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Abstract. Sparse coding-based single image super-resolution has attracted much
interest. In this paper, a super-resolution reconstruction algorithm based on sparse
coding with multi-class dictionaries is put forward. We propose a novel method
for image patch classification, using the phase congruency information. A sub-
dictionary is learned from patches in each category. For a given image patch, the
sub-dictionary that belongs to the same category is selected adaptively. Since the
given patch has similar pattern with the selected sub-dictionary, it can be better rep-
resented. Finally, iterative back-projection is used to enforce global reconstruction
constraint. Experiments demonstrate that our approach can produce comparable or
even better super-resolution reconstruction results with some existing algorithms,
in both subjective visual quality and numerical measures.

Keywords: Image patch classification, multi-class dictionaries, phase congruency,
sparse coding, super-resolution

1 INTRODUCTION

Image super-resolution (SR) refers to the problem of using signal processing tech-
niques to estimate a high-resolution (HR) image X with better quality from an ob-
served low-resolution (LR) image Y. The image observation model is usually de-
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scribed as [11, 2]
Y=SHX+V (1)

where H is a blurring operator, S is a down-sampling operator and V is additive
noise.

In recent years, learning-based SR methods [3] have been extensively studied,
which use a learned co-occurrence to predict the correspondence between LR and
HR patches. The learning algorithms including Markov network [4, [5, [6], neighbor
embedding [7, ®, 9, [10], dictionary learning [T, 12, [T3], [14], anchored neighborhood
regression [16], [15], random forests [I7], and deep learning [I8, [19, 20, 21].

Freeman et al. [4] propose an approach named VISTA (Vision by Image/Scene
TrAining). They generate a synthetic world of scenes and their corresponding ren-
dered images, modeling their relationships with a Markov network. Bayesian belief
propagation is used to efficiently find a local maximum of the posterior probabil-
ity for the scene if an image is given. They apply VISTA to the super resolution
problem, such as estimating high frequency details from a low-resolution image.
Stephenson and Chen [B] propose to use even stronger prior information by extend-
ing Markov random filed (MRF)-based super-resolution to use adaptive observation
and transition functions, that is, to make these functions region-dependent. Ma
et al. [6] learn the parameters of the network from training set, which computes
probability distribution by K-means algorithm. Given a low-resolution image as
input, Chang et al. [7] recover its high-resolution counterpart using a set of training
examples. Specifically, small image patches in the low and high-resolution images
form manifolds with similar local geometry in two distinct feature spaces. As in
locally linear embedding (LLE), local geometry is characterized by how a feature
vector corresponding to a patch can be reconstructed by its neighbors in the feature
space. Besides using the training image pairs to estimate the high-resolution em-
bedding, they also enforce local compatibility and smoothness constraints between
patches in the target high-resolution image through overlapping. Zhang et al. [§]
propose a partial least squares (PLS) method, called locality preserving PLS (LP-
PLS), to find a unified feature space where the correlation between LR and HR
image patches on that space is maximized. Applying the proposed LPPLS, they
learn the joint mapping of LR and HR image patches simultaneously and then map
these image patches onto the unified feature space. The k-nearest neighbor (k-NN)
searching and the optimal reconstruction weights computing are performed in this
unified feature space as well. Rahiman and George [9] propose learning-based ap-
proaches for single image super-resolution using sparse representation and neighbor
embedding. Separate prediction models are trained for each cluster, and the model
parameters are updated with each input image to adapt to input test image. Gao
et al. [I0] propose a sparse neighbor selection scheme for SR reconstruction. They
first predetermine a larger number of neighbors as potential candidates and develop
an algorithm to simultaneously find the neighbors and to solve the reconstruction
weights. Recognizing that the k-nearest neighbor for reconstruction should have
similar local geometric structures based on clustering, they employ a local statisti-
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cal feature, namely histograms of oriented gradients (HoG) of LR image patches,
to perform such clustering. By conveying local structural information of HoG in
the synthesis stage, the k-NN of each LR input patch is adaptively chosen from
their associated subset, which significantly improves the speed of synthesizing the
HR image while preserving the quality of reconstruction. Wang et al. [I1] propose
a semi-coupled dictionary learning (SCDL) model to solve cross-style image synthe-
sis problems. Under SCDL, a pair of dictionaries and a mapping function will be
simultaneously learned. The dictionary pair can well characterize the structural do-
mains of the two styles of images, while the mapping function can reveal the intrinsic
relationship between the two styles” domains. The two dictionaries will not be fully
coupled so that much flexibility can be given to the mapping function for an accu-
rate conversion across styles. Moreover, clustering and image nonlocal redundancy
are introduced to enhance the robustness of SCDL. He et al. [I2] apply a Bayesian
method using a beta process prior to learn the over-complete dictionaries. They not
only provide dictionaries that customized to each feature space, but also add more
consistent and accurate mapping between the two feature spaces. The proposed
algorithm is able to learn sparse representations that correspond to the same dic-
tionary atoms with the same sparsity but different values in coupled feature spaces,
thus bringing consistent and accurate mapping between coupled feature spaces.

