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Abstract. Operational semantics is a known and popular semantic method for
describing the execution of programs in detail. The traditional definition of this
method defines each step of a program as a transition relation. We present a new
approach on how to define operational semantics as a coalgebra over a category of
configurations. Our approach enables us to deal with a program that is written
in a small but real imperative language containing also the common program con-
structs as input and output statements, and declarations. A coalgebra enables to
define operational semantics in a uniform way and it describes the behavior of the
programs. The state space of our coalgebra consists of the configurations model-
ing the actual states; the morphisms in a base category of the coalgebra are the
functions defining particular steps during the program’s executions. Polynomial
endofunctor determines this type of systems. Another advantage of our approach is
its easy implementation and graphical representation, which we illustrate on a sim-
ple program.
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1 INTRODUCTION

Formal semantics belongs inherently to the definition of programming languages. It
provides the meaning of the programs in an unambiguous way. There are several
well-known semantic methods for defining the formal semantics of programs written
in some programming language. The choice of a suitable semantic method depends
on the information we desire. In this paper, we are interested in operational seman-
tics of a simple imperative language E-Jane defined as a coalgebra over a category
of configurations.

Operational semantics is the most popular semantic method. It was defined
by Plotkin in [24]; and he discusses its motivation in [25]. This method describes
not only the meaning of a program but also the execution details. Operational
semantics can be considered as a transition system, where program execution is
described in particular steps using transition relations [12, 21, 32, 38]; thus the
behavior of programs is defined. And this method is our subject of interest in this
paper.

Another approach connected to small-step approach is the K framework. It is
an executable rewriting-based semantic definitional framework in which program-
ming languages, calculi, as well as type systems or formal analysis tools can be
defined, making use of configurations, computations, and rules. It was introduced
by Grigore Roşu in 2003 [26]. The framework consists of two components: general-
purpose concurrent rewriting approach (K rewriting) and a definitional technique
specialized for concurrent programming languages or systems (K technique) which
yields a semantic definitional style [28]. Configurations organize the state in units
called cells (K cell structures), which are labeled and can be nested. Computa-
tions carry computational meaning as special nested list structures sequentializ-
ing computational tasks, such as fragments of program. The rewriting rules of
the K framework make it explicit which parts of the term they read-only, write-only,
read-write, or do not care about. A complete K definition of IMP (While) has been
presented in [27]. Furthermore, an extended language IMP++ is presented with
the increment construct ++x which introduces a side effect for expressions (as in
C-like languages), then print construct and the input constructs are introduced,
and halting of program (internal and external ones) is added into the definition of
IMP++.

A further particular type of small-step semantics is Reduction Semantics with
Evaluation Contexts (RSEC), also known as contextual semantics, which models
execution as a sequence of atomic rewrites of state, between each of which some
small amount of time passes. Derivations are expressed as sequences that progress
with time, rather than as trees of inference that conclude instantaneously. Re-
duction semantics was introduced by Matthias Felleisen and colleagues in 1992 [5].
The evaluation context style improves over small-step structural operational seman-
tics in two ways: it gives a more compact semantics to context-sensitive reduc-
tion, by using parsing to find the next redex (a term that can be transformed
in a single step); and it provides the possibility to also modify the context in
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which a reduction occurs, making it much easier to deal with control-intensive
features. Here, an evaluation context is a term with a “hole” (a placeholder)
in the place of a subterm. Additionally, one can also include the configuration
as a part of the evaluation context, and thus to have full access to semantic in-
formation “by need”. The contexts allow the designer of a reduction semantics
to factor the definition of calculus into one part that specifies the atomic steps
of computation and the second part that controls where these steps may occur.
Reduction semantics with evaluation contexts does precisely that it allows to for-
mally define evaluation contexts; rules become mostly unconditional and reduc-
tions can only happen “in context”. Reduction semantics is considered as yet
another way to define single-step semantic relation [14], a small-step semantics
where the atomic execution step is a rewrite of the program. For modeling pro-
gramming languages, Felleisen-Hieb-style reduction semantics, and their type sys-
tems, a powerful software tool PLT Redex has been designed [6]. PLT Redex is
a lightweight, embedded domain-specific programming language and it comes with
a suite of tools for working with the semantics. In principle, Redex is hosted in PLT
Scheme.

There are some other methods for defining formal semantics, e.g. natural seman-
tics known also as a “big-step” operational semantics [13, 16], axiomatic semantics [9]
for verification purposes with various extensions [17], action semantics [20] as a hy-
brid between denotational and operational semantics and game semantics [10, 11]
defining a semantics by game trees and strategies; however, we do not consider these
approaches in this paper.

The denotational semantics, also called mathematical semantics that expresses
the meaning of a program in terms of mathematical structures and mappings be-
tween them, belongs to popular semantic methods. In a simplified case, sets are
used as the semantic domains and the execution of statements is described by func-
tions [30]. The general definition of denotational semantics uses lattices and homo-
morphisms between them [36]; an alternative formulation is based on relations [33].
Denotational semantics provides the results of program execution, but it does not
consider the details during the execution process.

In the last decades, categories have become useful mathematical structures for
modeling programs and program systems [2, 18, 22]. Categories enable to work not
only with sets that are carriers of the most mathematical structures but also with
more complex structures that are often used in computer science [23]. The mor-
phisms can express the changes between these structures. Functors, the morphisms
between categories, express mappings between categorical structures; they are suit-
able for describing useful properties of systems. In [34], we have defined a categorical
denotational semantics of a procedural language, where we constructed a category
of states as a model of a language.

