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Abstract. Hilbert-Schmidt Independence Criterion (HSIC) measures statistical in-
dependence between two random variables. However, instead of measuring the
statistical independence between two random variables directly, HSIC first trans-
forms two random variables into two Reproducing Kernel Hilbert Spaces (RKHS)
respectively and then measures the kernelled random variables by using Hilbert-
Schmidt (HS) operators between the two RKHS. Since HSIC was first proposed
around 2005, HSIC has found wide applications in machine learning. In this pa-
per, a HSIC regularized Local Tangent Space Alignment algorithm (HSIC-LTSA)
is proposed. LTSA is a well-known dimensionality reduction algorithm for local
homeomorphism preservation. In HSIC-LTSA, behind the objective function of
LTSA, HSIC between high-dimensional and dimension-reduced data is added as
a regularization term. The proposed HSIC-LTSA has two contributions. First,
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HSIC-LTSA implements local homeomorphism preservation and global statisti-
cal correlation during dimensionality reduction. Secondly, HSIC-LTSA proposes
a new way to apply HSIC: HSIC is used as a regularization term to be added
to other machine learning algorithms. The experimental results presented in this
paper show that HSIC-LTSA can achieve better performance than the original
LTSA.

Keywords: Dimensionality reduction, RKHS, Hilbert-Schmidt operators, LTSA,
HSIC

1 INTRODUCTION

The loss of information is inevitable during dimensionality reduction. Therefore,
the main concern in constructing algorithms of dimensionality reduction is what
information needs to be preserved during dimensionality reduction. From this view-
point, the algorithms of dimensionality reduction can be divided into two categories:
global-preserving and local-preserving algorithms [1]. The global-preserving algo-
rithms preserve some global features of data during dimensionality reduction [2, 3,
4, 5], while the local-preserving algorithms preserve some local features of data dur-
ing dimensionality reduction. Local Tangent Space Alignment (LTSA) algorithm is
a typical local-preserving algorithm for dimensionality reduction. The local feature
LTSA preserves is the local homeomorphism, i.e., the continuous dependence be-
tween data within a local region [6]. In recent years, the dimensionality reduction
algorithms capable of preserving both local and global features have emerged, such
as LPP [7, 8, 9].

Hilbert-Schmidt Independence Criterion (HSIC) measures the statistical inde-
pendence between two random variables [10]. However, instead of measuring the
statistical independence between two random variables directly, HSIC first trans-
forms the two random variables into two reproducing kernel Hilbert spaces (RKHS)
respectively and then measures the statistical correlation of the two transformed
random variables by using Hilbert-Schmidt operators between two RKHSs. In the
application of HSIC to data analysis, the given data can be regarded as the values
taken by the random variables. The HSIC formulae for calculating the statistical
correlation of data are simple and often used in many applications [11, 12, 13, 14, 15].
However, HSIC involves many mathematical concepts and it is not easy to under-
stand the meaning of HSIC thoroughly. The misunderstanding, or even misuse of
HSIC happens from time to time.

In this paper, HSIC is first explored theoretically and then applied to LTSA.
LTSA is a local homeomorphism-preserving algorithm for dimensionality reduction.
An improved LTSA, called HSIC regularized LTSA, or HSIC-LTSA for short, is
proposed in which a HSIC regularization term is added to LTSA’s objective function.
The HSIC regularization term measures the statistical correlation between the high-
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dimensional data and the dimension-reduced data. HSIC-LTSA takes into account
both the local and global preserving requirements during dimensionality reduction
and achieves a better result than LTSA.

The remaining sections in this paper are arranged as follows: in Section 2, LTSA
is elaborated, showing that LTSA is a local-homeomorphism preserving algorithm
in nature; in Section 3, RKHS is briefly described; in Section 4, the theory of
HSIC is elaborated thoroughly and the HSIC formulae for calculating the statistical
correlation between two sets of data is derived. In Section 5, an improved HSIC-
LTSA is proposed; in Section 6, the experimental results of LTSA and HSIC-LTSA
are presented to show the effectiveness of HSIC-LTSA; in Section 7, some conclusions
are presented.

