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1 INTRODUCTION

Evolutionary algorithms as metaheuristic optimization methods stand on few basic
ideas. These ideas came from evolutionary principles found in living nature. By the
influence of evolution, nature was able to make incredibly specialized and adapted
species, by its own. Adaptation process to surrounding conditions could be seen
as some kind of optimization. Adaptation process is conditioned by surroundings
pressure, which determines the quality-fitness of individuals by life or death. There-
fore surrounding is a quality criterion. Individual’s quality is taken into account in
two aspects. Fitter individual has a higher probability to transmit its good genetic
information to offsprings and, moreover, has a higher probability to outlive than less
fit individuals. This mechanism is called Darwin’s natural selection.

Next key inspiration was already mentioned in information transmission from
parents to offsprings. This mechanism consists of few joined principles. One of them
is coding individual’s properties into form of genetic sequence/string – chromosome,
where each part represents one property/variable of problem being solved (opti-
mization task). This string can be then modified by variation operators. Variation
operators could be in form of recombination – crossover or mutation like in living
nature. Chromosome modification allows to create individuals with new properties.
Another main aspect is the existence of more solutions/individuals (population) at
the same time. Unlike in classic optimization methods which work with only one
solution. The existence of population is necessary for application of evolutionary
principles, but, moreover, it allows to search the space of feasible solutions in par-
allel.

In evolutionary algorithms two main principles are used. Variation (recombina-
tion/crossover and mutation) which creates potential solutions and selection which
applies the quality criterion. Selection mechanism is one of the key processes in evo-
lutionary algorithms. Selection setup directly influences the speed of optimization
process and quality of the solution found. If selection policy is setup to prefer only
the best solutions, then it usually leads to the searching process stuck in local opti-
mum also called as premature convergence. On the other hand, if selection strategy
which has very low selection intensity is chosen then the time needed to find feasible
solution could be too long, and the solution could not be found at all.

In basic EA the selection is applied in two phases. Choosing individuals – parents
for reproduction process or other variation operator such as mutation, and choosing
which individuals will survive to a next generation – called survivor selection.

1.1 Generational/Steady State EA

The application time and place/order of selection can significantly change the whole
algorithm behavior. In the genetic algorithms there exist two modifications of such
different usage. The first type and mostly used is a generational model of EA.
Generational EA selects a big portion of individuals from the population. Selected
individuals make pairs of parents and undergo variation operations. In the next
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step the survivor selection is used. New population is a joined group of modified
individuals and only a few unchanged individuals from the old population.

The second type is a steady-state EA. In each generation only one pair of parents
is selected. Parents undergo the variation operations and these modified individuals
undergo the survivor selection. The survivor selection in this case decides which
individuals in the population will be replaced by new children individuals.

These two types of EA differ only in the usage of the selection, therefore they
have different selection schemes. The different selection scheme could be seen as
unimportant diference, but it significantly changes algorithm behavior [1].

However, selection is not only used in the survivor and the parents selection. As
the field of EA increased new types of algorithms were developed.

As mentioned previously, the selection operator in evolutionary algorithms is
very important and has a huge influence on the convergence speed and on the quality
of the final solution. Selection by itself is independent on the EA dialect. Whether
it is a genetic algorithm, an evolutionary strategy, a genetic programming or other
EA dialect, selection method is generally applicable for all types because of its
only dependence on the individual’s fitness or individual’s genotype. The axiom of
preferring better individuals on the expense of the worse ones is a base for most of
the selection methods and fitness dependence is widely used.

The aim of our work was to develop a new fitness-based selection method, which
is an extension and improvement of the already existing fitness-based selection meth-
ods. Our selection method involves both proportional and order-based methods and,
moreover, it allows scaling of selection pressure with higher precision over the range
of its possible values 〈0, 1〉. Scaling of selection pressure with so high precision over
the range of its possible values is not allowed by any of the fitness-based selection
methods up to now. Our method has one more attribute which adds randomness of
selection from range 〈0, 1〉.

All of these three attributes (generalization) allow our proposed selection me-
thod, within a particular tackled task (solution landscape) and within the specific
settings of algorithm’s decision parameters, to achieve a better solution of the task
than other well-known fitness-based selection methods.

We named this new general selection method based on the prescribed form
of a probability density distribution as 3-selection method. We discuss it in detail
in Section 3.

In addition, we have proposed a new classification of selection methods because
we consider the schemes found in the current existing resources as improper and
uncomplete. Our proposed classification of selection methods is stated in Section 2.

2 RELATED WORKS

First selection method was proposed by Holland in [2]. This method tried to take
fitness of all individuals into account as objectively as possible. So, the logical
step was to take individuals’ fitnesses to a proportion, with individuals with better
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fitness having a higher possibility to be chosen than the worse ones. This method
imitates a roulette wheel. Roulette wheel is divided into pieces with different sizes.
Each size is proportionate to the fitness of each individual where better individuals
have bigger portion of the wheel and vice versa. The wheel is then spin and the
marked individual is chosen. The roulette as a hazard simulates aspect of surviving
hazard-randomness in the living nature.

This method was later modified and extended. The modifications tried to solve
the problem of premature convergence. The most used one is a stochastic universal
selection (SUS) method, which has, in general, the same outcome as the roulette
wheel selection method, but it solves a worse statistical properties of the basic
roulette wheel method [3]. Despite the inherent simplicity of the roulette wheel
method, it has been recognized that the roulette wheel algorithm does not, in fact,
give particularly a good sample of the required distribution. Whenever more than
one sample is to be drawn from the distribution, the use of the stochastic universal
selection (SUS) algorithm is preferred [4].

