1, K2 16 28.6 800
CFD‡ 0.2 M Flux 83 51.7 1 626
HSPOT‡ 1 024 HSPOT 3 14.1 817
NW‡ 4 096 K1, K2 8 384 13.6 819
SRAD V2‡ 2 048 K1, K2 12 11.4 639
Average 46.9 2 761

† From Polybench/GPU [5], ‡From Rodinia V3.1 [6]

Table 4. Polybench/GPU and Rodinia benchmarks, specifications, and slowdowns of
RDGC and GPGPU-Sim with respect to the executions performed on a GTX 970 GPU

1 2 4 8 16 32 64 A1 A2 A3 A4

0.0E+0

2.0E+5

4.0E+5

6.0E+5

8.0E+5

1.0E+6

1.2E+6

1.4E+6

1.6E+6

1.8E+6
b

Latency

M
e

rg
e

d
 a

d
d

re
s

s

1 2 4 8 16 32 64 A1 A2 A3 A4

0.0E+0

2.0E+6

4.0E+6

6.0E+6

8.0E+6

1.0E+7

1.2E+7

1.4E+7
c

Latency

R
e

s
e

rv
a

ti
o

n
 f

a
il

1 2 4 8 16 32 64 A1 A2 A3 A4

0

10

20

30

40

50

60

70

80
d

Latency

%
S

te
p

 c
h

a
n

g
e

1 2 4 8 16 32 64 A1 A2 A3 A4

0

20

40

60

80

100
a

Latency

H
it

 r
a

ti
o

2DCONV 2MM ATAX1 CORR

Figure 5. The effects of latency on different parameters in the model

RDGC: A Reuse Distance-Based Approach 441

5.2 RDGC Validation

RDGC is validated through comparing its outputs with the results provided by
NVPROF for profiling the same workload on a Maxwell GTX 970 GPU and a Kepler
GT 740M. Table 5 gives the parameter values used by RDGC. These values are
selected based on the available NVIDIA documents [35] and the findings of previous
studies [37]. However, some important cache parameters are neither reported by
NVIDIA, nor discovered by the research community, e.g., L2 mapping function, the
number of L1/L2 access ports, and L2 replacement policy. The analysis results
of GTX 970 are shown in Figure 6 (hit ratios), Figure 7 (transaction counts). In
addition, Figure 8 gives a comparison between the profiling results on a GT 740M
and analysis results provided by RDGC.

Parameter GTX 970 GT 740M
P 261 2
L1 (¡S1,K1, B1, Map., Repl.¿) 24KB, 192, 32B, XOR, LRU –
L2 (¡S2,K2, B2, Map., Repl.¿) 1792KB , 8, 32B, XOR, LRU 512KB, 8, 32B, XOR, LRU
Blocks to SM mapping RR RR
1 GTX 970 has 13 SMs and each SM has two 24KB L1 cache partitions, hence P and S1 were
set to 26 and 24KB, respectively.

Table 5. The main configuration parameters of RDGC

5.2.1 The Physical Model Slowdowns

The physical model slowdowns were calculated through dividing their execution
times measured on a system with Ubuntu 12.04 OS, Core i5 CPU, 4 GB of RAM,
by the kernel execution times measured on a GTX 970 GPU (CUDA 7.0). All
the kernel data transfer times are excluded. Further, the time overheads of the
logical model were not included in the slowdown calculations. As shown in Table 4,
the physical model had an average slowdown of 47K times, where 3DCONV had
the highest slowdown (212 K times) as opposed to Gramschmidt with the lowest
slowdown (1 504 times). It is worth mentioning that the performance of RDGC can
be enhanced by employing some techniques such as parallel execution and statistical
sampling methods [27]. The average slowdown of GPGPU-Sim measured 2 761 K
(power simulation and visualizer was disabled). Therefore, RDGC (taking several
minutes per application) is 59 times faster than the cycle-accurate simulation, while
most of the applications take several hours to be simulated by GPGPU-Sim.

5.2.2 Discussion

According to the findings presented in Figures 6 to 8, the model has a fair accuracy
in predicting the hit ratios and transaction counts. For the Maxwell GPU, The
average absolute errors of L1 R Hit, L2 Hit and L2 Hit L1B, were 3.72 %, 4.5 %,
and 4.52 %, respectively. Further, the average error of L1 R Trans, L2 Trans and
L2 Trans L1B were 15.0 %, 11.9 %, and 7.6 %, respectively. In the case of the

442 M. Kiani, A. Rajabzadeh

NVPROF RDGC
2

D
C

O
N

V

2
M

M

3
D

C
O

N
V

A
T
A

X
1

A
T
A

X
2

B
IC

G
1

B
IC

G
2

C
O

R
R

C
O

V
A

R

F
D

T
D

1

F
D

T
D

2

F
D

T
D

3

G
E

S
U

M
.