In this paper, we construct a coalgebraic semantics of an imperative language.
It is a further contribution to our research project to prepare a package of mod-
ules serving to define the semantics of programs by several semantic methods. This
paper together with our previous work in [34] presents a theoretical foundation
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for this package and is designed to be easily implementable. Therefore we try to
use similar notions that can be implemented uniformly. But the coalgebraic ap-
proach requires to define behavior of programs step by step and it induces funda-
mental changes and necessity of new concepts different from the approach published
in [34].

Categories of states are the bases for important and useful mathematical struc-
tures: algebras and coalgebras. The objects of these categories form a state space
and their morphisms express the changes of states. Polynomial endofunctors over
these categories characterize different kinds of systems and they model the changes
of states. If we assume a state space X and a polynomial endofunctor Q over a state
space, then an algebra a is defined as a mapping a : Q(X)→ X and a coalgebra c,
as its dual notion, is defined as c : X → Q(X). While algebras are useful for mod-
eling the construction of programs, coalgebras enable to model their behavior. Our
own results on the coalgebraic approach were published in [19, 35]. There are sev-
eral publications defining coalgebraic semantics. The main ideas about coalgebraic
approach come from [29]. The author considers coalgebras as transition systems
describing the execution of programs in particular steps. Some additionally used
language elements mentioned above are elaborated in a few works, e.g. declarations
in [7, 31] and input/output using process algebras in [3, 8]. Also in the categorical
approach, many publications define coalgebras for simplified kinds of systems and
they ignore some details occurring in real ones.

We present a new approach on how to define the coalgebraic semantics of an im-
perative language containing the major features of a real imperative programming
language with common statements, variable declarations, and input/output state-
ments. We construct our coalgebra gradually from the signatures, their represen-
tations, base category, polynomial endofunctor up to coalgebraic representation.
This detailed definition is more understandable also for practical programmers. The
graphical representation of coalgebra can provide a good background also for educa-
tional purposes of young IT experts, and it seems to be easily implementable within
our package of semantics.

In the next section, we present a short overview of the traditional definition
of an operational semantics for a simple imperative language well-known as lan-
guage While or IMP, presented e.g. in [21]. We adopted the structure of this lan-
guage, and for pedagogical reasons, we refer to this language as Jane. In Sec-
tion 2, we introduce traditional definition of operational semantics. Basic con-
cepts and definitions for coalgebras are in Section 3. Then we extend our lan-
guage to E-Jane (Section 4) with the additional constructs that are common in
imperative languages. Our extended language E-Jane does not contain only the
five basic statements of Dijkstra’s language (variable assignment statement, empty
statement, composed statement, conditional statement, and loop statement) but
also variable declarations, input and output statements, and a block statement.
To define the operational semantics in coalgebraic terms, we define the concepts
of memory abstraction, statement list, declaration list, and configuration as ab-
stract data types (Section 5). We represent these abstract types so that a rep-
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resentation of a configuration contains the information what is to be executed
together with an actual snapshot of a memory, and lists of input and output.
We consider the set of configurations as our state space. In Section 6, we de-
fine how statements of a program are executed; in Section 7, we give the seman-
tics of declarations as the morphisms between configurations. In Section 8, we
construct a category of configurations, suitable polynomial endofunctor Q and Q-
coalgebra. We finish the paper with a simple example illustrating our approach
(Section 9).

2 TRADITIONAL DEFINITION OF OPERATIONAL SEMANTICS

Before we explain our approach of defining a coalgebraic operational semantics,
an overview of the traditional definition of operational semantics is given. We intro-
duce a simple imperative language Jane consisting of expressions (arithmetic and
Boolean ones) and statements; then we give it an operational semantics.

2.1 The Language Jane

The formal syntax of Jane has been inspired by the formal syntax of While [21]. The
language Jane is considered as a folklore (toy) language, without an official inventor;
it has been used in many textbooks and papers, often with slight syntactic variations.
The syntax of the language is described by syntactic domains and production rules.
We consider the following syntactic domains:

• n ∈ Num – numerals (digit strings);

• x ∈ Var – variable names;

• e ∈ Aexpr – arithmetic expressions;

• b ∈ Bexpr – Boolean expressions;

• S ∈ Statm – statements.

The elements of Num and Var have no internal structure significant for the
semantics. The syntactic domain Aexpr consists of all well-formed arithmetic ex-
pressions created by the following syntax:

e ::= n | x | e+ e | e− e | e ∗ e. (1)

A Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b. (2)

As elements S of the syntactic domain Statm, we consider Dijkstra’s five ele-
mentary statements, namely variable assignment, empty statement, sequential com-
position of statements, conditional statement, and loop statement:

S ::= x := e | skip | S;S | if b then S else S | while b do S. (3)
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2.2 Operational Semantics of Jane

A structural operational semantics is defined as a transition system that describes
each step of a program execution using transition relations. The traditional ap-
proach to this method defines transition relations by inference rules that describe
the changes in memory during a program execution. As some abstraction of com-
puter memory, the concept of a “state” is used. The set State of states is the basic
semantic domain and its elements are functions from variables to values. For sim-
plicity, we consider that all variables are implicitly typed as integer values from the
set Z. Thus a state s is defined as a function

s : Var→ Z. (4)

A change of a state means an actualization of a state which is written using a sub-
stitution. If a value of a variable y is changed to some new value n, then a new state
s′ is defined as

s′ = s[y 7→ n]. (5)

This means that a new state s′ is the same as s excluding the value of y, which was
changed (substituted) to a new value n ∈ Z. Formally:

s′x = (s[y 7→ n])x =

{
n, if x = y;

sx, if x 6= y.
(6)