2 LOCAL TANGENT SPACE ALIGNMENT (LTSA)

LTSA [6] is a classical local homeomorphism-preserving algorithm of manifold learn-
ing and mainly applied to dimensionality reduction. Generally speaking, the prob-
lem of dimensionality reduction can be expressed as follows: given a set of high-
dimensional data X = {x1, . . . , xN} ⊆ RD, we want to find an another set of data
Y = {y1, . . . , yN} ⊆ Rd such that yn is the dimensional-reduced version of xn,
where d << D and n = 1, . . . , N . In manifold learning, Y is also called the global
coordinate of X.

Remark 1. In this paper, a dataset can be represented by a set, in which the
elements of the set are data, for example, X = {x1, . . . , xN} ⊆ RD. The dataset can
also be represented by a matrix, in which the column vectors of matrix are data, for
example, X = [x1, . . . , xN ] ∈ RD×N . The two representations are equivalent.

The stages of LTSA are as follows:

1. Decompose the high-dimensional data into local groups: LTSA uses K-NN me-
thod. For each data xn, let xn1 , . . . , xnK

be its K-nearest neighbors, then the
nth local group is as follows:

Xn =
[
xn1 . . . xnK

, xnK+1

]
∈ RD×(K+1) (1)

where xnK+1
= xn, n = 1, . . . , N . It is clear that X =

⋃N
n=1Xn.

2. Reduce the dimension of each local group Xn: LTSA uses PCA method. The
local group Xn is first centralized:

X̂n =
[
xn1 − x̄n, xnK+1

− x̄n
]

= XnCK+1 (2)

where x̄n = 1
K+1

∑K+1
k=1 xnk

, CK+1 = IK+1 − 1
K+1

ΓK+1ΓT
K+1, ΓK+1 =

1
...
1

 ∈
RK+1. CK+1 is often called centralizing matrix.
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Then, the centralized matrix X̂n is SVD-decomposed:

X̂n = UnΣnV
T
n (3)

where both Un ∈ RD×D and Vn ∈ R(K+1)×(K+1) are orthonormal matrices, Σn ∈
RD×(K+1)(K+1) is singular value matrix.

At last, let Un,1 ∈ RD×d be the matrix composed of the first d column vectors

of Un, then the column vectors of X̂n are projected into the space spanned by
the column vectors of Un,1, i.e., spanUn,1, the coordinates of these projections
in spanUn,1 are the dimensional-reduced version of Xn:

Θn = UT
n,1X̂n ∈ Rd×(K+1). (4)

In manifold learning, Θn is often called the local coordinate of Xn.

Remark 2. From the viewpoint of manifold, the space spanUn,1 can be re-
garded as the tangent space [16] of the point x̄n, therefore LTSA is called local
tangent space method. Furthermore, since X̂n and Θn are homeomorphic [17]
to each other within the neighborhood of x̄n, therefore, LTSA belongs to the
category of local preserving algorithms.

3. Derive the global coordinate from the local coordinate: Let us denote the global
coordinate of Xn as

Yn =
[
yn1 . . . ynK+1

]
∈ Rd×(K+1) (5)

where ynk
is the global coordinate of xnk

, i.e., the dimensional-reduced version
of xnk

, 1 ≤ nk ≤ N , k = 1, . . . , K + 1. We want to derive Yn from Θn. LTSA
assumes that Yn is the linear transformation of Θn (affine transformation, strictly
speaking):

Ŷn =
[
yn1 − ȳn . . . ynK+1

− ȳn
]

= YnCK+1 = AnΘn (6)

where ȳn = 1
K+1

∑K+1
k=1 ynk

. The geometric meaning of Equation (6) is that
Yn can be derived from Θn by translation, rotation and scale. Furthermore,

Ŷn = AnΘn ⇒ An = ŶnΘ+
n (7)

where Θ+
n represents the right pseudo inverse of Θn, i.e., Θ+

n is the solution to
the following problem: ∥∥Id −ΘnΘ+

n

∥∥2 −−−−−−→
choose Θ+

n

min . (8)

Based on Equation (7), the local objective function can be established:∥∥∥Ŷn − AnΘn