G
R

A
M

.

M
V

T
1

M
V

T
2

S
Y

R
2

K

S
Y

R
K

B
P

1

B
P

2

C
F

D

H
S

P
O

T

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

0

10

20

30

40

50

60

70

80

90

100
L1_R_Hita

H
it

 r
a

ti
o

2
D

C
O

N
V

2
M

M

3
D

C
O

N
V

A
T
A

X
1

A
T
A

X
2

B
IC

G
1

B
IC

G
2

C
O

R
R

C
O

V
A

R

F
D

T
D

1

F
D

T
D

2

F
D

T
D

3

G
E

S
U

M
.

G
R

A
M

.

M
V

T
1

M
V

T
2

S
Y

R
2

K

S
Y

R
K

B
P

1

B
P

2

C
F

D

H
S

P
O

T

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

0

10

20

30

40

50

60

70

80

90

100

L2_Hit
b

H
it

 r
a

ti
o

2
D

C
O

N
V

2
M

M

3
D

C
O

N
V

A
T
A

X
1

A
T
A

X
2

B
IC

G
1

B
IC

G
2

C
O

R
R

C
O

V
A

R

F
D

T
D

1

F
D

T
D

2

F
D

T
D

3

G
E

S
U

M
.

G
R

A
M

.

M
V

T
1

M
V

T
2

S
Y

R
2

K

S
Y

R
K

B
P

1

B
P

2

C
F

D

H
S

P
O

T

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

0

10

20

30

40

50

60

70

80

90

100
L2_Hit_L1Bc

H
it

 r
a

ti
o

Figure 6. RDGC correlation with Maxwell GPU (GTX 970) (hit ratios)

Kepler GPU, the results has the average error of 5.4 % for L2 Hit L1B and the
average error of 5.6 % were observed for L2 Trans L1B. Furthermore, GPGPU-Sim
has an average error of 23.3 % and 11.7 % for L1 R Hit and L2 Hit, respectively.
Note that any error in L1 R Hit may cause a high amount of error in L2 Trans
(and L2 Hit). Moreover, since the size of the L1 cache is limited, L1 R Hit is
sensitive to L1 cache parameters. Moreover, in some kernels which extensively use
shared memory, if the content of shared memory is spilled to the global memory,
some transactions are generated at L1 and L2 caches to carry the spilled data. In our
model, this phenomenon is ignored at L2 which can cause some error. Nevertheless,
this phenomenon has only occurred in NW benchmark.

RDGC: A Reuse Distance-Based Approach 443

2
D

C
O

N
V

2
M

M

3
D

C
O

N
V

A
T
A

X
1

A
T
A

X
2

B
IC

G
1

B
IC

G
2

C
O

R
R

C
O

V
A

R

F
D

T
D

1

F
D

T
D

2

F
D

T
D

3

G
E

S
U

M
.

G
R

A
M

.

M
V

T
1

M
V

T
2

S
Y

R
2

K

S
Y

R
K

B
P

1

B
P

2

C
F

D

H
S

P
O

T

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

4.0E+7

4.5E+7
L1_R_Trans

T
ra

n
s

a
c

ti
o

n
 c

o
u

n
t

NVPROF RDGC

Figure 7. RDGC correlation with Maxwell GPU (GTX 970) (transaction counts)

2
D

C
O

N
V

2
M

M

3
D

C
O

N
V

A
T
A

X
1

A
T
A

X
2

B
IC

G
1

B
IC

G
2

C
O

R
R

C
O

V
A

R

F
D

T
D

1

F
D

T
D

2

F
D

T
D

3

G
E

S
U

M
.

G
R

A
M

.

M
V

T
1

M
V

T
2

S
Y

R
2
K

S
Y

R
K

B
P

1

B
P

2

C
F

D

H
S

P
O

T

N
W

1

N
W

2

S
R

A
D

1

S
R

A
D

2

0

10

20

30

40

50

60

70

80

90

100
L2_Hit

NVPROF RDGC

H
it

 r
a

ti
o

Figure 8. RDGC correlation with Kepler GPU (GT 740M)

Table 6 compares the RDGC model and the work of Nugteren et al. [8].