JeK : State→ Z JbK : State→ Bool
JnKs = n JtrueKs = true
JxKs = s x JfalseKs = false

Je1 + e2Ks = Je1Ks⊕ Je2Ks Je1 = e2Ks =

{
true, if Je1Ks=Je2Ks
false, otherwise

Je1 − e2Ks = Je1Ks	 Je2Ks Je1 ≤ e2Ks =

{
true, if Je1Ks≤Je2Ks
false, otherwise

Je1 ∗ e2Ks = Je1Ks⊗ Je2Ks J¬bKs =

{
true, if JbKs=false
false, otherwise

Jb1 ∧ b2Ks =

{
true, if Jb1Ks=Jb2Ks=true
false, otherwise

Table 1. Semantics of arithmetic and Boolean expressions

Arithmetic and Boolean expressions serve for computing values of two implicit
types of the language Jane, the type of integer values and the type of Boolean values,
respectively. In defining the semantics of both types of expressions, an actual state is
used but not changed in the process of evaluation. So the state plays only a passive
rôle in the evaluation of expressions. The semantic domain for arithmetic expressions
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is the set Z of integer numbers; for Boolean values, we introduce a new semantic
domain Bool containing two elements – true and false:

Bool = {true, false}. (7)

Table 1 defines the semantic functions JeK and JbK mapping arithmetic expressions
respectively Boolean expressions to functions from states to integer values respec-
tively Boolean values. These functions produce transient data that are consumed
during the program execution and whose values are never directly stored into mem-
ory except by assigning them to variables.

The changes of states are defined for particular statements by inference rules.
An inference rule consists of a finite number of assumptions and a conclusion:

assumption1, . . . , assumptionn

conclusion
(rule name)

〈x := e, s〉 ⇒ s[x 7→ JeKs] (1os) 〈skip, s〉 ⇒ s (2os)

〈S1, s〉 ⇒ 〈S′1, s′〉
〈S1;S2, s〉 ⇒ 〈S′1;S2, s

′〉 (31os)
〈S1, s〉 ⇒ s′

〈S1;S2, s〉 ⇒ 〈S2, s
′〉 (32os)

JbKs = true

〈if b then S1 else S2, s〉 ⇒ 〈S1, s〉
(4trueos )

JbKs = false

〈if b then S1 else S2, s〉 ⇒ 〈S2, s〉 (4falseos )

〈while b do S, s〉 ⇒ 〈if b then (S; while b do S) else skip, s〉 (5os)

Table 2. Semantics of statements

The assumptions and the conclusion are transition relations between particular
configurations. A configuration

α = 〈S, s〉 (8)

expresses that a statement S is to be executed in a state s. A transition has form

α⇒ α′. (9)

Here α′ can be either a state, if the statement is executed in one step, or a con-
figuration 〈S ′, s′〉, where S ′ stands for a statement that is to be executed in the
following step(s). So a transition describes an one-step action [37].

The inference rules for Jane in structural operational semantics [21] are given
in Table 2. An operational semantics can also be defined for block statements
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with declarations of local variables, e.g. in [24]. Our short overview of operational
semantics serves only for illustration of the traditional approach, and we will treat
these language constructions fully in our coalgebraic approach.

3 BASIC NOTIONS OF COALGEBRAS

Coalgebras are a useful tool for modeling the behavior of dynamic systems. They are
defined over a base category whose objects create a state space and whose category
morphisms are transitions.

To define a coalgebra for a system, we start with the signature of an abstract
data type of states. A signature contains operation symbols defined on data types
that can be:

• constructors – these generate the algebraic data types; they “work into” the
data types;

• selectors (destructors) – these describe changes of states; they are also called
behavioral operations, because they can provide observable values; they “work
out” of a data structure;

• derived operations – these help to work with corresponding data structures.

Selectors play the most important rôle among the operation symbols for constructing
coalgebras. They are interpreted as morphisms in a base category of states.

The dynamics, i.e. the execution of particular steps, is supplied by a polynomial
endofunctor

F : C → C (10)

defined over a category C of states; it is indicated by the corresponding signature.
The notion of a polynomial endofunctor [15] comes from its shape that is similar
to that of polynomials, because it can be constructed from constants, products,
coproducts and exponentials, e.g.:

FX = A0 + A1 ×XB1 + A2 ×XB2 + . . .+ An ×XBn . (11)

Here, X stands for a state space, the Ai, for i = 0, . . . , n, are sets of observable values,
the Bi are some fixed sets and × and + are the operations on category objects:
products and sums, respectively. The concrete shape of a polynomial endofunctor
determines (characterizes) a particular kind of systems.

Then a coalgebra can be defined as a mapping from the state space to the result
of the endofunctor applied to this state space; this mapping can be represented as
a tuple of selectors:

〈Jsel1K, . . . , JselnK〉 : X → FX. (12)

Based on these general definitions, we show in the following sections how a coal-
gebra defining the operational semantics of an imperative programming language
can be constructed.
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4 EXTENDED IMPERATIVE LANGUAGE E-JANE

Because our aim is to treat a language with the constructs available in real program-
ming languages, we extend the language introduced in Section 2 to the language
E-Jane that contains the constructs common in the most imperative programming
languages.

Assume a set Decl as a syntactic domain of declarations. Each variable used in
a program has to be declared. We introduce a declaration D ∈ Decl as

D ::= var x. (13)

We assume that the variables are implicitly of the integer type. This restriction
enables us to focus on the main ideas of our approach.