Another classic method which works on completely different principles and one
of the most used selection method is a tournament selection. It is a very powerful
and simple selection algorithm.

Simply the method compares randomly chosen individuals and the better one
is chosen. Here the rate of fitness difference or fitness proportion is not considered,
but the main role is taken on individuals fitness order.

Comparison on tournament selection and roulette wheel selection and its modi-
fications was made by more authors, for example in [3].

Natural development in EA research area has produced many other selection
methods, which tried to solve premature convergence problem or tried to increase
the quality of the final solution process by different approaches. Due to the existence
of various selection methods based on different principles it is necessary to categorize
the selection methods in order to achieve a clear and comprehensive overview.

At present, the categorization of the selection methods has not been clearly
defined and there are not many resources where selection methods are strictly clas-
sified (to our knowledge there are only two resources). The authors in the first
scheme [6] classified selection methods from the historical point of view. Authors in
the second scheme [7] categorized selection methods in the base of their operation
to “proportional”, “ordinal” (or “order-based”) and “steady state” categories.

But there exist many other selection methods which work on a different principle.
More methods which select individuals based on their differences were developed.
This type of selection tries to solve the premature convergence problem, by not
using fitness as the selection criterion but as some kind of genotype metrics such as
diversity.

Selection methods can be divided into fitness-dependent (classic selection me-
thods), genotype-dependent (selection methods reflecting genotype) and special
methods. Fitness-dependent methods can be further divided into proportional
and order-based. Category of a special methods contains for example random se-
lection method, which does not belong to any of the other categories, but also
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methods such as correlative tournament selection and correlative family-based se-
lection.

Two main categories belonging to group of the fitness-based selection are the
proportional selection methods and the order-based methods. Proportional selection
selects individuals based on their fitness values relative to the fitness of the other
individuals in the set population. Developed scaling policies are able to manipulate
the fitness proportions distribution in population [5]. Order-based selection strategy
also called ranking is based on order/rank of fitness values in population [14, 6,
7]. These methods were developed to overcome problems in proportional selection
methods. For proportional methods there is a general disadvantage in cases where a
very fit individual could come across among the population and that will significantly
increase the selection intensity. In the order-based methods it is not important how
big is the difference between individuals, whether it is few times more, or it is just
a small difference, the ordering is the same.

With respect to the abovementioned facts we consider the first scheme [6] and
the second scheme [7] as improper and uncomplete.

Therefore we proposed already mentioned own classification. In the proposed
classification, the selection methods are divided into three main groups.

1. Fitness-based selection methods

Fitness-dependent methods are divided into proportional and order-based. Pro-
portional selection methods include: Roulette wheel selection (SSR, SSPR) [2, 9],
Stochastic universal selection (SUS) [10], Stochastic remainder selection (with
replacement, without replacement), and Deterministic sampling. Order-based
selection methods include: Elitism, Tournament selection (Binary tournament
selection, Larger tournament selection, Boltzmann tournament selection [11,
12]), Linear ranking selection [5, 8, 14, 15], Exponential ranking selection [8],
and Truncation selection [8].

2. Genotype-based selection methods

This group includes the Diversified selection method and methods based on
gender-specific selection: Genetic algorithm with chromosome differentiation
(GACD) [16], Restricted mating [17, 18, 19, 20], Genetic relatedness-based se-
lection, Fitness uniform selection scheme (FUSS) [21], and Reserve selection [22].

3. Special selection methods

This group consists of the following methods: Random selection, Correlative
tournament selection [13], and Correlative family-based selection [13].

The proposed classification is a summary of selection methods found in litera-
ture. Unfortunately, only few of these methods have been seriously analyzed and
compared [8, 3]. Some researchers tried to analyze selection methods by some mea-
surable characteristics [3, 23, 8]. The most frequently used measurable character-
istics are takeover time and selection pressure [3, 23]. These characteristics can be
used to compare selection methods in a certain way and can provide an information
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why is some setting of evolutionary algorithm better than the other for particular
cases. But they can say nothing about which selection method is more suitable than
the other in general, because a different setting of selection pressure and takeover
time may be appropriate in particular cases. Convergence of the EA depends also on
the settings of the other algorithm’s decision parameters and the solution landscape
is a priori unknown (no free lunch theorem).

3 SELECTION METHOD BASED ON PRESCRIBED PROBABILITY
DENSITY FUNCTION (3-SELECTION METHOD)

Selection based on the prescribed form of a probability density distribution arised
from the idea to construct a general selection method for genetic algorithms. It
represents the original, our suggested selection method for the fitness-based selection
methods. If this method is sufficient in general, it must provide a wide scalability
of selection rate, from a purely random selection to the elitist behavior.

The main role of selection is to maintain perspective pieces of information con-
tained in the genotype, therefore a selection method must naturally prefer better
individuals over the worse ones. Hence each selection method is based on the fact
that a fitter individual has a higher probability of selection than a less fit individ-
ual. We solve minimization tasks, which means that the most fit (fittest) individual
represents the minimum value of the fitness function.

Our method is based on defining the shape of probability density distribution.
This shape of selection method must satisfy the criteria (if we assume minimization
problem):

p (f1) ≤ p (f2) ≤ . . . ≤ p (fi) ≤ . . . ≤ p (fn) ; f1 ≥ f2 ≥ f3 ≥ . . . ≥ fi ≥ . . . ≥ fn
(1)

where

• p (fi) is probability of selection of ith individual whose fitness is fi,

• f1 is fitness value of the least fit individual,

• fn is fitness value of the fittest individual.