5.3 The Architectural Space Exploration of GPU Cache

In this section, different cache design parameters are explored. Only 2DCONV,
2MM, ATAX1 and CORR kernels were included in the evaluation. The selected
kernels have diverse specifications in terms of their maximum number of per-thread
accesses, grid dimensions, and block dimensions. The baseline GPU parameters
applied for the simulations include 8 SMs, 32 KB L1 4-way set-associative in the
form of a double-ported cache bank, 1 024 KB L2 8-way set-associative with four
partitions and two 128 KB banks per partition, PRI mapping for L1 and L2, LRU
replacement for L1 and L2, 128 B cache block size, and RR thread block to SM
mapping policy. In total, 263 simulations were performed.

5.3.1 Analyzing the Effects of Cache Organizational Parameters

Cache size: The results of different cache sizes are shown in Figure 9. As can
be seen, even small L1 caches result in large hit ratios in 2MM. In addition,

444 M. Kiani, A. Rajabzadeh

Specification RDGC Nugteren et al.

Coverage L1 and L2 L1
Modeled GPU Kepler (GT 740M), Fermi (GTX 470)

Maxwell (GTX 970)
Cache parallelism multiple partitions, banks, ports None
Mem. latency model Adaptive Probabilistic
Cache bypassing Coarse –
parameters Hit ratio, Transaction count Miss rates
Cache parameters Capacity, associativity, Capacity, associativity

block size block size
Cache replacement LRU, LFU, FIFO, Random LRU
Mapping function PRI, XOR, MOD, SMOD Custom XOR
Block to SM mapping RR, Partitioned, Random RR

Table 6. Comparison of RDGC with the work of Nugterent et al. [8]

2DCONV highly benefits from increasing the L1 cache capacity. For instance,
doubling the size of the 8 KB L1 cache led to increasing the hit ratio by 78 %.
(Figure 9 a)).

8KB 16KB 32KB 64KB

0

10

20

30

40

50

60

70

80

90

100
L1_R_Hita

L1 size

H
it
 r

a
ti
o

64KB 128KB 256KB 512KB 1MB 2MB 4MB

0

20

40

60

80

100

120
L2_Hitb

L2 size

H
it

 r
a
ti

o

64KB 128KB 256KB 512KB 1MB 2MB 4MB

0

20

40

60

80

100

120
L2_Hit_L1Bc

L2 size

H
it
 r

a
ti
o

2DCONV 2MM ATAX1 CORR

Figure 9. L1 and L2 performance for different cache sizes

Cache Mapping Function: In Figure 10, the L1 R Hit, L2 R Hit1 and
L2 R Hit2 metrics are presented for different cache mapping functions. As
it can be observed, PRI functioned better than others, while the resultant hit

RDGC: A Reuse Distance-Based Approach 445

ratios significantly declined in several cases in MOD and shifted MOD map-
pings.

PRI XOR MOD SMOD2 SMOD3

0

20

40

60

80

100

120
L2_Hitb

L2 Mapping
H

it
 r

a
ti
o

PRI XOR MOD SMOD2 SMOD3

0

20

40

60

80

100
L1_R_Hita

L1 Mapping

H
it
 r

a
ti
o

PRI XOR MOD SMOD2 SMOD3

0

20

40

60

80

100

120
L2_Hit_L1Bc

L2 Mapping

H
it
 r

a
ti
o

2DCONV 2MM ATAX1 CORR

Figure 10. L1 and L2 performance for different cache mapping functions

Replacement Policy: In Figure 11, the metrics for different cache replacement
policies are shown. For L1 cache, the performance of CORR was enhanced
by LFU, whereas the performance of other three kernels was reduced. Fur-
ther, ATAX1 achieved the best performance with random replacement in both
L1 and L2 caches. Additionally, the performance of 2DCONV diminished as
a result of employing LFU, but remained the same for other policies. On the
other hand, 2MM showed less sensitivity to replacement policies than the other
kernels. Overall, cache replacement policy is an important organizational pa-
rameter in cache memories, especially in L1 cache. Since no replacement policy
functions the best all the time, employing the adaptive replacement policies is
a promising approach.

Cache Block Size: In Figure 12, the resultant performance of different cache block
sizes in L1 and L2 caches are illustrated. Except for ATAX1, the performance of
L1 did not significantly change. Note that when L1 hit ratio is high, any small
changes in L1 hit may result in radical changes in the transaction counts and
hit ratios of L2 caches.