We add three further statements: a block statement enclosed in the brackets
begin and end; an input statement read, and an output statement print:

S ::= . . . | begin D1; . . . ;Dk;S end | read x | print e. (14)

where D1; . . . ;Dk is a finite list of local declarations and k ∈ N0. The local declara-
tions are visible only inside a given block. We have to take into consideration also
the program global declarations that are located at the beginning of a program and
they are visible within a whole program.

A program in E-Jane has then a form for k ∈ N0, n ∈ N:

D1; . . . ;Dk;S1; . . . ;Sn, (15)

i.e., it is a finite list of global declarations followed by a finite list of statements. So
E-Jane becomes closer to many real imperative languages.

The following sections describe how we construct an operational semantics by
a coalgebra for this language.

5 MEMORY AND ITS REPRESENTATION

Observing the behavior of a program during its execution means to define how
a program is being executed step by step and how the snapshots of the memory are
being changed in detail. First, we specify a structure (a data type) for the state
space. We consider as our state space the data type Config of configurations for
which we introduce a signature.

Each configuration is a tuple whose first item is a finite list of declarations
together with a list of statements to be executed; its second item is the actual mem-
ory content. The third and the fourth items are lists of input and output values,
respectively. We start with the signature for the lists of declarations and state-
ments; we follow with the signature for memory; then we construct a signature of
configurations. We put emphasis on the selector operations that play an impor-
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tant rôle in coalgebras. Then we define a suitable representation of the specified
types.

5.1 Signature of Configurations

As we have mentioned, a program in the imperative language E-Jane is a finite list
of declarations of global variables followed by a finite list of statements. Declarations
do not affect the computer memory content, but they are important because they
reserve cells for declared variables.

We start with specifying a parametrized signature [4] of finite lists, then we
define its two instantiations for the declaration list and statement list. Then we
specify a signature for abstract memory. Using these three signatures, we specify
the data type Config of configurations.

ΣList = Listfin [Item]
types : List , Item
opns :

init : → Item
head : List → Item
tail : List → List

(16)

The operation init creates the empty list of items. The operation head extracts the
first item and tail returns the rest of a list of items.

Let Decl and Statm be the type names for declarations and statements, respec-
tively. Then we define the signature of declaration lists by setting Item = Decl as
the instantiation

ΣDecl List = ΣList [Decl] .

Similarly, setting Item = Statm we get the signature of statement lists

ΣStatm List = ΣList [Statm] .

An abstract memory is a basic concept in the semantics of imperative languages.
It is often called state in many publications, but for our purposes the notion memory
is more appropriate. Each variable occurring in a program has to be allocated, i.e., a
memory cell is reserved and named by the elaboration of a declaration. The value of
an allocated variable can be assigned and modified inducing a change of the actual
memory.

According to these ideas about the concept of abstract memory, we formulate
a signature ΣMemory as an abstract data type which uses types Var and Value for
variables and values, respectively. This signature consists of types and operation
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specifications on the type Memory :

ΣMemory =
types : Memory ,Var ,Value
opns : init : → Memory

alloc : Var ,Memory → Memory
get : Var ,Memory → Value
del : Memory → Memory

(17)

The operation specifications have the following intuitive meaning (the following
subsection will explain the notion of “nesting levels” in more detail):

• init merely creates the initial memory of a program;

• alloc reserves a new memory cell for a variable at its actual nesting level;

• get returns a variable value in a given memory cell at its actual nesting level;

• del deallocates (releases) all memory cells for the variables declared on the high-
est nesting level.

The language E-Jane contains the statements for user input and output. Input
and output values are of the type Value and they form the lists. The corresponding
signatures are

ΣInput = ΣList [I Value] , (18)

ΣOutput = ΣList [OValue] (19)

where I Value and OValue are type names for input and output values, respectively.

To specify the process of program execution we introduce a new type Config by
its signature:

ΣConfig = ΣDecl List + ΣStatm List + ΣMemory + ΣInput + ΣOutput +
types : Config
opns : next : Config → Config

read : Config , I Value → Config
print : Config → OValue,Config

(20)

This data type introduces a new type Config with its operations (transition
functions), where

• next provides the next configuration;

• read takes an input value and stores it in a corresponding memory cell;

• print computes a value of an argument and produces it as an observable value.
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5.2 Representation of Types

Now we assign a representation to the data types specified above. First, we represent
the unstructured data type Value as a set of integers Z together with the undefined
value ⊥:

Value = Z ∪ {⊥} . (21)

We assign to the type Var a countable set Var of variable names. To deal with
nested block statements, we extend this set with special (dummy) variables begin

and end that are not declared. An undefined variable ⊥ is also in Var, but it serves
only for the initial memory of a program.

We represent the type List in ΣDecl List as a set of finite lists Decl List, which
elements are finite lists of declarations D∗. Analogously, the type State in ΣStatm List

is represented also as a set of finite lists Statm List with elements S∗ standing for
the finite lists of statements. That means

D∗ = D1; . . . ;Dm, (22)

S∗ = S1; . . . ;Sn, (23)

where Di ∈ Decl, for i = 1, . . . ,m, and Si ∈ Statm, for i = 1, . . . , n. The
representations of the operation symbols head and tail are defined as it is regular
for lists.