If we preserve property defined in (1) and we consider that the prescribed prob-
ability curve is defined with some function p (fi) = F (fi), then we can convert this
feature to a specific selection method. The algorithm of a ”general” selection is as
follows (minimization problems):

1. Normalization of fitness values in the interval 〈0, 1〉 by Equation (2) for propor-
tional selection and by Equation (4) in case of order-based selection.

2. Selection of random individual whose normalized fitness is fni
.

3. If F (fni
) ≥ r then this individual is copied to a group of selected individuals; r

is random generated number from the range (0, 1〉.
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4. If the number of selected individuals equals to the number of individuals to be
selected then end, else go to step 2.

Standardization of fitness values in the interval 〈0, 1〉 is performed in our se-
lection from two reasons. First, for the generality of different scales of fitness
landscapes. Second, for our prescribed form of the probability density distribu-
tion function. Standardization of fitness values is done in such a way that the fittest
individual (in our case, with the minimum fitness value) will have the value of a nor-
malized fitness 1, and the least fit individual (in our case, with the maximum fitness
value) will have the value of normalized fitness 0. Other individuals will have fitness
values between the boundary points of the interval 〈0, 1〉.

Fitnesses and normalized fitnesses have not the same ordering due to the con-
struction of our prescribed form of the probability density distribution function,
which is in form of (5), (6).

fni
= 1− (fi −min (f))

(max (f)−min (f))
→ fni

∈ 〈0, 1〉 . (2)

Taking into account the fact that the selection methods can be generally classified
into two main groups, namely a proportional and order-based group, a logical conse-
quence is that if we replace in step 1 of our algorithm the standardization of fitness
values for the standardization of order, considering sorted individuals:

srt (f) = f1 ≥ f2 ≥ f3 ≥ f4 ≥ fi ≥ . . . ≥ fn, (3)

fni
=

i

N
→ fni

∈ (0, 1〉 , (4)

then we get the order-based selection method.
Our goal was to make the method of selection as general as possible, so it needs

to be adjustable from a random selection to an elitist selection. Function F was
therefore chosen in the form of (5), (6) where ϕ ∈ 〈0, 1〉 is the input parameter
which defines selection pressure of the method. In (6), if ϕ = 1 we assume that
1infinity = 1 and numbers less than 1 including zero raised to an infinity tend to 0.

• If ϕ ≤ 0.5
F (fni

) = f 2ϕ
ni
, (5)

• if ϕ > 0.5

F (fni
) = f

0.5
1−ϕ
ni . (6)

With regard to another important feature of our selection method (adding ran-
domness of selection), at first we clarify how the selection, respectively the feature
of selective pressure, behaves in the evolution of the genetic algorithm.

If the selective pressure is high, it is causing fast convergence just by new in-
dividuals emerging in the population being created from the best individuals, and



Generalized Selection Method 1425

therefore the algorithm is searching in the direction of the fastest descent criterion
function. This is due to the fact that selection allows manifestation of only this
information which manifests itself immediately or in a few generations and from
this reason some random change caused by a mutation here has not a big chance
to survive and consequently to manifest. When the selective pressure is high, the
algorithm otherwise converges quickly, but in the case of hard multimodal functions
it results as stuck on local suboptimal solution.

On the other side, when the selective pressure is too low the algorithm has
good ability to avoid local extremes but the time of convergence to the solution
may be too long. In this case, the information resulting from global mutation have
a big chance to survive longer because the selection allows individuals to carry this
information to get to the next generation. However, a disadvantage is that many
times the unperspective areas of the task are unnecessarily scanned, and it increases
the time complexity of the whole algorithm.

A well-functioning selection method should, on the one hand, provide sufficient
ability to increase the selective pressure, but, on the other hand, it should provide
the possibility of randomness, it means a certain chance for unsuccessful individuals
to survive as well. Consequently, there comes the possibility to combine worse
and better individuals, and thereby to increase the probability of finding a global
solution. We tried to incorporate this idea into the proposed selection method. In
case of the probability density distribution shapes (Figure 1) it means shifting the
whole curve upwards, and that is caused by the additional randomness (Figure 3).
In other words, to a given probability density distribution curve we add a uniform
probability density distribution with a certain amplitude σ, where σ ∈ 〈0, 1〉 is
a random parameter. Parameter of selection pressure ϕ ∈ 〈0, 1〉. The final formula
for function F is:

• if ϕ ≤ 0.5

F (fni
) = (f 2ϕ

ni
+ σ)/(1 + σ), (7)

• if ϕ > 0.5

F (fni
) =

(
f

0.5
1−ϕ
ni + σ

)
/ (1 + σ) . (8)

In (8), if ϕ = 1 we assume that 1infinity = 1 and numbers less than 1 including zero
raised to an infinity tend to 0.

Probabilistic selection model of 3-selection method with adding randomness of
selection:

• if ϕ ≤ 0.5

p (Xi) =

(
f 2ϕ
ni

+ σ
)
z (fi)∑(

f 2ϕ
ni + σ

) , (9)
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a) b)

Figure 1. Generated shape of selection probability according to Equations (5) and (6).
On the left we can see the proportional selection for different parameters of ϕ, on the
right there is the order-based selection. In this illustrative example, on the x-axis there
are 50 fitness values where 1 is the best value and 50 is the worst value. On the y-axis we
can see a corresponding selection probability of F (fni) for parameter ϕ.