Timofte et al. [I5] propose fast super-resolution methods while making no com-
promise on quality. First, they support the use of sparse learned dictionaries in
combination with neighbor embedding methods. In this case, the nearest neigh-
bors are computed using the correlation with the dictionary atoms rather than the
Euclidean distance. Second, they show that using global collaborative coding has
considerable speed advantages, reducing the super-resolution mapping to a precom-
puted projective matrix. Third, they propose the anchored neighborhood regression
(ANR) algorithm to anchor the neighborhood embedding of a low resolution patch
to the nearest atom in the dictionary and to precompute the corresponding embed-
ding matrix. In their later work [16], an improved variant of ANR (A+) is proposed
which combines the best qualities of ANR and simple functions (SF) [22]. A+ builds
on the features and anchored regressors from ANR. Instead of learning the regressors
on the dictionary, it uses the full training material, similar to SF. Schulter et al. [I7]
propose to directly map from low to high-resolution patches using random forests.
They demonstrate how random forests nicely fit into this framework. During the
process of trees training, they optimize a novel and effective regularized objective
that not only operates on the output space but also on the input space, which espe-
cially suits the regression task. During inference, they comprise the same well-known
computational efficiency that has made random forests popular for many computer
vision problems.

Dong et al. [18] propose a deep learning method for single image super-resolution
which directly learns an end-to-end mapping between the low/high-resolution im-
ages. The mapping is represented as a deep convolutional neural network (CNN)
that takes the low-resolution image as the input and outputs the high-resolution
one. Their deep CNN has a lightweight structure, which demonstrates state-of-the-
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art restoration quality, and achieves fast speed for practical on-line usage. They
extend the network to cope with three color channels simultaneously, and show bet-
ter overall reconstruction quality. Kim et al. [I9] use a very deep convolutional
network inspired by Visual Geometry Group (VGG)-net for ImageNet classifica-
tion. Lai et al. [20] propose the Laplacian Pyramid Super-Resolution Network (Lap-
SRN) to progressively reconstruct the sub-band residuals of high-resolution images.
At each pyramid level, the model takes coarse-resolution feature maps as input,
predicts the high-frequency residuals, and uses transposed convolutions for upsam-
pling to the finer level. They train the proposed LapSRN with deep supervision
using a robust Charbonnier loss function and achieve high-quality reconstruction.
Furthermore, the network generates multi-scale predictions in one feed-forward pass
through the progressive reconstruction, thereby facilitates resource-aware applica-
tions. Liu et al. [21] argue that domain expertise from the conventional sparse coding
model can be combined with the key ingredients of deep learning to achieve further
improved results.