Because our language contains also a block statement, possibly with local vari-
ables declarations, we will consider the nesting level of a block. This nesting level
allows us to create a variable environment, the notion known from operational se-
mantics, and it enables us to distinguish local declarations from global ones. There-
fore we introduce the set Level of nesting levels denoted by natural numbers l:

l ∈ Level, where Level = N. (24)

We assign to the type Memory the set Memory of all possible non-empty memory
contents:

Memory = {m : Var× Level→ Value} .
Each memory m expresses one moment of program execution, an actual snapshot

of a computer memory. The function m is identified with its graph [30], graph(m),
i.e., a set of pairs, where the first member of each pair is an argument of this function
and the second member is the value of the function:

graph(m) = {((x, l), v) | (x, l) ∈ dom(m) ∧m(x, l) = v} . (25)

For a visualization of an actual memory, we can write the function m as a table
with possibly unfilled cells denoted by ⊥ expressing an undefined value for a declared
variable. This visualization increases the readability; it is illustrated on the left-hand
side in Figure 1.
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variable level value

x1 1 v1

xn l vn

...

variable level value

⊥ 1 ⊥

Figure 1. Visualization: actual memory and initial memory

Now we define the representations of the operation specifications from the signa-
ture ΣMemory as follows. The operation specification init is represented by a function
JinitK defined by

JinitK = m0 = {((⊥, 1) ,⊥)} (26)

which creates an initial memory m0 of a program, with no declared variable. Its rôle
is only to set the nesting level to a value 1 at the beginning of program execution
as it is on the right-hand side in Figure 1.

For defining the representation of the further operations on a memory, we need
to specify an actual (maximal) level of a nesting. Let

m = {((x1, l1), v1), . . . ((xm, ln), vk)}

be an actual memory. We define an auxiliary function

maxlevel : Memory→ Level (27)

defined by
maxlevel(m) = L, (28)

such that ∃j = 1, . . . n.L ≥ lj.
The operation JallocK adds a new item to the memory m (creates a new entry

in the table); it is defined as

JallocK(x,m) = m ∪ {((x,maxlevel(m)) ,⊥)}. (29)

This operation sets the actual nesting level l to the declared variable (left table in
Figure 2).

The operation JgetK returns the value of a variable declared on the highest
nesting level. We introduce an abbreviation Highest which expresses the maximum
nesting level where a variable x is declared:

Highest(m,x) = max {l′ | l′ ∈ Level and (x, l′) ∈ dom(m)} ;

For simplification of the formulation, we define the following predicate:

Defined(m,x) ≡def ∃l′ ∈ Level.(x, l′) ∈ dom(m)
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variable level value

x l ⊥
... ... ...

variable level value

x lj−1 v

... ... ...

xi lj vk
... ... ...

xn lj vm

Figure 2. Variable allocation and deallocation

that expresses whether the variable x is declared in an actual memory m.
The operation JgetK is then defined as

JgetK(x,m) =


m(x, l), where l = Highest(m,x),

if Defined(m,x);

⊥, otherwise.

(30)

The operation JdelK deallocates (releases from the table) all the variables declared
on the highest nesting level (right table in Figure 2):

JdelKm = m \ {((x,maxlevel(m)), v) | x ∈ Var ∧ v ∈ Value}. (31)

We also consider a special memory content

m⊥ = ((⊥, 0) ,⊥) (32)

expressing the undefined memory content when a program aborts.
The representation of the type List in ΣInput is a finite list i∗ = i1; . . . ; im.

Similarly, the type List in ΣOutput is a finite list o∗ = o1; . . . ; on, where ij, ok ∈ Value.
For simplicity, we consider here only finite lists of input and output values. These
lists form the semantic domains Input of lists of input values and Output of lists
of output values.

The last type to be represented is Config . We represent it by a set Config of
configurations as a cartesian product

Config = Program×Memory × Input×Output, (33)

where Program consists of the lists of global declarations/statements to be yet
elaborated and/or executed. A configuration is a quadruple

config = (JD∗;S∗K,m, i∗, o∗) (34)

for m ∈ Memory, i∗ ∈ Input and o∗ ∈ Output. We consider the representation
Config as the state space; its elements will be the objects in the base category of
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our coalgebra. We note that we consider at the beginning of program execution that
o∗ is empty, o∗ = ε.

The most important operations for defining the operational semantics by a coal-
gebra are the transition operations JnextK, JreadK and JprintK that we will define
later. These are the morphisms in our category of configurations.

In the next section, we define how a step of the execution of statements can be
defined as a morphism between configurations.

6 EXECUTION OF STATEMENTS

The interpretation of the operations next, read, and print represents the execution
of statements. Here we discuss how each of these operations can be defined. We
note that in operational semantics we model only one step of a statement execu-
tion.

Generally, the interpretation of next is a mapping

JnextK : Config→ Config. (35)

The finite list S∗ of statements is changed in each execution step according
to the correspondingly executed statement. The first member of this sequence is
a statement to be executed in a given memory m. Now we define the function
JnextK for each kind of statement.

The assignment statement x := e is to be executed in a memory m in one step.
The operation JnextK for this statement is defined as

JnextK(Jx := e;S∗K,m, i∗, o∗) = (JS∗K,m′, i∗, o∗) (36)

where

m′ =


m [((x,Highest(m,x)), v) 7→ ((x,Highest(m,x)), JeKm)] ,

if Defined(m,x);

m⊥, otherwise.

The transition mapping returns the tail of the statement list together with a new
memory that contains a new value JeKm for the variable x.