Cache Associativity: In Figure 13, the resultant metrics for different associativ-
ity (32 KB L1 and 1 MB L2) are shown. Figure 14 shows the RD profile for L2
cache including both read and write transactions. Note that the RD8+ in this

446 M. Kiani, A. Rajabzadeh

LRU FIFO LFU RAND

0

20

40

60

80

100

120
L2_Hitb

L2 Replacement

H
it

 r
a
ti
o

LRU FIFO LFU RAND

0

20

40

60

80

100

120
L2_Hit_L1Bc

L2 Replacement

H
it
 r

a
ti
o

LRU FIFO LFU RAND

0

20

40

60

80

100
L1_R_Hita

L1 Replacement

H
it
 r

a
ti
o

2DCONV 2MM ATAX1 CORR

Figure 11. L1 and L2 performance for different cache replacement policies

L1_R_Hit L2_Hit L1_R_Hit L2_Hit L1_R_Hit L2_Hit L1_R_Hit L2_Hit

2DCONV 2MM ATAX1 CORR

0

10

20

30

40

50

60

70

80

90

100

Cache block sizes
32-32 32-64 64-64 64-128 128-128

H
it

 r
a

ti
o

Figure 12. Cache performance for different cache block sizes

figure shows the missed Access. Moreover, RD profile is very helpful for perfor-
mance analysis and characterization of application data reuse in many memory
intensive GPU applications [28].

5.3.2 Blocks to SM Mapping

In Figure 15 the results of different CUDA thread blocks to SM mappings (see
Table 2) are shown. Since CORR has only eight blocks, its results are not presented
here. The results indicated that L1 cache performance was more sensitive to the

RDGC: A Reuse Distance-Based Approach 447

1 2 4 8 16 32

0

20

40

60

80

100
L1_R_Hita

L1 Associativity

H
it

 r
a

ti
o

1 2 3 8 16 32 64

0

20

40

60

80

100

120
L2_Hit_L1Bb

L2 Associativity

H
it

 r
a

ti
o

2DCONV 2MM ATAX1 CORR

Figure 13. L1 and L2 performance for different cache associativity

R
D

0

R
D

1

R
D

2

R
D

3

R
D

4

R
D

5

R
D

6

R
D

7

R
D

8
+

ATAX1

R
D

0

R
D

1

R
D

2

R
D

3

R
D

4

R
D

5

R
D

6

R
D

7

R
D

8
+

0

10

20

30

40
2DCONV

F
re

q
u

e
n

c
y

R
D

0

R
D

1

R
D

2

R
D

3

R
D

4

R
D

5

R
D

6

R
D

7

R
D

8
+

2MM

R
D

0

R
D

1

R
D

2

R
D

3

R
D

4

R
D

5

R
D

6

R
D

7

R
D

8
+

CORR

Reuse distance

Figure 14. RD profile for L2 Cache (RWON)

blocks to SM mapping policies than L2. For example, ATAX1 achieved 65 % and
62.5 % of hit ratios for PART1 and PART2 and 45 % and 42 % of hit ratios for RR
and Random block mapping policies, respectively.

L1_R_Hit L2_Hit L2_Hit_L1B L1_R_Hit L2_Hit L2_Hit_L1B L1_R_Hit L2_Hit L2_Hit_L1B
2DCONV 2MM ATAX1

0

10

20

30

40

50

60

70

80

90

100

Block to SM mapping

BRR BPART1 BPART2 RAND

H
it

 r
a

ti
o

Figure 15. Cache performance for different thread blocks to SMs mapping policies

5.3.3 L2 Cache Parallelism Modeling

In this section, the performance of L2 cache (L1 disabled) for different cache paral-
lelism levels are presented (see Figure 1 b)). Since GESUMMV has a considerable

448 M. Kiani, A. Rajabzadeh

number of transactions, it is included in this experiment. The two-level interleav-
ing scheme was used for address mapping. In Figure 16, calculated MRU counters
are presented. As it can be observed, cache parallelism changes the achieved reuse
distance values, thus it is necessary to include the effects of cache parallelism in RD
calculation. Even in 2DCONV and 2MM kernels that the hit ratios remained the
same with different L2 parallelism levels, the reuse distance values were changed.
These changes show that for bigger workload sizes or cache capacities, cache paral-
lelism can alter the resultant hit ratios. Finally, Figure 17 shows the change in step
counts as a function of L2 cache parallelism level.