∥∥∥2

=
∥∥∥Ŷn (IK+1 −Θ+

n Θn

)∥∥∥2

=
∥∥YnCK+1

(
IK+1 −Θ+

n Θn

)∥∥2
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=
∥∥Y SnCK+1

(
IK+1 −Θ+

n Θn

)∥∥2
= ‖Y Ln‖2 −−−−−→

choose Y
min (9)

where Sn ∈ RN×(K+1) is the selection matrix such that Yn = Y Sn, i.e., the nth
k

element of the kth column vector is 1, other elements are 0, k = 1, . . . , K + 1;
Ln = SnCK+1 (IK+1 −Θ+

n Θn), called the local pattern of X.

The objective function of LTSA can be derived by summing up all the local
objective functions:

N∑
n=1

‖Y Ln‖2 =
N∑

n=1

tr
(
Y LnL

T
nY

T
)

= tr

(
Y

N∑
n=1

LnL
T
nY

T

)
= tr

(
Y LLTY T

)
−−−−−→
choose Y

min (10)

where L = [L1 . . . LN ].

3 REPRODUCING KERNEL HILBERT SPACES (RKHS)

HSIC is based on RKHS. Let L2 (Ω) =
{
f
∣∣f : Ω→ R,

∫
Ω
|f (x)|2 < +∞

}
be the

space of square integrable functions. An inner product 〈•, •〉 can be defined over
L2 (Ω) [18]:

〈f, g〉 =

∫
Ω

f (x) g (x) dx. (11)

It can be proven that H = (L2 (Ω) , 〈•, •〉) is a complete inner product space, i.e.,
Hilbert space.

Definition 1 ([18]). Let H = (L2 (Ω) , 〈•, •〉), if there is a function k : Ω× Ω→ R
such that

• for all x ∈ Ω, kx = k (•, x) ∈ H,

• for all f ∈ H, f (x) = 〈f, k (•, x)〉,

then H is called a reproducing kernel Hilbert space (RKHS) and k is called the
reproducing kernel of H.

The reproducing kernel k can be used to define a map: ϕ : Ω → H such that
for all x ∈ Ω,

ϕ (x) = k (•, x) ∈ H. (12)

It can be easily proven that

〈ϕ (x) , ϕ (y)〉 = 〈kx, k (•, y)〉 = kx (y) = k (y, x) = k (x, y). (13)

The above equation is often used in many kernel methods of machine learning such
as kPCA [3], kLDA [19], kSVM [20], etc.
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Furthermore, if X is a random variable on Ω, then ϕ (X) is a random process
and its mean function is defined:

µX (u) = EX [ϕ (X) (u)] = EX [k (u,X)] =

∫
Ω

k (u, x) pX (x) dx. (14)

Then, for all f ∈ H,

〈µX , f〉 =

∫
Ω

µX (u) f (u) du =

∫
Ω

(∫
Ω

k (u, x) pX (x) dx

)
f (u) du

=

∫
Ω

(∫
Ω

k (u, x) f (u) du

)
pX (x) dx =

∫
Ω

〈f, k (•, x)〉 pX (x) dx

=

∫
Ω

f (x) px (x) dx = Ex [f (X)]. (15)

In mathematics, it can be proven that RKHS can be generated from kernel
functions. The definition of kernel functions is as follows.

Definition 2 ([21]). Let k : Ω× Ω→ R, if k satisfies the following conditions:

• Symmetric: for all x, y ∈ Ω, k (x, y) = k (y, x),

• Square integrable: for all x ∈ Ω, kx = k (•, x) is square integrable,

• Positive definite: for all x1, . . . , xN ∈ Ω, the matrixk (x1, x1) . . . k (x1, xN)
...

. . .
...

k (xN , x1) . . . k (xN , xN)

 is positive definite,

then k is called a kernel function.

Remark 3. Kernel functions and reproducing kernels are not the same concept.
Kernel functions are defined on their own, while reproducing kernels are defined
based on RKHS.

Theorem 1 ([18]). A kernel function k can be used to generate a unique RHHS Hk

such that k becomes the reproducing kernel of Hk.