Figure 2. Corresponding relative frequencies for selection curves in Figure 1. On the left
side there is the proportional selection method for different ϕ values, on the right side
there is the order-based selection. On the x-axis there are 50 fitness values where 1 is the
best value and 50 is the worst value. On the y-axis we can see a corresponding relative
frequencies for parameter ϕ.

• if ϕ > 0.5

p (Xi) =

(
f

0.5
1−ϕ
ni + σ

)
z (fi)∑(

f
0.5
1−ϕ
ni + σ

) , (10)

z (fi) is the number of repeating of the ith individual (fitness) in the population.
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Figure 3. Generated shape of selection probability according to Equations (7) and (8).
On the left there is the proportional selection for different parameters of ϕ, on the right
there is the order-based selection. In this illustrative example, on the x-axis there are
50 fitness values where 1 is the best value and 50 is the worst value. On the y-axis we can
see a corresponding selection probability of F (fni) for parameter ϕ.

Figure 4. Corresponding relative frequencies for selection curves in Figure 3. On the left
side there is the proportional selection method for different ϕ values, on the right side
there is the order-based selection. On the x-axis there are 50 fitness values where 1 is the
best value and 50 is the worst value. On the y-axis we can see a corresponding relative
frequencies for parameter ϕ.

A significant advantage resulting from the stated properties of our selection is
the ability to continuously change the value of selective pressure (ϕ) as well as the
degree of randomness in the selection (σ).

To clarify the way 3-selection method works we present the algorithm of our
proposed 3-selection method (Algorithm 1).
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Algorithm 1: 3-selection method

Data: selection rate ϕ, rand rate σ, pp – proportional (pp = 1) or
order-based selection (pp = 2), pop – input population, fit – fitness
vector of individuals in input population, n – required number of
selected individuals, norm fit – normalized fitness

Result: popout – output population, fitout – fitness of individuals in
output population

1 initialization popout, fitout;
2 if ϕ > 0.9999 then
3 ϕ = 0.9999;
4 end if
5 ϕ = ϕ ∗ 2;
6 if pp = 1 then
7 if max(fit)−min(fit) 6= 0 then
8 norm fit = (fit−min(fit))./(max(fit)−min(fit));
9 norm fit = 1− norm fit;

10 else
11 norm fit = (fit)./(max(fit));
12 end if

13 else
14 if pp = 2 then
15 sort pop according to descending fitness values;
16 sort fit according to descending fitness values;
17 nn – number of fitness values in fitness vector;
18 norm fit = (1 : nn) /nn;

19 else

20 end if

21 end if
22 count = 0;

4 EXPERIMENTS

The right setup of any evolution algorithm is not an easy task due to many variables
needed to be set and our method provides 3 more additional parameters, and that
could be seen as a disadvantage. On the other hand, it provides a possibility of very
precise setting of a selection.

The influence of 3 new parameters is shown on 6 different GA (Table 1), which
differ in the variation operators setup. We chose different GA setup in the meaning of
a different exploration and exploitation rate. The results for different combinations
of 3-selection method parameters on the 6 different GA setups are compared to the
tournament and the SUS selection methods.
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23 while n > count do
24 j = round to the nearest integer towards infinity

(random number ∗ population size);
25 if ϕ ≤ 1 then

26 if random number ∗ (1 + σ) ≤ σ +
(

norm fit (j)(ϕ)
)
then

27 count = count + 1;
28 save individual j from pop to popout to position given by the

value of variable count;
29 save fitness of individual j from fit to fitout to position given by

the value of variable count;

30 end if

31 end if
32 if ϕ > 1 then

33 if random number ∗ (1 + σ) ≤ σ +
(
norm fit (j)(0.5/(1−(ϕ/2)))

)
then

34 count = count + 1;
35 save individual j from pop to popout to position given by the

value of variable count;
36 save fitness of individual j from fit to fitout to position given by

the value of variable count;

37 end if

38 end if

39 end while

In the experiments for all tested functions we used a simple panmictic GA whose
algorithm was:

1. Generate initial population of 50 individuals (chromosomes) – each individual
(chromosome) consists of 5 genes and each gene generate randomly from the
considered range of values (searching space) for particular test function.

2. Fitness evaluation of new or modified individuals – minimization problem – the
most fit (fittest) individual has minimum value of the fitness function.

3. Selection of 3 groups of individuals:

• Best – one best individual,

• Old – 15 random selected individuals,

• Work – 34 individuals selected by 3-selection method.

4. Crossover of the Work individuals.

5. Global mutation of the crossed individuals.

6. Local mutation of the mutated individuals.

7. Merging of groups Best, Old and Work to the new population.
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8. If end condition is satisfied then end, else go to step 2.

The termination condition was set as the stagnating convergence of GA for
200 generations with 0 difference of best fitness. This allows to get the best result
for a GA setup. The global mutation is a mutation which can modify a gene with
a value from the whole searching space. The mutation probability is defined as
(number of genes) ∗ (number of individuals) ∗ (mutation rate) ∗ (uniform random
number).

For the local mutation an additive mutation was used, which adds a value from
a space 〈−amps,+amps〉 to the mutated gene. The amp value is a maximal ampli-
tude of the additive mutation, usually taken as a very small part of the searching
space.