1P1B 1P2B 2P2B 4P2B 8P1B 4P4B 8P2B

0E+0

1E+6

2E+6

3E+6

4E+6

5E+6

6E+6

7E+6

8E+6

9E+6
2DCONV: L2_Hit_L1B

Partiton(P) Bank(B)

M
R

U
 C

o
u

n
ts

1P1B 1P2B 2P2B 4P2B 8P1B 4P4B 8P2B

0E+0

5E+5

1E+6

2E+6

2E+6

3E+6

3E+6

4E+6

4E+6

5E+6
2MM: L2_Hit_L1B

Partiton(P) Bank(B)

M
R

U
 C

o
u

n
ts

1P1B 1P2B 2P2B 4P2B 8P1B 4P4B 8P2B

0E+0

2E+6

4E+6

6E+6

8E+6

1E+7

1E+7

1E+7

2E+7

2E+7

2E+7
ATAX1: L2_Hit_L1B

Partiton(P) Bank(B)

M
R

U
 C

o
u

n
ts

1P1B 1P2B 2P2B 4P2B 8P1B 4P4B 8P2B

0E+0

5E+6

1E+7

2E+7

2E+7

3E+7

3E+7

4E+7

4E+7
GESUMMV: L2_Hit_L1B

Partiton(P) Bank(B)

M
R

U
 C

o
u

n
ts

RD0 RD1 RD2 RD3 RD4 RD5 RD6 RD7 RD8+

Figure 16. Reuse stack distances for different L2 parallelism levels (partitions (P), banks
(B))

5.3.4 Discussion

While exploring the architectural space of cache memories through cycle-accurate
simulation is extensively time-consuming, RDGC offers a more time-efficient ap-
proach to profile data locality and to model cache performance. However, RDGC is
not a replacement for cycle-accurate simulation. Instead, it can be employed to nar-
row down the vast architectural space of GPU cache memories by analyzing different
candidates for cache memory organization. RDGC can also be used by application
developers to profile the data reuse. In addition, RDGC is agile to changes and can
be modified to analyze caches in newer GPUs, without spending much effort.

RDGC: A Reuse Distance-Based Approach 449

1P1B 1P2B 2P2B 4P2B 8P1B 4P4B 8P2B

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

4.0E+7

2DCONV 2MM ATAX1 GESUMMV

Cache parallelism (Partition, Bank)

S
te

p
 c

o
u

n
t

Figure 17. Step count trend for different L2 parallelism levels (partitions (P) and
banks (B))

6 CONCLUSION

GPU architects and application developers need to analyze cache memory perfor-
mance for different cache design parameters and different application configurations.
Analyzing the performance of cache memories is a time-consuming task, especially
for GPUs that execute threads in massive parallelism. This paper proposes a perfor-
mance analysis approach, called RDGC, that applies reuse distance analysis to ana-
lyze the performance of GPU cache memory hierarchy. The evaluation results show
that RDGC has fair performance and accuracy: 59 times speedup over GPGPU-
Sim and an absolute error of 3.72 % and 4.5 % for L1 and L2 cache read hit ra-
tios. Further, RDGC facilitates the architectural space exploration of GPU cache
hierarchy. Different cache architectural parameters were modeled including: capac-
ity, associativity, mapping (indexing), block size, replacement policy, and bypass-
ing. In addition, the effects of cache parallelism (multi-bank and multi-port caches)
were modeled. RDGC can be enhanced through including more advanced architec-
tural specifications, i.e., adaptive replacement policies, advanced indexing functions,
fine-grained access bypassing, warp scheduling algorithms. Further, RDGC can be
adapted for modeling cache performance in multiple simultaneous kernel execution
scenarios. In addition, RDGC can benefit from introducing more realistic latency
models and inclusion of atomic instructions and cache coherency protocols.

REFERENCES

[1] Patterson, D.: The Top 10 Innovations in the New NVIDIA Fermi Architecture,
and the Top 3 Next Challenges. NVIDIA Whitepaper, Vol. 47, 2009.

[2] Jang, B.—Schaa, D.—Mistry, P.—Kaeli, D.: Exploiting Memory Access Pat-
terns to Improve Memory Performance in Data-Parallel Architectures. IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 22, 2011, No. 1, pp. 105–118, doi:
10.1109/TPDS.2010.107.

https://doi.org/10.1109/TPDS.2010.107

450 M. Kiani, A. Rajabzadeh

[3] John, L.K.—Eeckhout, L.: Performance Evaluation and Benchmarking. CRC
Press, 2005.

[4] Beyls, K.—D’Hollander, E.H.: Reuse Distance as a Metric for Cache Behavior.
Proceedings of the IASTED Conference on Parallel and Distributed Computing and
Systems, 2001, pp. 617–622.