Based on this theorem, as long as we define a kernel function, we define an
RKHS.

4 HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)

4.1 HS Operators

HSIC is defined by using Hilbert-Schmidt operators.
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Definition 3 ([22]). Let HX and HY be two separable Hilbert spaces, {ei |i ∈ I }
the orthonormal basis of HX , T : HX → HY a compact operator, if

∑
i∈I ‖Tei‖

2
Y <

+∞, then T is called a Hilbert-Schmidt (HS) operator.

Remark 4. In this paper, 〈•, •〉X represents the inner product of HX , ‖•‖X =√
〈•, •〉X the norm of HX . Similarly, 〈•, •〉Y represents the inner product of HY ,

‖•‖Y =
√
〈•, •〉Y the norm of HY .

Let HS (HX → HY ) be the space of all HS operators from HX to HY . An inner
product 〈•, •〉HS can be defined on HS (HX → HY ) to make (HS(HX → HY ),
〈•, •〉HS) become a Hilbert space.

Theorem 2 ([10]). If for all T, S ∈ HS (HX → HY ),
∑

i∈I |〈Tei, Sei〉Y | < +∞,
then (HS (HX → HY ) , 〈•, •〉HS) is a Hilbert space, where the inner product 〈•, •〉HS

is defined as follows:
〈T, S〉HS =

∑
i∈I

〈Tei, Sei〉Y . (16)

Tensor product operators are a kind of HS operators.

Theorem 3 ([10]). Let HX and HY be two separable Hilbert spaces, f0 ∈ HX ,
g0 ∈ HX , define f0 ⊗ g0 : HX → HY such that for all f ∈ HX , f0 ⊗ g0 (f) =
〈f0, f〉Xg0 ∈ HY , then f0 ⊗ g0 is a HS operator, i.e., f0 ⊗ g0 ∈ HS (HX → HY ).

Remark 5. f0 ⊗ g0 is called the tensor product of f0 and g0.

4.2 Cross Covariance Operators

Generally speaking, HSIC involves two RKHSs.
Let H1 = (L2 (Ω1) , 〈•, •〉1) be an RKHS, k1 : Ω1 × Ω1 → R the reproducing ker-

nel of H1. Define ϕ1 : Ω1 → H1 such that for all x ∈ Ω1, ϕ1 (x) = k1 (•, x) ∈ H1.
Note that 〈ϕ1 (x′) , ϕ1 (x′′)〉1 = k1 (x′, x′′).

Similarly, let H2 = (L2 (Ω2) , 〈•, •〉2) be an RKHS, k2 : Ω2 × Ω2 → R the repro-
ducing kernel of H2. Define ϕ2 : Ω2 → H2 such that for all y ∈ Ω2, ϕ2 (y) =
k2 (•, y) ∈ H2. Note that 〈ϕ2 (y′) , ϕ2 (y′′)〉2 = k2 (y′, y′′).

Furthermore, let X be a random variable on Ω1, Y a random variable on Ω2.

Theorem 4 ([10]). Let Φ : HS (H1 → H2)→ R such that for all T ∈ HS(H1 →
H2)

Φ (T ) = EXY [〈ϕ1 (X)⊗ ϕ2 (Y ) , T 〉HS]. (17)

If EXY [‖ϕ1 (X)⊗ ϕ2 (Y )‖HS] < +∞, then Φ is continuous linear functional on
HS (H1 → H2).

According to the representation theorem of continuous linear functionals (Riesz
theorem [18]), there must be a unique HS operator TΦ ∈ HS (HX → HY ) such that
for all HS operators T ∈ HS (HX → HY ),

Φ (T ) = EXY [〈ϕ1 (X)⊗ ϕ2 (Y ) , T 〉HS] = 〈T, TΦ〉HS. (18)
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This HS operator TΦ is called as cross covariance operator and often denoted as
CXY .