In like manner, we define the semantics for the empty statement skip that
executes also in one step but without any change of memory. Its semantics is defined
as a morphism without change of a memory m:

JnextK(Jskip;S∗K,m, i∗, o∗) = (JS∗K,m, i∗, o∗). (37)

This statement is considered as an identity on memory. On the other hand, this
morphism is not an identity on configuration because of shortening of the statement
list.
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To define the semantics of a sequence of statements, we need to distinguish two
situations. Assume that the rest of the program has a form

S1;S2;S
∗. (38)

The role of operational semantics is to define only the first execution step. A state-
ment S1 can be executed either in one step or in more steps. In the first case, e.g.,
if it is a statement being executed in one step, after this step the statements S2;S

∗

remain to be executed. In the second case, after the first step a sequence S ′1;S2;S
∗

has to be executed. Thus we define the mapping JnextK for these situations as

JnextK(J(S1;S2);S
∗K,m, i∗, o∗) =


(JS2;S

∗K,m′, i′∗, o′∗),
if 〈S1,m〉 ⇒ m′;

(JS ′1;S2;S
∗K,m′, i′∗, o′∗),

if 〈S1,m〉 ⇒ 〈S ′1,m′〉.

(39)

The memory m′ depends on the actual execution of the statement S1. The lists i′∗

and o′∗ represent the situation when the statement S1 stands for a user input or
output.

Consider now that the first statement to be executed is a conditional statement S
as the first statement in the list S;S∗:

S = if b then S1 else S2. (40)

The first step depends on the value of the Boolean expression b in the actual mem-
ory m. If JbKm = true, then the execution follows with the statement S1; and
with the statement S2, otherwise. We note that the execution of the conditional
statement is still deterministic and the memory m is not changed during this first
step. Therefore, the semantics of conditional is

JnextK(Jif b then S1 else S2;S
∗K,m, i∗, o∗) ={

(JS1;S
∗K,m, i∗, o∗), if JbKm = true;

(JS2;S
∗K,m, i∗, o∗), if JbKm = false.

(41)

The first step of the execution of the loop statement while b do S is the same
as the execution of the following conditional statement:

JnextK (Jwhile b do S;S∗K,m, i∗, o∗)
= (Jif b then S; while b do S else skip;S∗K,m, i∗, o∗) .

(42)

Now we define the semantics of the user input statement read x. It is executed
in one step and it assigns to a declared variable x an input value v, i.e., it changes
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a configuration as described by the transition function

JreadK : Config→ ConfigValue (43)

defined as

JreadK(Jread x;S∗K,m, i∗, o∗) =



λv′.(JS∗K,m′, tail(i∗), o∗),

if Defined(m,x);

(JS∗K,m⊥, tail(i∗), o∗),

otherwise,

(44)

where m′ = m[((x,Highest(m,x)), v) 7→ ((x,Highest(m,x)), v′)]. That means that
any value stored in a variable x declared on the highest nesting level is changed to
the input value v′.

The output statement print e is also executed in one step. It computes a value
of an arithmetic expression e in an actual memory m and it provides a result as
an observable value. A memory is not changed but the configuration is. The se-
mantics of this statement can be described by the transition function

JprintK : Config→ Value×Config (45)

defined as

JprintK(Jprint e;S∗K,m, i∗, o∗) = (JeKm, (JS∗K,m, i∗, JeKm; o∗)) . (46)

The first step of the execution of a block statement S = begin D∗;S ′ end is
modeled as

JnextK(Jbegin D∗;S ′end;S∗K,m, i∗, o∗) =

(JD∗;S ′ end;S∗K, JbeginKm, i∗, o∗)
(47)

where the special declaration begin (see in Section 7) is elaborated and the execution
proceeds with elaborating the local declarations and executing the body of the block.

For indicating that an execution step yields an undefined result, we introduce
an auxiliary mapping

JabortK : Config→ Config (48)

defined as

JabortK(config) = (ε,m⊥, ε, ε) (49)

where ε denotes the empty list. This definition ensures that an aborted program
stops in a stuck configuration that does not contain any statements to be executed.

In the next section, we define the elaboration of declarations in a uniform way.
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7 SEMANTICS OF DECLARATIONS

Each variable occurring in an E-Jane program has to be declared. Declarations
are elaborated, i.e., a new memory cell is allocated on the actual nesting level with
the undefined value. Declarations form a finite list D1;D2, . . . ;Dn, where each
Di, i = 1, . . . , n has the structure var xi.

We represent each declaration as a function on a memory:

Jvar xK : Memory→Memory. (50)

We define it for a given memory m as follows:

Jvar xKm = JallocK(x,m). (51)

This definition expresses that a declaration is elaborated in one step.
Declarations may appear in a program either on the global level with l = 1 or

in a block statement with a nesting level l > 1. In case of global declarations, new
entries are allocated with the initial nesting level l = 1; for instance, for a variable
x on the level l = 1 the following entry is being created:

((x, 1) ,⊥) . (52)

To supply the incrementation of a nesting level in the case of a block state-
ment, we introduce two special variables: begin, end ∈ Var. A fictive declaration
begin serves to bound the locally declared variables to an incremented nesting level
while end indicates the end of a block statement where locally declared variables
are released from the table. These declarations are also elaborated in one step by
functions JbeginK and JendK on a memory m:

JbeginK, JendK : Memory→Memory, (53)

defined as follows:

JbeginKm = m ∪ {((begin,maxlevel(m) + 1),⊥)},
JendKm = JdelKm.

(54)

Because the objects of our categorical model are configurations and the elabo-
ration of a declaration affects a given configuration, we define a morphism JnextK
for declarations as

JnextK : Config ⇀ Config, (55)

where

JnextK(Jvar x;D∗;S∗K,m, i∗, o∗) = (JD∗;S∗K, Jvar xKm, i∗, o∗),
JnextK(Jbegin D∗;S ′ end;S∗K,m, i∗, o∗) = (JD∗;S ′ end;S∗K, JbeginKm, i∗, o∗),

JnextK(Jend;S∗K,m, i∗, o∗) = (JS∗K, JendKm, i∗, o∗).
(56)
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However, a morphism JnextK is always defined for declarations, it can be unde-
fined only for statements, as we showed in Section 6. So the semantics of declarations
corresponds with the meaning of declarations in traditional operational semantics,
i.e., each declaration actualizes an environment of variables.