GA-1: low-div-LOCAL GA-2: mid-div-LOCAL
50 individuals 50 individuals
5 genes 5 genes
One-point crossover One-point crossover
Uniform global mutation 5 % Uniform global mutation 20 %
Local (additive) mutation 5 % Local (additive) mutation 20 %
Amplitude of local (additive) Amplitude of local (additive)
mutation – 0.1 % from the space range mutation – 0.1 % from the space range

GA-3: high-div-LOCAL GA-4: low-div-GLOBAL
50 individuals 50 individuals
5 genes 5 genes
One-point crossover One-point crossover
Uniform global mutation 50 % Uniform global mutation 5 %
Local (additive) mutation 50 % Local (additive) mutation 5 %
Amplitude of local (additive) Amplitude of local (additive)
mutation – 0.1 % from the space range mutation – 10 % from the space range

GA-5: mid-div-GLOBAL GA-6: high-div-GLOBAL
50 individuals 50 individuals
5 genes 5 genes
One-point crossover One-point crossover
Uniform global mutation 20 % Uniform global mutation 50 %
Local (additive) mutation 20 % Local (additive) mutation 50 %
Amplitude of local (additive) Amplitude of local (additive)
mutation – 10 % from the space range mutation – 10 % from the space range

Table 1. Genetic algorithm settings for different exploration and exploitation rate

In the experiments, we used 5 different test functions, namely Eggholder func-
tion, Quadratic function, Fnc1 function, Rastrigin function and Sgu2 function. Each
of them has a different geometrical landscape and therefore a different degree of diffi-
culty. In addition, each of the test function needs a totally different setup of decision
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parameters, namely the degree of a selection pressure, the degree of a randomness,
the global and the local mutation rate and the amplitude of local mutation. For
all of the test functions a common parameter was the number of searching space
dimensions and it was set to 5.

The combinations of 3-selection method parameters were made as full factorial
of selection ϕ and random σ parameters with 0.05 step and with both order and pro-
portional type of selection. All of the provided results show the average of 100 runs
for every combination.

In our article we provide only the best results (SR, MBF) compared to the
results from other applied selection methods – SUS, tournament selection. For each
used test function we only state the GA setup in which the best result is found (see
Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). The best results of success rate (SR) and mean
best fitness (MBF) function are marked bold.

There are 5 292 different combinations of parameters values and GA variation
operators setups for each test function. Concretely, 21 selection pressure setting
options, 21 randomness setting options, 2 selection methods (proportional, order-
based) and 6 different GA setups (21∗ 21∗ 2∗ 6 = 5 292). Our sel3 selection method
gradually goes through all possible combinations of its parameter values and is
looking for an optimal solution for each combination (therefore, the parameters of
the selection method are not pre-set, all of them are passed sequentially).

The most interesting results for each of the 6 different GA setups (due to 5 292
of combinations per test function) compared to results for tournament and SUS
selection for each test function we could present due to the large scale of tables in
the Annex. As can be seen from these tables (listed in the Annex) for each test
function, (for the indicator for SR and also for the indicator for MBF) the best
results through the proposed 3-selection method were achieved.

The exception is evaluating the indicator of success rate (SR) for functions
Rastrigin and Quadratic (less difficult test functions) – here the best result (100 %)
was reached not only using selection method sel3 but also using the conventional
standard selection methods SUS and tournament selection. For more difficult test
functions (Eggholder, Fnc1, Sgu2) this is no longer true while the best results for
the indicator of success rate (SR) and mean best fitness (MBF) are achieved only
using the method sel3.

Of course, each of the test functions is, in general, achieving the best results
by certain specific settings of variation operators of GA, which directly influence
diversity and the level of degree of searching. Thus, in a certain specific (for given
function the most suitable or a number of the most suitable) setting(s) of variation
operators each of the used and tested selection methods shows better results for
given test function in comparison with other settings of variation operators.

If we compare 3-selection method with the proportional type and with the order-
based type using our five test functions, we can see that their effectiveness is rel-
atively balanced. Whether it is, in a particular case, more effective to apply the
proportional or order-based selection method always depends on the type of the test
function and partly also on the setting of variation operators of genetic algorithm.
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4.1 Eggholder Function

This test function has a strong multimodal character. The variables of this function
are not linearly dependent, and it increases the difficulty of finding a solution. Global
extreme of this function is unknown. By now the best reached minimal value of this
function for 5 variables of the considered range 〈−500; 500〉 is −3 719.7.

f (X) =
n−1∑
i=1

(
−xi sin

(√
|xi − (xi+1 + 47)|

))
−

n−1∑
i=1

(xi+1 + 47) sin

(√∣∣∣xi+1 + 47 +
xi
2

∣∣∣) . (11)

success rate [%]
SUS

sel3
Tournament

sel3
SR -3650 proportional order-based

high-div-local 29 %

64 %

61 %

67 %
p-sel = 0.65 p-sel = 0.65
p-rand = 0 p-rand = 0.15
and
p-sel = 0.9
p-rand = 0.3

Table 2. Eggholder function – SR

mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

high-div-local -3 274.18
-3 515.68

-3 502.99
-3 538.92

p-sel = 0.65 p-sel = 0.65
p-rand = 0.1 p-rand = 0.15

Table 3. Eggholder function – MBF

4.2 Quadratic Function

Unimodal function. This function has only one extreme, but, for testing purposes,
it is very useful. The value of extreme of this function is 0, where xi = 0 for
i = 1, 2, 3, . . . , 5; xi ∈ 〈−500; 500〉.