Yang et al. [I3] propose sparse coding-based SR framework. Image patches are
assumed to have a sparse representation with respect to an over-complete dictio-
nary, and the most relevant reconstruction neighbors are adaptively selected based
on sparse coding, avoiding under- or over-fitting. Zeyde et al. [I4] embark from the
work of [13], similarly assume a local Sparse-Land model on image patches serving
as regularization, but use a different training approach for the dictionary pair. Both
methods aim at learning a universal dictionary. However, the contents may vary
significantly across different image patches, and sparse decomposition over a uni-
versal dictionary is potentially unstable [23]. Adaptive sparse coding via multiple
dictionaries has been proposed. Yang et al. [24] employ multiple dictionaries learned
from K-means clustered patches. Dong et al. [25] use principal component analy-
sis (PCA) technique to learn the sub-dictionaries, and autoregressive and nonlocal
self-similarity are introduced as regularization terms. These methods do not use
the geometric information as a supervised prior to guide the image patch cluster-
ing.

In this paper, a novel method for image patch classification is proposed, and
it is integrated into the multiple dictionaries learning SR framework, called SR re-
construction based on Sparse Coding with Multi-Class Dictionary (SC-MCD). Em-
ploying the Phase Congruency (PC) measurement [26], image patches are divided
into non-smooth patches with different orientations and smooth patches. PC pro-
vides an absolute measure of the significance of a local structure, and it is invariant
to changes in illumination and magnification. The example patches are classified
into several categories, and each category consists of patches with similar patterns,
where a sub-dictionary can be learned. For an image patch to be coded, the sub-
dictionary that belongs to the same category is selected adaptively. Since the given
patch has similar pattern with the selected sub-dictionary, it can be better repre-
sented, and the whole image can be more accurately reconstructed. Besides, we
use iterative back-projection (IBP) [27] to enforce global reconstruction constraint,
which is simple but effective.
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The remainder of this paper is organized as follows. In Section [2, we present
the proposed SC-MCD algorithm in detail. Experimental results are then presented
in Section [3] Finally, Section [4] gives some concluding remarks and discussions on
future works.

2 PROPOSED APPROACH
2.1 Sparse Representation-Based SR

Following the image observation model , the task of SR is to estimate an HR image
X satisfying reconstruction constraint, which requires that X should be consistent
with the observed LR image Y with respect to . It isill-posed as many HR images
satisfy the reconstruction constraint. Sparse representation-based SR methods use
sparse prior on local patches to regularize the estimate of HR image.

Let x, y denote the HR and LR image patches, respectively, two dictionaries
Dy, and D, are trained to have the same sparse representations for each HR and LR
image patch pair. The recovery of = from y under the sparse prior can be described
as:

minlafl, st. [FDio — Fyl} <ei, [|FDya — Fal? <o, [SHX ~ Y[ <o
2)

where F' is a (linear) feature extraction operator, « is the sparse representation
coefficients, ||allp represents the number of non-zero coefficients in «, and ¢;, i =
1,2, 3 are the admissible errors.

2.2 Classification of Image Patches

Learning a universal dictionary able to optimally represent image patches with var-
ious patterns is very difficult. So it is meaningful to learn multiple dictionaries with
different patterns. In this section, a novel method for image patch classification is
proposed, employing the PC information.

Rather than defining features directly at points with sharp changes in intensity,
the PC model postulates that features are perceived at points where the Fourier
components are maximal in phase. Kovesi [26] proposes to calculate PC with log-
arithmic Gabor wavelets. PC at location ¢ is expressed as the summation over
orientation o and scale n:

N 220 2 Wol(0) [ Ano (1) A®no(i) — To)
PC(Z) B ZO Zn ANO(Z) +e

where |z equals to  when z > 0 and it equals to 0 when x < 0. A represents the
amplitude of the Fourier component, and A® is phase deviation. T compensates
for the influence of noise, W is the weighting function for frequency spread, and € is
a small constant to avoid division by zero.

(3)
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Once the PC map of the image is obtained, a threshold F, is used to get a binary
image, where ‘1’ indicates feature points. At the same time, an orientation image
is computed, recording the direction angle in which local energy is a maximum for
each pixel. The direction angles are uniform sampled in the range [0°,180°], and
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the sample interval is determined by the number of orientation.