[5] Pouchet, L.: Polybench/C: The Polyhedral Benchmark Suite. http://www.cs.

ucla.edu/~pouchet/software/polybench, 2012.

[6] Che, S.—Boyer, M.—Meng, J.—Tarjan, D.—Sheaffer, J.W.—
Lee, S.-H.—Skadron, K.: Rodinia: A Benchmark Suite for Heterogeneous
Computing. 2009 IEEE International Symposium on Workload Characterization
(IISWC 2009), 2009, pp. 44–54, doi: 10.1109/IISWC.2009.5306797.

[7] Tang, T.—Yang, X.—Lin, Y.: Cache Miss Analysis for GPU Programs Based
on Stack Distance Profile. Proceedings of the 2011 31st International Conference
on Distributed Computing Systems (ICDCS ’11), IEEE, 2011, pp. 623–634, doi:
10.1109/ICDCS.2011.16.

[8] Nugteren, C.—van den Braak, G.-J.—Corporaal, H.—Bal, H.: A De-
tailed GPU Cache Model Based on Reuse Distance Theory. 2014 IEEE 20th Inter-
national Symposium on High Performance Computer Architecture (HPCA), IEEE,
2014, pp. 37–48, doi: 10.1109/HPCA.2014.6835955.

[9] Wu, M.-J.—Zhao, M.—Yeung, D.: Studying Multicore Processor Scaling via
Reuse Distance Analysis. ACM SIGARCH Computer Architecture News – ICSA ’13,
ACM, Vol. 41, 2013, No. 3, pp. 499–510, doi: 10.1145/2508148.2485965.

[10] Cui, H.—Yi, Q.—Xue, J.—Wang, L.—Yang, Y.—Feng, X.: A Highly Parallel
Reuse Distance Analysis Algorithm on GPUs. 2012 IEEE 26th International Parallel
and Distributed Processing Symposium (IPDPS), IEEE, 2012, pp. 1080–1092, doi:
10.1109/IPDPS.2012.100.

[11] Lee, S.—Ro, W.W.: Parallel GPU Architecture Simulation Framework Exploiting
Architectural-Level Parallelism with Timing Error Prediction. IEEE Transactions on
Computers, Vol. 65, 2016, No. 4, pp. 1253–1265, doi: 10.1109/TC.2015.2444848.

[12] Wu, M.-J.—Yeung, D.: Identifying Optimal Multicore Cache Hierarchies for Loop-
Based Parallel Programs via Reuse Distance Analysis. Proceedings of the 2012 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness (MSPC ’12),
ACM, 2012, pp. 2–11, doi: 10.1145/2247684.2247687.

[13] Badamo, M.—Casarona, J.—Zhao, M.—Yeung, D.: Identifying Power-
Efficient Multicore Cache Hierarchies via Reuse Distance Analysis. ACM Transactions
on Computer Systems (TOCS), Vol. 34, 2016, No. 1, pp. 3–30, doi: 10.1145/2851503.

[14] Bakhoda, A.—Yuan, G. L.—Fung, W.W.L.—Wong, H.—Aamodt, T.M.:
Analyzing CUDA Workloads Using a Detailed GPU Simulator. 2009 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS 2009),
2009, pp. 163–174, doi: 10.1109/ISPASS.2009.4919648.

[15] Ubal, R.—Jang, B.—Mistry, P.—Schaa, D.—Kaeli, D.: Multi2Sim: A Simu-
lation Framework for CPU-GPU Computing. Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques (PACT ’12), ACM,
2012, pp. 335–344, doi: 10.1145/2370816.2370865.

http://www.cs.ucla.edu/~pouchet/software/polybench
http://www.cs.ucla.edu/~pouchet/software/polybench
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/ICDCS.2011.16
https://doi.org/10.1109/HPCA.2014.6835955
https://doi.org/10.1145/2508148.2485965
https://doi.org/10.1109/IPDPS.2012.100
https://doi.org/10.1109/TC.2015.2444848
https://doi.org/10.1145/2247684.2247687
https://doi.org/10.1145/2851503
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1145/2370816.2370865

RDGC: A Reuse Distance-Based Approach 451

[16] Hong, S.—Kim, H.: An Analytical Model for a GPU Architecture with Memory-
Level and Thread-Level Parallelism Awareness. ACM SIGARCH Computer Architec-
ture News, ACM, Vol. 37, 2009, No. 3, pp. 152–163, doi: 10.1145/1555815.1555775.