f (X) =
n∑

i=1

x2
i . (12)
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success rate [%]
SUS

sel3
Tournament

sel3
SR 0,1 proportional order-based

low-div-local 100 %
100 %

100 %
100 %

all parameters all parameters
p-sel, p-rand p-sel, p-rand

Table 4. Quadratic function – SR

mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

mid-div-local 0.0000126
0.0001259

0.0000653
0.00000147

p-sel = 1 p-sel = 0.95
p-rand = 0.15 p-rand = 0

Table 5. Quadratic function – MBF

4.3 Fnc1 Function

Fnc1 function is designed so that every position and value of extreme is known.
It consists of one declining hyper-space of x3 and randomly generated Gaussian
functions. For this test function, it is characteristic that for finding a solution
a high degree of randomness is needed. The randomness rate should be at least
0.45. It seems that for this test function and for the proportional selection (when
randomness rate ≥ 0.5), to find the best results, the size of the selection parameter
does not matter much. We would like to discuss this phenomenon in more detail in
the following article.

ex∑
j=1

dim∏
k=1

−
√

s1(j)
Π

es2(j)(x(k)−o(k,j))2
+

(
dim∑
i=1

0.002xi

)3

. (13)

The parameters s1, s2, o were once randomly generated, −5 < xk < 5 and k =
1, 2, . . . , 5. The value of global minimum (global extreme) is −56.4176 and global
extreme position is x1 = 4.0587; x2 = −2.9964; x3 = 2.7314; x4 = −4.7486 and
x5 = −1.0560. The function has 50 extremes randomly distributed in the space and
one corresponding to the minimum of the hyperspace x3.

4.4 Rastrigin Function

Rastrigin function is multimodal function that shows strong periodical character
with the regular occurrence of extremes. It belongs to the separable test functions.
The value of global minimum (global extreme) of this test function is 0, where xi = 0
for i = 1, 2, 3, . . . , 5 ; xi ∈ 〈−500; 500〉.

f (x) = 10n+
n∑

i=1

(
x2
i − 10 cos (2Πxi)

)
. (14)
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success rate [%]
SUS

sel3
Tournament

sel3
SR -50 proportional order-based

high-div-local 2 %

41 %

0 %

36 %
p-sel = 1 p-sel = 1
p-rand = 0.5 p-rand = 0.45
and and
p-sel = 0.05 p-sel = 0.9
p-rand = 0.55 p-rand = 0.65
and and
p-sel = 0.15 p-sel = 1
p-rand = 1 p-rand = 0.8

Table 6. Fnc1 function – SR

mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

high-div-local −25.256
−37.568

−16.243
−36.636

p-sel = 0.05 p-sel = 0.15
p-rand = 0.55 p-rand = 0.45

Table 7. Fnc1 function – MBF

success rate [%]
SUS

sel3
Tournament

sel3
SR 0,1 proportional order-based

mid-div-local 100 %

100 %

99 %

100 %
p-sel= 1 p-sel = 1
p-rand = 0 p-rand = 0
and several others and many others

low-div-local 100 %

100 %

100 %

100 %
p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0
and several others and many others

Table 8. Rastrigin function – SR

4.5 Sgu2 Function

Test function Sgu2 has a strong multimodal character and belongs to non-separable
functions. The location and the value of global extreme is unknown for xi ∈
〈−500; 500〉, i = 1, 2, 3, . . . , 5. So far the best value achieved by different experi-
ments was −46.2655.

f (x) =
n−1∑
i=1

− |ln (|arctan (xi+1)− arccos (xi)| − Π (sin (xi+1)− cos (xi)))| . (15)
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mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

mid-div-local 0.0005
0.0033

0.013
0.0003

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

Table 9. Rastrigin function – MBF

success rate [%]
SUS

sel3
Tournament

sel3
SR -25 proportional order-based

mid-div-local 61 %
85 %

73 %
78 %

p-sel = 0.7 p-sel = 0.85
p-rand = 0 p-rand = 0.05

Table 10. Sgu2 function – SR

mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

mid-div-local −27.209
−28.189

−27.181
−28.163

p-sel = 0.8 p-sel = 0.75
p-rand = 0 p-rand = 0

Table 11. Sgu2 function – MBF

success rate [%]
SUS

sel3
Tournament

sel3
SR -3650 proportional order-based

high-div-global 28 %
49 %

15 %
48 %

p-sel = 0.8 p-sel = 0.85
p-rand = 0 p-rand = 0

high-div-local 29 %

64 %

61 %

67 %
p-sel = 0.65 p-sel = 0.65
p-rand = 0 p-rand = 015
and
p-sel = 0.9
p-rand = 0.3

mid-div-global 30 %
53 %

46 %
54 %

p-sel = 0.6 p-sel = 0.6
p-rand = 0.1 p-rand = 0.1

mid-div-local 25 %

61 %

45 %

61 %
p-sel = 0.25 p-sel = 0.25
p-rand = 0.2 p-rand = 0
and
p-sel = 0.55
p-rand = 0.7

low-div-global 13 %
40 %

18 %
37 %

p-sel = 0.6 p-sel = 0.45
p-rand = 0.65 p-rand = 0.7

low-div-local 21 %
51 %

28 %
46 %

p-sel = 0.15 p-sel = 1
p-rand = 0.85 p-rand = 0.7

Table 12. Eggholder function – SR



1436 J. Lov́ı̌sková, D. Pernecký

mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

high-div-global −3 314.42
−3 492.89

−3 421.74
−3 501.17

p-sel = 0.85 p-sel = 0.85
p-rand = 0 p-rand = 0

high-div-local −3 274.18
−3 515.68

−3 502.99
−3 538.92

p-sel = 0.65 p-sel = 0.65
p-rand = 0.1 p-rand = 0.15

mid-div-global −3 296.37
−3 513.28

−3 456.52
−3 509.35

p-sel = 0.6 p-sel = 0.6
p-rand = 0.1 p-rand = 0.35

mid-div-local −3 251.13
−3 509.95

−3 392.8
−3 488.4

p-sel = 0.25 p-sel = 0.4
p-rand = 0.2 p-rand = 0.8

low-div-global −3 129.94
−3 399.69

−3 185.14
−3 402.85

p-sel = 0.15 p-sel = 0.2
p-rand = 1 p-rand = 0.65

low-div-local −3 137.88
−3 417.39

−3 229.15
−3 389.04

p-sel = 0.15 p-sel = 1
p-rand = 0.65 p-rand = 0.7

Table 13. Eggholder function – MBF

success rate [%]
SUS

sel3
Tournament

sel3
SR 0,1 proportional order-based

high-div-global 97 %
97 %

0 %
99 %

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

high-div-local 100 %

100 %

100 %

100 %
p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0
and many others and many others