8 COALGEBRA FOR THE LANGUAGE E-JANE

In the previous sections, we defined the notions necessary for the construction of
a base category for a coalgebra. Now we construct the category Config consisting of

• configurations config = (JD∗;S∗K,m, i∗, o∗) as the category objects;

• mappings JnextK, JreadK, JprintK and JabortK as the category morphisms.

The objects in this category form the state space for our coalgebra and the mor-
phisms are transition mappings, each of them modeling one step of program execu-
tion.

We check whether so defined structure is a category:

• Each object has to have an identity morphism. However, no morphism defining
the operational semantics of E-Jane is an identity. To satisfy this category
property, we need to define explicitly that each object has an identity morphism
idconfig .

• A composition of two composable morphisms is a morphism in Config , e.g., for
the execution of a sequence of statements.

• A composition of morphisms is associative, trivially.

Our category Config has a terminal object, the undefined configuration

config⊥ = (ε,m⊥, ε, ε) (57)

that indicates aborting of a program. From any object in Config there exists a unique
morphism to this object because the running program can abort in any step; so
config⊥ is a terminal object in Config . The category has no initial object because
the starting of execution depends on an actual program that should be executed.
Therefore the initial configuration is different for each program.

The execution of a loop statement is modeled as a path of morphisms, i.e.
a composition of morphisms modeling the particular steps of an execution. When
the loop is executed in a finite number of steps, we get some final configuration
and the execution of a program can follow. When this path is infinite, we need to
ensure that our model is a category, i.e., there exists an object that is a composition
of an infinite path. Thus our category Config needs to have colimits [1] for all
diagrams consisting of an infinite composition of configurations. The definition of
a colimit in the category Config is explained in [34].

Now we have the base category that is a model of E-Jane; thus we can proceed
to construct a coalgebra modeling the behavior of programs written in E-Jane. The
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objects of our category form the state space of a coalgebra and the morphisms are the
transition mappings. Now, we construct the polynomial endofunctor for this kind of
systems. Generally, the following polynomial endofunctor seems to be appropriate
for our purposes:

Q(Config) = 1 + Config +O ×Config + ConfigI . (58)

Here I ⊆ Value denotes the domain of input values and O ⊆ Value denotes the
domain of output values of the program execution.

The operation + in the definition of the functor Q expresses distinct, mutual
exclusive results of the functor. We discuss the possible results:

• Q(Config) = 1 when a program aborts, i.e. it abnormally finishes and does not
return a result. This situation arises when the morphism JabortK in Config is
performed:

Q(config) = JabortK(config);

• if Q(Config) = Config, a new configuration is achieved by an elaboration of
a declaration or an execution of a statement with no input and output. This
situation occurs in the category by performing the morphism JnextK:

Q(config) = JnextK(config);

• if Q(Config) = O × Config, a change of configuration happens together with
producing some observable output value. The morphism JprintK is performed:

Q(config) = JprintK(config);

• if Q(Config) = ConfigI , an input value i ∈ I is read by the execution of the
statement read

Q(config) = JreadK(config).

Now we can define the Q-coalgebra for the programming language E-Jane as
a mapping:

〈JabortK, JnextK, JprintK, JreadK〉 : Config→ Q(Config). (59)

This coalgebra models the execution of a program in particular steps, i.e., it provides
the operational semantics of any program written in E-Jane. We note that our
coalgebra models the behavior of programs written in any programming languages
containing corresponding constructs.

9 EXAMPLE

We illustrate our approach on a simple program, which uses the most of the con-
structs of E-Jane. Assume a program P :
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var x ; var y ;
input x ; input y ;
if x <= y then begin var z ;

z :=x ; x :=y ; y := z
end

else skip ;
print x

We introduce here some abbreviations:

D1 = var x; D2 = var y;
S1 = read x; S2 = read y;
S3 = if x <= y then begin var z;

z := x;x := y; y := z end else skip;
S4 = print x

Let the input values for x and y be 3 and 5, respectively. An input list is then
i∗ = (3,5) and an output list is empty, o∗ = ε.

An initial configuration is

config0 = (JD1;D2;S1;S2;S3;S4K,m0, i
∗, o∗)

and an initial memory m0 contains only information about starting value of decla-
ration nesting, m0 = ((⊥, 1),⊥) (Figure 3).

m0

⊥ 1 ⊥

Figure 3. Initial memory

First, the declarations are elaborated in separate steps:

Q(config0) = JnextK(config0) = config1

= (JD2;S1;S2;S3;S4K, Jvar xKm0, (3,5), ε),

Q(config1) = JnextK(config1) = config2

= (JS1;S2;S3;S4K, Jvar yKm1, (3,5), ε),

where m1 = Jvar xKm0 and m2 = Jvar yKm1 (Figure 4).

m1

x 1 ⊥
m2

x 1 ⊥
y 1 ⊥

Figure 4. Memory with declared variables
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The execution of statements is realized by applying the functor Q in particular
steps. First, two input statements are performed:

Q(config2) = JreadK(config2) = config3

= (JS2;S3;S4K,m3, (5), ε),

Q(config3) = JreadK(config3) = config4

= (JS3;S4K,m4, ε, ε),

and memory after performing these two steps is depicted in Figure 5.

m3

x 1 3
m4

x 1 3
y 1 5y 1 ⊥

Figure 5. Memory after user inputs

Next, the conditional statement is executed,

Q(config4) = JnextK(config4) = config5

= (Jbegin var z; z := x;x := y; y := z end;S4K,m4, ε, ε),

and a Boolean condition is evaluated

Jx ≤ yKm4 = true.