[17] Sim, J.—Dasgupta, A.—Kim, H.—Vuduc, R.: A Performance Analysis
Framework for Identifying Potential Benefits in GPGPU Applications. ACM SIG-
PLAN Notices – PPOPP ’12, ACM, Vol. 47, 2012, No. 8, pp. 11–22, doi:
10.1145/2370036.2145819.

[18] Baghsorkhi, S. S.—Gelado, I.—Delahaye, M.—Hwu, W.W.: Efficient Per-
formance Evaluation of Memory Hierarchy for Highly Multithreaded Graphics Pro-
cessors. ACM SIGPLAN Notices – PPOPP ’12, ACM, Vol. 47, 2012, No. 8, pp. 23–34,
doi: 10.1145/2370036.2145820.

[19] Huang, J.-C.—Lee, J. H.—Kim, H.—Lee, H.-H. S.: GPUMech: GPU Perfor-
mance Modeling Technique Based on Interval Analysis. Proceedings of the 47th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO-47), IEEE
Computer Society, 2014, pp. 268–279, doi: 10.1109/MICRO.2014.59.

[20] Jia, H.—Zhang, Y.—Long, G.—Xu, J.—Yan, S.—Li, Y.: GPURoofline:
A Model for Guiding Performance Optimizations on GPUs. In: Kaklamanis, C., Pa-
patheodorou, T., Spirakis, P. G. (Eds.): Euro-Par 2012 Parallel Processing. Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 7484, 2012, pp. 920–932,
doi: 10.1007/978-3-642-32820-6 90.

[21] Dao, T.T.—Kim, J.—Seo, S.—Egger, B.—Lee, J.: A Performance Model for
GPUs with Caches. IEEE Transactions on Parallel and Distributed Systems, Vol. 26,
2015, No. 7, pp. 1800–1813, doi: 10.1109/TPDS.2014.2333526.

[22] Kiani, M.—Rajabzadeh, A.: VLAG: A Very Fast Locality Approximation Model
for GPU Kernels with Regular Access Patterns. 2017 7th International Conference on
Computer and Knowledge Engineering (ICCKE 2017), October 26–27, 2017, Ferdowsi
University of Mashhad, IEEE, 2017, pp. 260–265, doi: 10.1109/ICCKE.2017.8167887.

[23] Ding, C.—Chilimbi, T.: A Composable Model for Analyzing Locality of Multi-
Threaded Programs. Technical Report MSR-TR-2009-107, Microsoft Research, 2009.

[24] Jiang, Y.—Zhang, E. Z.—Tian, K.—Shen, X.: Is Reuse Distance Applicable
to Data Locality Analysis on Chip Multiprocessors? In: Gupta, R. (Ed.): Compiler
Construction (CC 2010). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 6011, 2010, pp. 264–282, doi: 10.1007/978-3-642-11970-5 15.

[25] Schuff, D. L.—Parsons, B. S.—Pai, V. S.: Multicore-Aware Reuse Distance
Analysis. 2010 IEEE International Symposium on Parallel and Distributed Pro-
cessing, Workshops and Ph.D. Forum (IPDPSW), IEEE, 2010, pp. 1–8, doi:
10.1109/IPDPSW.2010.5470780.

[26] Wu, M.-J.—Yeung, D.: Coherent Profiles: Enabling Efficient Reuse Distance
Analysis of Multicore Scaling for Loop-Based Parallel Programs. 2011 International
Conference on Parallel Architectures and Compilation Techniques (PACT ’11), IEEE,
2011, pp. 264–275, doi: 10.1109/PACT.2011.58.

https://doi.org/10.1145/1555815.1555775
https://doi.org/10.1145/2370036.2145819
https://doi.org/10.1145/2370036.2145820
https://doi.org/10.1109/MICRO.2014.59
https://doi.org/10.1007/978-3-642-32820-6_90
https://doi.org/10.1109/TPDS.2014.2333526
https://doi.org/10.1109/ICCKE.2017.8167887
https://doi.org/10.1007/978-3-642-11970-5_15
https://doi.org/10.1109/IPDPSW.2010.5470780
https://doi.org/10.1109/PACT.2011.58

452 M. Kiani, A. Rajabzadeh

[27] Schuff, D. L.—Kulkarni, M.—Pai, V. S.: Accelerating Multicore Reuse Dis-
tance Analysis with Sampling and Parallelization. Proceedings of the 19th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT ’10),
IEEE, 2010, pp. 53–63, doi: 10.1145/1854273.1854286.

[28] Wang, D.—Xiao, W.: A Reuse Distance Based Performance Analysis on GPU L1
Data Cache. 2016 IEEE 35th International Performance Computing and Communica-
tions Conference (IPCCC), IEEE, 2016, pp. 1–8, doi: 10.1109/PCCC.2016.7820638.