mid-div-global 100 %

100 %

32 %

100 %
p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0
and and several others
p-sel = 1
p-rand = 0.05

mid-div-local 100 %

100 %

100 %

100 %
p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0
and many others and many others

low-div-global 96 %
97 %

95 %
99 %

p-sel = 1 p-sel = 0.55
p-rand = 0.1 p-rand = 0.05

low-div-local 100 %
100 %

100 %
100 %

all parameters all parameters
p-sel, p-rand p-sel, p-rand

Table 14. Quadratic function – SR

5 CONCLUSION

In this paper we introduced new selection method called 3-selection which enables
higher scalability, covers both the proportional and order-based methods, and in
addition, it has a randomness parameter. The examples show that for different
settings of variation operators, which directly influence the diversity and the degree
of searching, the meaning of selection method is changing.
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mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

high-div-global 0.0269
0.0272

19.867
0.0195

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

high-div-local 0.0000412
0.000283

0.0064
0.00000369

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

mid-div-global 0.0092
0.0126

0.2481
0.0097

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

mid-div-local 0.0000126
0.0001259

0.0000653
0.00000147

p-sel = 1 p-sel = 0.95
p-rand = 0.15 p-rand = 0

low-div-global 0.0309745
0.0335

0.0375027
0.0284

p-sel = 1 p-sel = 0.75
p-rand = 0.1 p-rand = 0

low-div-local 0.0000123
0.0000512

0.00000746
0.00000448

p-sel = 1 p-sel = 0.95
p-rand = 0.1 p-rand = 0.05

Table 15. Quadratic function – MBF

success rate [%]
SUS

sel3
Tournament

sel3
SR -50 proportional order-based

high-div-global 12 %
31 %

0 %
23 %

p-sel = 0.6 p-sel = 1
p-rand = 0.3 p-rand = 0.15

high-div-local 2 %

41 %

0 %

36 %
p-sel = 1 p-sel = 1
p-rand = 0.5 p-rand = 0.45
and and
p-sel = 0.05 p-sel = 0.9
p-rand = 0.55 p-rand = 0.65
and and
p-sel = 0.15 p-sel = 1
p-rand = 1 p-rand = 0.8

mid-div-global 12 %
27 %

0 %
32 %

p-sel = 0.15 p-sel = 1
p-rand = 0.6 p-rand = 0.3

mid-div-local 5 %
35 %

0 %
38 %

p-sel = 0 p-sel = 0
p-rand = 0.4 p-rand = 0.35

low-div-global 4 %
21 %

0 %
20 %

p-sel = 0 p-sel = 0
p-rand = 0.2 p-rand = 0.15

low-div-local 2 %
20 %

0 %
20 %

p-sel = 0 p-sel = 0
p-rand = 0.65 p-rand = 0.65

Table 16. Fnc1 function – SR

Compared with the most used fitness-proportionate selection method the SUS
and the most used order-based selection method – the tournament selection, it was
also shown that the proposed 3-selection method is able to provide better results
because this method enables more precise setting of GA, and consequently, more
precise results are obtained. Experiments used binary tournament selection with
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mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

high-div-global −28.972
−34.569

−17.274
−33.686

p-sel = 0.9 p-sel = 0.95
p-rand = 0.75 p-rand = 0.3

high-div-local −25.256
−37.568

−16.243
−36.636

p-sel = 0.05 p-sel = 0.15
p-rand = 0.55 p-rand = 0.45

mid-div-global −17.323
−34.621

−18.479
−34.4

p-sel = 0.05 p-sel = 0
p-rand = 0.5 p-rand = 0.6

mid-div-local −15.175
−36.171

−18.121
−36.191

p-sel = 0 p-sel = 0
p-rand = 0.4 p-rand = 0.35

low-div-global −11.042
−31.647

−17.926
−29.317

p-sel = 0 p-sel = 0
p-rand = 0.2 p-rand = 0.25

low-div-local −9.029
−28.439

−9.615
−27.72

p-sel = 0 p-sel = 0
p-rand = 0.2 p-rand = 0.45

Table 17. Fnc1 function – MBF

success rate [%]
SUS

sel3
Tournament

sel3
SR 0,1 proportional order-based
high-div-global 0 % 0 % 0 % 0 %

high-div-local 100 %

100 %

1 %

100 %
p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

and several others

mid-div-global 1 %
1 %

0 %
3 %

p-sel = 1 p-sel = 1
p-rand = 0.05 p-rand = 0

mid-div-local 100 %

100 %

99 %

100 %
p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0
and several others and many others

low-div-global 0 %

1 %

0 %

1 %
p-sel = 1 p-sel = 0.45
p-rand = 0.15 p-rand = 0
and several others and several others

low-div-local 100 %

100 %

100 %

100 %
p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0
and several others and many others