Because the condition is evaluated to true, the next step is an inner block.

Q(config5) = JnextK(config5) = config6

= (Jvar z; z := x;x := y; y := z end;S4K,m5, ε, ε),

and an actual memory m5 contains also information about entering the local block
(Figure 6).

m5

x 1 3
y 1 5

begin 2 ⊥

Figure 6. Memory after entering the local block

The next step is an elaboration of a declaration inside the block:

Q(config6) = JnextK(config6) = config7

= (Jz := x;x := y; y := z end;S4K,m6, ε, ε),
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and an actual memory m6 is in Figure 7.

m6

x 1 3
y 1 5

begin 2 ⊥
z 2 ⊥

Figure 7. Memory after local declaration inside the block

The next three steps represent performing three variables assignments:

Q(config7) = JnextK(config7) = config8

= (Jx := y; y := z end;S4K,m7, ε, ε),

Q(config8) = JnextK(config8) = config9

= (Jy := z end;S4K,m8, ε, ε),

Q(config9) = JnextK(config9) = config10

= (Jend;S4K,m9, ε, ε),

and particular changes of memory are depicted in Figure 8.

m7

x 1 3
y 1 5

begin 2 ⊥
z 2 3

m8

x 1 5
y 1 5

begin 2 ⊥
z 2 3

m9

x 1 5
y 1 3

begin 2 ⊥
z 2 3

Figure 8. Memory after variables assignments

After those statements, the execution of a local block must be finished:

Q(config10) = JnextK(config10) = config11

= (JS4K, JendKm9, ε, ε)

where JendKm9 = m10 and actual memory after deleting the record of the block is
in Figure 9.
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m10

x 1 5
y 1 3

Figure 9. Memory after deleting the local declarations

The last step is a performing of an output statement which provides user output
of computed value:

Q(config11) = JprintK(config11) = config12

= (5, (ε,m10, ε, (5))).

Our simple program is executed in particular steps by applying the endofunc-
tor Q. These steps form a finite path in the category Config as we can see in
Figure 10.

config0

config1

config2

config3

JnextK

JnextK

JreadK
config4

config5

JreadK JnextK

3 5

config6

JnextK

config7

config8

config9

config10

config11

JnextKJnextK

JnextK

JnextK

JnextK

5

Config

Q

config12

5

JprintK

Figure 10. A program execution in coalgebra
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10 CONCLUSION

Operational semantics can provide a useful information to programmers on how
a program is executed, i.e. on its behavior. This information is important in the
process of preparing the program or for implementation purposes. Unfortunately,
traditional methods (only minor exceptions) consider some constructions as irrel-
evant for operational semantics. Therefore, it is hard to provide an operational
semantics for a program written in a real imperative language. In this paper, we
present a new approach that overcomes the lack of traditional approach. We define
a simple imperative language E-Jane that contains most of the obvious constructs
of imperative programming languages. We construct the operational semantics of
this language as a coalgebra over a category of configurations. Our definition of
configurations and their choice for the states, instead of memory abstractions, en-
ables us to treat statements and declarations in a uniform way that is a further
advantage of our approach. Each step of an execution is described as an applica-
tion of a polynomial endofunctor Q over the category of configurations that char-
acterizes this kind of systems. Our coalgebra also describes how input and out-
put values go into and go out of a system. Another advantage of our approach
is its possibility to get a graphical representation of the particular steps of the
execution of a program which is more understandable also for practical program-
mers.

In this paper, we use the language E-Jane that has some simplifications for
accentuating the principles of our approach. The constructed coalgebra can serve
also as a basis for our further research. We would like to introduce also other types
of values into our coalgebra and to define an operational semantics for procedures.
This would be a starting point to define a coalgebraic semantics for component-based
systems.
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[35] Slodičák, V.—Macko, P.: Some New Approaches in Functional Programming
Using Algebras and Coalgebras. Electronic Notes in Theoretical Computer Science,
Vol. 279, 2011, No. 3, pp. 41–62, doi: 10.1016/j.entcs.2011.11.037.

[36] Stoy, J.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, MA, USA, 1977.

[37] Szymoniak, S.—Siedlecka-Lamch, O.—Kurkowski, M.: SAT-Based Verifica-
tion of NSPK Protocol Including Delays in the Network. 2017 IEEE 14th International
Scientific Conference on Informatics (Informatics 2017), IEEE, 2017, pp. 388–393, doi:
10.1109/INFORMATICS.2017.8327280.

[38] Turi, D.—Plotkin, G.: Towards a Mathematical Operational Semantics. Pro-
ceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, 1997,
pp. 280–291, doi: 10.1109/LICS.1997.614955.

https://doi.org/10.4204/EPTCS.79.8
https://doi.org/10.4149/cai_2017_6_1385
https://doi.org/10.1016/j.entcs.2011.11.037
https://doi.org/10.1109/INFORMATICS.2017.8327280
https://doi.org/10.1109/LICS.1997.614955


Coalgebraic Operational Semantics for an Imperative Language 1209

William Steingartner is Assistant Professor of informatics
at the Department of Computers and Informatics of the Faculty
of Electrical Engineering and Informatics, Technical University
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