[29] Mittal, S.: A Survey of Techniques for Managing and Leveraging Caches in GPUs.
Journal of Circuits, Systems and Computers, Vol. 23, 2014, No. 8, Art. No. 1430002,
doi: 10.1142/S0218126614300025.

[30] Rogers, T.G.—O’Connor, M.—Aamodt, T.M.: Cache-Conscious Wavefront
Scheduling. Proceedings of the 2012 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, IEEE, 2012, pp. 72–83, doi: 10.1109/MICRO.2012.16.

[31] Jog, A.—Kayiran, O.—Mishra, A.K.—Kandemir, M.T.—Mutlu, O.—
Iyer, R.—Das, C.R.: Orchestrated Scheduling and Prefetching for GPGPUs. ACM
SIGARCH Computer Architecture News – ICSA ’13, ACM, Vol. 41, 2013, No. 3,
pp. 332–343, doi: 10.1145/2508148.2485951.

[32] Xie, X.—Liang, Y.—Sun, G.—Chen, D.: An Efficient Compiler Framework
for Cache Bypassing on GPUs. 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’13), IEEE, 2013, pp. 516–523, doi: 10.1109/IC-
CAD.2013.6691165.

[33] Kim, K.Y.—Baek, W.: Quantifying the Performance and Energy Efficiency of Ad-
vanced Cache Indexing for GPGPU Computing. Microprocessors and Microsystems,
Vol. 43, 2016, pp. 81–94, doi: 10.1016/j.micpro.2016.01.003.

[34] CUDA NVIDIA. C Programming Guide Version 4.0. NVIDIA Corporation, 2011.

[35] NVIDIA: Maxwell Tuning Guide, 2017. Available at: http://docs.nvidia.com/

cuda/maxwell-tuning-guide/index.html, Accessed 18-February-2017.

[36] Li, C.—Song, S. L.—Dai, H.—Sidelnik, A.—Hari, S.K. S.—Zhou, H.:
Locality-Driven Dynamic GPU Cache Bypassing. Proceedings of the 29th ACM In-
ternational Conference on Supercomputing (ICS ’15), ACM, 2015, pp. 67–77, doi:
10.1145/2751205.2751237.

[37] Mei, X.—Chu, X.: Dissecting GPU Memory Hierarchy Through Microbenchmark-
ing. IEEE Transactions on Parallel and Distributed Systems, Vol. 28, 2017, No. 1,
pp. 72–86, doi: 10.1109/TPDS.2016.2549523.

https://doi.org/10.1145/1854273.1854286
https://doi.org/10.1109/PCCC.2016.7820638
https://doi.org/10.1142/S0218126614300025
https://doi.org/10.1109/MICRO.2012.16
https://doi.org/10.1145/2508148.2485951
https://doi.org/10.1109/ICCAD.2013.6691165
https://doi.org/10.1109/ICCAD.2013.6691165
https://doi.org/10.1016/j.micpro.2016.01.003
http://docs.nvidia.com/cuda/maxwell-tuning-guide/index.html
http://docs.nvidia.com/cuda/maxwell-tuning-guide/index.html
https://doi.org/10.1145/2751205.2751237
https://doi.org/10.1109/TPDS.2016.2549523

RDGC: A Reuse Distance-Based Approach 453

Mohsen Kiani is currently a Ph.D. student in computer en-
gineering at Razi University, Kermanshah, Iran. His main re-
search interests include computer architecture, many-core archi-
tectures, GPGPU, and performance modeling and analysis.

Amir Rajabzadeh received his B.Sc. degree in telecommuni-
cation engineering from Tehran University, Iran, in 1990 and his
M.Sc. and Ph.D. degrees in computer engineering from Sharif
University of Technology, Iran, in 1999 and 2005, respectively.
He was a visiting researcher in the Embedded Systems Labo-
ratory, University of Leicester, UK in summer 2005 and in the
CARG Group, Ottawa University, Canada in 2012–2013. He has
been working as Assistant Professor of computer engineering at
Razi University, Kermanshah, Iran since 2005. He was the Head
of the Computer Engineering Department (2005–2008) and the

Education and Research Director of the Engineering Faculty (2008–2010) at Razi Uni-
versity. He has authored several journal papers and other refereed publications. His
main areas of interests are computer architecture, high performance computing and fault-
tolerant systems design. He has earned one world, six international, and five national
awards in robotic competition, and one national award in mobile computing.