4.3 Hilbert-Schmidt Independence Criterion (HSIC)

Definition 4 ([10]). The HSIC of two random variables X and Y is defined as

HSIC (X, Y ) = EXY

[
‖(ϕ1 (X)− µX)⊗ (ϕ2 (Y )− µY )‖2

HS

]
. (19)

It can be easily proven [10] that:

HSIC (X, Y ) = EXY

[
‖(ϕ1 (X)− µX)⊗ (ϕ2 (Y )− µY )‖2

HS

]
= ‖CXY − µX ⊗ µY ‖2

HS

= 〈CXY ,CXY 〉HS − 2〈CXY , µX ⊗ µY 〉HS

+ 〈µX ⊗ µY , µX ⊗ µY 〉HS. (20)

In practice, two sets of data {x1, . . . , xN} ⊆ Ω1 and {y1, . . . , yN} ⊆ Ω2 are given and
can be regarded as some sample taken by the random variables X and Y . Therefore,
the calculation of HSIC can be approximated by replacing statistical average with
sample average [10].

At first, for all HS operators T ∈ HS (H1 → H2), since

〈CXY , T 〉HS = EXY [〈ϕ1 (X)⊗ ϕ2 (Y ) , T 〉HS]

≈ 1

N

N∑
n=1

〈ϕ1 (xn)⊗ ϕ2 (yn) , T 〉HS

=

〈
1

N

N∑
n=1

ϕ1 (xn)⊗ ϕ2 (yn), T

〉
HS

(21)

then

CXY ≈
1

N

N∑
n=1

ϕ1 (xn)⊗ ϕ2 (yn). (22)

Similarly, for all functions f ∈ H1, since

〈f, µX〉1 = EX [〈ϕ1 (X) , f〉1] ≈ 1

N

N∑
n=1

〈ϕ1 (xn) , f〉1 =

〈
1

N

N∑
n=1

ϕ1 (xn), f

〉
1

then

µX ≈
1

N

N∑
n=1

ϕ1 (xn). (23)
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By the same deduction, we have

µY ≈
1

N

N∑
n=1

ϕ2 (yn). (24)

Substituting Equations (34), (35), (36) into Equations (31), (32), (33) gives:

〈CXY , CXY 〉HS ≈

〈
1

N

N∑
i=1

ϕ1 (xi)⊗ ϕ2 (yi),
1

N

N∑
j=1

ϕ1 (xj)⊗ ϕ2 (yj)

〉
HS

=
1

N2

N∑
i=1

N∑
j=1

k1 (xi, xj) k2 (yi, yj) =
1

N2
tr (K1K2) , (25)

〈CXY , µX ⊗ µY 〉HS ≈

〈
1

N

N∑
i=1

ϕ1 (xi)⊗ ϕ2 (yi),

(
1

N

N∑
p=1

ϕ1 (xp)

)
⊗

(
1

N

N∑
q=1

ϕ2 (yq)

)〉
HS

=
1

N3

N∑
i=1

N∑
p=1

N∑
q=1

k1 (xi, xp) k2 (yi, yq) =
1

N3
ΓT
NK1K2ΓN (26)

〈µX ⊗ µY , µX ⊗ µY 〉HS = 〈µX , µX〉1〈µY , µY 〉2

≈

〈
1

N

N∑
i=1

ϕ1(xi),
1

N

N∑
j=1

ϕ1(xj)

〉
1

〈
1

N

N∑
i=1

ϕ2(yi),
1

N

N∑
j=1

ϕ2(yj)

〉
2

=
1

N4
ΓT
NK1ΓNΓT

NK2ΓN (27)

where

K1 =

k1 (x1, x1) . . . k1 (x1, xN)
...

. . .
...

k1 (xN , x1) . . . k1 (xN , xN)

 , K2 =

k2 (y1, y1) . . . k2 (y1, yN)
...

. . .
...

k2 (yN , y1) . . . k2 (yN , yN)

 .
(28)

Substituting (37), (38), (39) into Equation (30) gives:

HSIC (X, Y ) = 〈CXY ,CXY 〉HS − 2〈CXY , µX ⊗ µY 〉HS + 〈µX ⊗ µY , µX ⊗ µY 〉HS

≈ 1

N2
tr (K1K2)− 2

N3
ΓT
NK1K2ΓN +

1

N4
ΓT
NK1ΓNΓT

NK2ΓN (29)

=
1

N2
tr (K2CNK1CN) (30)
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where CN = IN − 1
N

ΓNΓT
N is the centralized matrix.