Intensities of patch PC map Binary image
167 | 174 | 167 001| O 0 1 0 0
167 | 167 | 167 0 0 0 0 0 0 _}Smooth
patch
167 | 164 | 167 0 0 0 0| 0|0
Intensities of patch PC map Binary image
132 | 127|119 055 | 051 | 0.37 1|11 Non-smooth
102|102 | 103 ] 057 | 050 | 0.4 1| 1| 1 gy Pachwith
direction
109 | 109 | 88 0.47 | 0.44 | 0.50 1] 1] 1 angle 90°
Orientation image
90 | 90 | 90
90 | 90 | 90
90 (9% | O
Intensities of patch PC map Binary image Complex
60 | 52 | 57 0.3 | 0.15 | 002 1] 11 patch with
more than
55 | 50 | 50 0.15 | 0.08 | 0.02 1] 1] 1 > one
55 | 48 | 50 0 [005]0.14 0| 1|1 important
) ) direction
Orientation image angles
0| 0 (135
90 | 90 | 135
0| 0 135

Figure 1. Examples of image patch classification

Extract patches from the binary image and orientation image, denote as {b;}
and {o;}. Count the number of ‘1’ for each b;, and if it is smaller than 1/3 of the
total number of pixels in the patch, then patch 4 is classified as a smooth patch.
For each non-smooth patch, find the direction angle d; that repeats most times
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in 0;. Classify non-smooth patches that have identical d; into the same category.
However, if the number of occurrences of d; is less than half of the total number
of image patches, the pixel block may have more than one main orientation, and
it is judged as a complex patch. So if we compute PC map for J — 1 orienta-
tions, we will get J categories of patches. Figure [I] shows examples of image patch
classification.

Using the above classification method, example patches are classified into dif-
ferent categories with similar patterns, and for each category a sub-dictionary can
be learned. For an image patch to be processed, the sub-dictionary that belongs to
the same category is selected adaptively.

2.3 SR Reconstruction Based on Sparse Coding
with Multi-Class Dictionary (SC-MCD)

The algorithm consists of two parts: multi-class dictionaries training and SR recon-
struction.

Part I: Multi-Class Dictionary Pairs Training (Can Be Done Offline)

The first step is to extract feature vector pairs from the HR and LR training
images. Firstly, LR patches of size n x n pixels are extracted from the LR training
images, and the classification algorithm described in Section 2.2 is applied to the
patches, so each patch gets a category label 5,5 = 1,2,--- ,J. Secondly, high-pass
filters are used to extract features from the LR training images. The four filters
used are:

flz[_171]7f2:f1Taf3:[13_271]/27f4:fg (4>

where the superscript “T” means transpose. Applying these filters yields four vec-
tors for each LR patch, which are concatenated into one vector qu as the feature
vector of the LR patch, where the superscript j is the category label of the patch.
The feature vectors with the same category labels are grouped together, so the LR

()
) X

feature vector set { l(l), Ql(2), e } is obtained. Finally, the HR training im-

ages are subtracted by the interpolated images scaled up from the corresponding
LR training ones and the high frequency parts are kept. HR patches of size R, X R,,
pixels are extracted from the high frequency images, where R is the SR ratio. Each
HR patch is arranged in vector form qi as the feature vector, where the super-
script j is the category label of the corresponding LR patch. The feature vectors
with the same category labels are grouped together, so the HR feature vector set

{ 21), 22)7 ce ;L‘D} is obtained.

Suppose that there are totally J categories of feature vector pairs set for HR and
LR image patches respectively, {< 1(1)’ 21)> , <Ql(2)7 22)> e < l(‘]), QEZJ)>} for
HR and LR image patches, respectively, with the same number of columns for each
< l(j), Ef>> pairs. We want to learn J LR sub-dictionaries {Dl(1>, DZ(Q)7 Co Dl(‘])}
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™ 3 (1)
l 1

s @ } can be sparsely represented, re-

)

under which the patches in {
spectively. The problem can be written as:

, . L 2 .
{Dl(]), A(])} = arg min HDI(])A(]) - Ql(j) s.t. Hagj)

2

,SCi=L2....0 (5)

where AV is the coding coefficients of the patch vectors set Ql(j ) under the sub-
U)ol ‘al(j) represents the number of
0

dictionary D;”’, «;” is the i*" column of AV
non-zero coefficients in aﬁj ), C is the sparsity threshold. K-SVD dictionary learn-
ing algorithm [28] is used to simultaneously determine the sub-dictionaries and the
coding coefficients.