Table 18. Rastrigin function – SR

arity = 2 and selection probability (for k = 2):

p(fi) =
(imin(fi) + z(fi))

k − (imin(fi) + z(fi)− 1)k

nk
(16)
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mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

high-div-global 2.21
2.137

49.616
2.41

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

high-div-local 0.00107
0.018

3.864
0.0009

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

mid-div-global 1.488
1.403

6.971
1.385

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

mid-div-local 0.0005
0.0033

0.013
0.0003

p-sel = 1 p-sel = 1
p-rand = 0 p-rand = 0

low-div-global 2.582
2.6504

2.868
2.4198

p-sel = 1 p-sel = 0.9
p-rand = 0.15 p-rand = 0

low-div-local 0.0013
0.0027

0.0015
0.0008

p-sel = 1 p-sel = 1
p-rand = 0.2 p-rand = 0

Table 19. Rastrigin function – MBF

success rate [%]
SUS

sel3
Tournament

sel3
SR -25 proportional order-based

high-div-global 35 %
52 %

3 %
49 %

p-sel = 0.85 p-sel = 0.95
p-rand = 0 p-rand = 0

high-div-local 66 %
76 %

16 %
79 %

p-sel = 0.8 p-sel = 0.95
p-rand = 0 p-rand = 0

mid-div-global 47 %

57 %

33 %

57 %
p-sel = 0.9 p-sel = 0.8
p-rand = 0 p-rand = 0

and
p-sel = 0.8
p-rand = 0.1

mid-div-local 61 %
85 %

73 %
78 %

p-sel = 0.7 p-sel = 0.85
p-rand = 0 p-rand = 0.05

low-div-global 28 %
38 %

20 %
33 %

p-sel = 0.85 p-sel = 0.55
p-rand = 0.1 p-rand = 0.3

low-div-local 52 %

66 %

43 %

64 %
p-sel = 0.95 p-sel = 0.3
p-rand = 0.8 p-rand = 0.25
and
p-sel = 0.5
p-rand = 0.7

Table 20. Sgu2 function – SR

where

• p(fi) is selection probability of the ith individual (fitness),

• z (fi) is number of repetitions of the ith individual (fitness) in the population,

• imin(fi) is number of individuals from which the ith individual has better fitness
(for minimization tasks)

• k is arity of the tournament selection,
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mean best fitness
SUS

sel3 Tournament sel3
MBF proportional order-based

high-div-global −23.801
−25.212

−20.472
−24.949

p-sel = 0.85 p-sel = 0.9
p-rand = 0 p-rand = 0

high-div-local −26.282
−27.837

−22.263
−27.952

p-sel = 0.9 p-sel = 0.95
p-rand = 0 p-rand = 0

mid-div-global −25.141
−25.555

−24.234
−25.871

p-sel = 0.9 p-sel = 0.8
p-rand = 0 p-rand = 0

mid-div-local −27.209
−28.189

−27.181
−28.163

p-sel = 0.8 p-sel = 0.75
p-rand = 0 p-rand = 0

low-div-global −23.005
−24.0403

−22.891
−23.893

p-sel = 0.85 p-sel = 0.7
p-rand = 0.1 p-rand = 0.6

low-div-local −25.49
−26.5197

−24.877
−26.3822

p-sel = 0.5 p-sel = 0.3
p-rand = 0.7 p-rand = 0.25

Table 21. Sgu2 function – MBF

• n is number of individuals in the population.

The selection probability was calculated for used SUS:

p(Xi) =
(fni
× z (fi))∑
fni

; fni
≥ 0 (17)

where

• fni
is normalized fitness value of the ith individual (minimization tasks),

• p(Xi) is selection probability of the ith individual,

• z (fi) is number of repetitions of the ith individual (fitness) in the population.

It could be argued that the proposed 3-selection method makes the process of
designing GA more difficult. By providing more degrees of freedom the process of
designing GA is more difficult. However, the extra properties of selection prede-
termine this method to be used in some sort of adaptive algorithms where such
disadvantages become useful. But the ability of continuously changing selection
pressure, influence of randomness, or optionally changing behavior of selection by
switching between proportional and order-based selection are definitely great merits
of the 3-selection method.
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[19] Ochoa, G.—Mädler-Kron, C.—Rodriguez, R.—Jaffe, K.: Assortative Mat-
ing in Genetic Algorithms for Dynamic Problems. In: Rothlauf, F., Branke, J.,
Cagnoni, S. et al. (Eds.): Applications of Evolutionary Computing (EvoWorkshops
2005). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 3449,
2005, pp. 617–622, doi: 10.1007/978-3-540-32003-6 65.

[20] Eshelman, L. J.—Schaffer, J. D.: Preventing Premature Convergence in Genetic
Algorithms by Preventing Incest. Proceedings of the 4th International Conference
on Genetic Algorithms (ICGA ’91), Morgan Kaufmann, San Francisco, CA, 1991,
pp. 115–122.

[21] Hutter, M.: Fitness Uniform Selection to Preserve Genetic Diversity. Proceedings of
the 2002 IEEE Congress on Evolutionary Computation (CEC ’02), 2002, pp. 783–788,
doi: 10.1109/CEC.2002.1007025.

[22] Chen, Y.—Hu, J.—Hirasawa, K.—Yu, S.: Performance Tuning of Genetic Algo-
rithms with Reserve Selection. Proceedings of the 2007 IEEE Congress on Evolution-
ary Computation (CEC ’07), 2007, pp. 2202–2209, doi: 10.1109/CEC.2007.4424745.
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