5 HSIC REGULARIZED LTSA (HSIC-LTSA)

5.1 The Objective Function of HSIC-LTSA

In manifold learning, LTSA is among the few algorithms which are created based
on the mathematical properties of manifolds. Therefore, LTSA achieves better per-
formance in the process of manifold data. However, the so-called manifolds are
topological spaces which are locally homeomorphic to Euclidean spaces. Therefore,
it is natural for LTSA to be a local homeomorphism-preserving algorithm. Many
improvements to LTSA try to turn LTSA into one capable of preserving both local
and global properties of data during dimensionality reduction. For example, in [23],
the dimension-reduced data Y are set to the linear transformation of the high dimen-
sional data X, i.e., Y = WX, where W ∈ Rd×D. Y is then replaced with Y = WX
in the objective function of LTSA:

tr
(
Y LLTY T

)
−−−−−→
choose Y

min⇒ tr
(
WXLLTXTW T

)
−−−−−→
choose W

min (31)

However, the setting Y = WX will destroy the nonlinear nature of LTSA.

In this paper, an improved LTSA, called HSIC regularized LTSA (HSIC-LTSA
for short), is proposed in which a HSIC regularization term is added to the objective
function of LTSA:

tr
(
Y LLTY T

)
− λHSIC (X, Y ) = tr

(
Y LLTY T

)
− λtr (K2CNK1CN) −−−−−→

choose Y
min

(32)
where λ > 0 is the regularization coefficient.

HSIC (X, Y ) measures the statistical dependence of two random processes
ϕ1 (X) and ϕ2 (Y ). Therefore, the objective function HSIC-LTSA shown in Equa-
tion (32) means that X and Y will be kept statistically dependent as much as
possible during dimensionality reduction of LTSA.

Furthermore, the dimension-reduced data Y is hidden in the kernel matrix K2

in HSIC (X, Y ). In order to facilitate the optimization of Y , the proposed HSIC-
LTSA sets the kernel function k2 based on the linear kernel: k2 : Rd × Rd → R, for
all y′, y′′ ∈ Rd,

k2 (y′, y′′) = y′
T
y′′ + κδ (y′, y′′) (33)

where κ > 0 and δ (y′, y′′) =

{
1, y′ = y′′

0, others
. The addition of δ ensures the positive
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definiteness of k2. The kernel matrix K2 is then to be:

K2 =

k2 (y1, y1) . . . k2 (y1, yN)
...

. . .
...

k2 (yN , y1) . . . k2 (yN , yN)

 =

y
T
1 y1 . . . yT1 yN
...

. . .
...

yTNy1 . . . yTNyN

+κIN = Y TY +κIN .

(34)
In this setting of K2, HSIC (X, Y ) will become:

HSIC (X, Y ) = tr (K2CNK1CN) = tr
(
Y TY CNK1CN

)
+ κtr (CNK1CN)

= tr
(
Y CNK1CNY

T
)

+ κtr (CNK1CN) . (35)

tr (CNK1CN) has nothing to do with Y , therefore the objective function of HSIC-
LTSA becomes:

tr
(
Y LLTY T

)
− λtr

(
Y CNK1CNY

T
)
−−−−−→
choose Y

min (36)

where

K1 =

k1 (x1, x1) . . . k1 (x1, xN)
...

. . .
...

k1 (xN , x1) . . . k1 (xN , xN)

 . (37)

The kernel function k1 can be chosen according to the applications at hand. There-
fore, HSIC-LTSA provides much flexibility for different applications.

5.2 The Solution to HSIC Regularized LTSA

The objective function of HSIC-LTSA shown in Equation (37) can be rewritten in
an equivalent form:

tr
(
Y LLTY T

)
tr (Y CNK1CNY T )

−−−−−→
choose Y

min. (38)

In Equation (38), since for all constant vectors z ∈ RN , CNz = 0, CNK1CN is
then positive semi-definite, not positive definite. However, from another viewpoint,
CN is the centralizing matrix, Y CN means the centralization of Y . In geometry,
Y CN means translation of Y to the origin of the Euclidean space Rn. Obviously, the
translation of Y has no impact on the result of dimensionality reduction. Therefore,
it is reasonable to assume that Y CN = Y . Under this assumption, the objective
function shown in Equation (38) can be refined as follows:

tr
(
Y LLTY T

)
tr (Y K1Y T )

−−−−−→
choose Y

min.

Equation (38) can be solved according to the following stages:
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1. Cholesky Decomposition of K1: the kernel function of K1 is symmetric and
positive definite, and can be Cholesky-decomposed:

K1 = V V T (39)

where V ∈ RN×N is a low-triangular matrix and the diagonal elements are all
positive.

2. Let Z = Y V ∈ Rd×N , then Y = ZV −1 and

tr
(
Y LLTY T

)
tr (Y K1Y T )

=
tr
(
Y LLTY T

)
tr (Y V V TY T )

=
tr
(
ZV −1LLT (V −1)

T
ZT
)

tr (ZZT )
. (40)

Furthermore, let us denote Z =

Z1Row
...

ZdRow

, where ZiRow ∈ R1×N represents the

row vector of Z, i = 1, . . . , d, then

tr
(
ZV −1LLT (V −1)

T
ZT
)

tr (ZZT )
=

∑d
i=1 ZiRowV

−1LLT (V −1)
T
ZT

iRow∑d
i=1 ZiRowZT

iRow

. (41)

3. Eigen Decomposition of V −1LLT (V −1)
T

. If ZT
iRow is an eigenvector of

V −1LLT (V −1)
T

, i.e.,

V −1LLT
(
V −1

)T
ZT

iRow = λiZ
T
iRow (42)

then

λmin ≤
∑d

i=1 ZiRowV
−1LLT (V −1)

T
ZT

iRow∑d
i=1 ZiRowZT

iRow

=

∑d
i=1 λiZiRowZ

T
iRow∑d

i=1 ZiRowZT
iRow

≤ λmax (43)

where λmax and λmin represent the maximum and minimum eigenvalues of
V −1LLT (V −1)

T
, respectively.

It is clear that the d row vectors of Z should be chosen to be the eigenvectors
corresponding to the d minimum eigenvalues of V −1LLT (V −1)

T
.

4. Y = ZV −1.

6 EXPERIMENTS

In this section, some experimental results of LTSA and HSIC-LTSA are presented
for comparison.
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Figure 1. The experimental results of LTSA and HSIC-LTSA on toy data
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6.1 Toy Data

Figure 1 shows the experimental results on toy data. The toy data as well as the
experimental results of LTSA on the toy data are all produced by using MANI.
MANI is a platform commonly used in manifold learning and can be downloaded
free from internet. It can be seen from Figure 1 that the experimental results of
HSIC-LTSA are reasonable and comparable with those of LTSA. In some toy data,
HSIC-LTSA seems even better than LTSA. For example, in Swill Roll with rectangle
hole in the middle, HSIC-LTSA reproduces the rectangle more faithfully.

6.2 Face Image Data

Figure 2. The experimental results of LTSA on face images

Figures 2 and 3 show the experimental results of LTSA and HSIC-LTSA on
the dataset of faces. This dataset is often used in many literatures of manifold
learning. The face in the dataset only changes in gesture and expression. There-
fore, although the faces are represented with high-dimensional vectors, it may be
enough to represent these faces with 2-dimensional vectors. In Figures 2 and 3, the
faces are dimensionally reduced to 2-dimension plane with LTSA and HSIC-LTSA,
respectively. Some face images are also shown at the corresponding positions. It
can be seen from Figures 2 and 3 that from up to bottom the face expression
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Figure 3. The experimental results of HSIC-LTSA on face images

changes from serious to happy, while from left to right, the face gesture changes
from eastward to westward. The impression of HSIC-LTSA seems better than that
of LTSA.

6.3 Classification Experiments

The experimental results shown in Figures 1, 2 and 3 are qualitative, not quantita-
tive, and are judged entirely by subjective feelings. In order to compare LTSA and
HSIC-LTSA objectively, a number of classification experiments are presented, where
data are first dimensionally reduced with LTSA and HSIC-LTSA, respectively, and
then classified with K-NN method. The accuracy rates of classification are listed in
Table 1.

The datasets used in the classification experiment are MNIST, USPS, YaleB,
Binaryalphadigs, AR, UMIST, ORL and Vehicle. All these datasets can be down-
loaded from Internet and commonly used in many literatures of machine learning.
Both MNIST and USPS are the datasets of handwritten digits. Binaryalphadigs is
the dataset of handwritten digits and English letters. YaleB, AR, UMIST and ORL
are all the datasets of face images. Vehicle is the dataset of vehicle images. The
classification method used in the experiments is 3-NN method. The kernel used in
HSIC is linear kernel.
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In Table 1, the numbers shown in the leftmost column are the reduced dimen-
sions; the numerical values shown next to the names of datasets are the accuracy
rates of classification without dimensionality reduction. Since the dimension of fea-
ture vectors of vehicle image is only 18, the reduced dimensions are then not larger
than 18.

Generally speaking, the performance of HSIC-LTSA is better than LTSA.

RD: the reduced dimension; unit: %
The numbers next to the names of datasets are the accuracy rates of classification

without dimensionality reduction

RD
MNIST/88.0 USPS/84.1 YaleB/61.5 AR/32.13

LTSA HSIC-LTSA LTSA HSIC-LTSA LTSA HSIC-LTSA LTSA HSIC-LTSA

10 74.6 86.2 69.4 85.9 7.5 19.5 15.8 17.8

20 80.4 88.6 79.4 87.4 28.0 67.7 20.4 23.0

30 82.4 89.3 80.5 86.4 46.3 78.3 23.4 28.6

40 82.2 88.5 80.6 87.1 61.4 80.5 26.0 31.7

50 85.5 88.7 82.8 86.6 73.6 83.1 28.9 37.3

60 86.0 88.4 82.4 85.4 77.5 83.2 33.7 44.3

80 86.0 88.4 84.7 85.3 82.6 84.7 47.6 51.5

100 87.1 88.1 84.5 84.1 85.3 86.0 58.9 58.3

RD
ORL/82.5 Binaryalphadigs/69.5

RD
Vehicle/63.7

LTSA HSIC-LTSA LTSA HSIC-LTSA LTSA HSIC-LTSA

10 64.0 77.0 53.1 7.40 2 48.6 48.5

20 75.2 81.8 66.3 31.4 3 48.7 51.3

30 81.9 81.7 65.6 31.4 4 48.0 51.7

40 82.0 77.0 67.4 31.4 5 51.8 50.5

50 81.7 72.5 63.5 43.0 10 66.5 62.3

60 77.6 65.2 59.0 40.0 15 74.0 66.7

80 70.6 53.9 52.4 27.6 16 74.7 70.4

100 66.1 47.4 41.1 18.9 17 75.1 66.9

Remark: The datasets as well as the source codes will be available on request.

Table 1. The accuracy rates of classification

7 CONCLUSIONS

The theory of HSIC sounds a little complicated and seems too difficult to understand
for AI engineers. In this paper, a brief and self-sufficient introduction to HSIC is
presented for better understanding of HSIC. Since it was first proposed around 2005,
HSIC has found many applications in machine learning and some of them are similar
to dimensionality reduction [24, 25, 26]. However, HSIC has never been applied to
machine learning in regularization form so far. The proposed HSIC-LTSA may be
the first try of HSIC regularization.
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The so-called regularization means to add regularization terms behind objective
functions of other algorithms. The proposed HSIC-LTSA adds HSIC regulariza-
tion to LTSA, we can also add HSIC regularization to Laplacian Eigenmap algo-
rithm [1] to form HSIC-LE algorithm, to Local Linear Embedded algorithm [2] to
form HSIC-LLE algorithm, and so on. HSIC regularization would likely greatly ex-
pand the application scope of HSIC, just like what manifold regularization [3] has
done. Manifold regularization makes the application scope of manifold learning ex-
pand from dimensionality reduction initially to various aspects of machine learning
now.
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