The HR sub-dictionaries can be computed by the following Pseudo-Inverse ex-
pression:

DY - (a)" = QA" (4040w ®
where @), and Q; are matrices of feature vectors of HR and LR image patches, D)
and D; are the HR and LR dictionaries, Q, = A,Dy, Q, = A;D,;, where A;, and
A; are sparse matrices. We suppose the two dictionaries D, and D; are trained
to have the same sparse representations for each HR and LR image patch pair, so
A, = Ay = A. The coefficient matrix A is obtained during the training process of
D;, and the dictionary Dj, is obtained from D, and A from the formula

) . ) 2
D,(f) = arg min H Q;j) — A(J)Dgf)
F

(7)

Multi-class dictionary pairs are trained, instead of only one pair of dictionary
<Dl7 Dh>:
1 1 2 2 J J

Part II: SR Reconstruction
For a given LR test image Y, patches of size n x n pixels are extracted, with
n — 1 pixels overlap in each direction. For each patch, extract feature vector y, and
calculate which category it belongs to. For each y that belongs to j-th category,
sub-dictionary pair <DZ<J )7 D,(f>> is selected, and the sparse coding can be written
as )
£ = arg min “Dl(])p(j) - y”g s.t. H,u(j)HO <C. (9)

OMP algorithm [29] is used to calculate the optimal solution x)*, and the
corresponding HR feature vector is obtained by =z = D,(f)u(j)*. When all the HR
features are obtained, the high frequency HR image X can be constructed by
enforcing local compatibility and smoothness constraints between adjacent patches.
The target HR image X is the summation of the high frequency image X and
the interpolated image X;, which is scaled up from the LR image Y by bicubic
interpolation.
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The HR image produced by the above sparse representation method may not
satisfy the reconstruction constraint exactly. IBP [27] is employed to alleviate this
problem:

X* =argmin|[SHX — Y|3. (10)

The solution can be efficiently computed using gradient descent:
X=X, +7[H'S"(Y - SHX,)]. (11)
where 7 is the step size of the gradient descent, X, is the estimate of HR image

after the t™ iteration, and X is used as the initial estimate of X.
The block diagram of the proposed SC-MCD algorithm is shown in Figure 2|

HR

il Extract Extract HR !

tirrig]g;zg ? patches feature vectors {ank —» <D® p,®> }
\

L J ‘ |

\

2 p, @

G Interpolated H>» <D D,2> |

images Sub-dictionary | | | |

LR pairs training \ ‘
training Extract LR ‘

Images feature vectors {a} — | |
Extract | \
patches |

Classification Ca:;ebge?ry ] > <DD> |
of patches ] |
J L \
Muti-class dictionary pairs
a) Multi-class dictionary pairs training
Extract LR
feature vectors O3
Extract Select sub- <D0 D, 0>
patches Classification Category dictionary pair '
> label
LR test of patches i
nage ¥ Sparse
Interpolate —» Ir}tﬁqr;;ele;?d COI“Q
1
High Compute and
HRimage X «— IBP {«— Anitial frequency <—| 'morde high e uo
estimate X, - frequency
image X
patches

b) SR reconstruction

Figure 2. The block diagram of the proposed SC-MCD algorithm
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3 EXPERIMENTAL RESULTS

We use several benchmarks, including Set14 [14], Set5 [30] and B100 [I6] as our
testing set. The magnification factor is 4. Those 3 x 3 patches are extracted in
LR images, and the corresponding HR patches are 12 x 12. About 80000 train-
ing patch pairs are collected from the training image set used in [I3] and 1024
atoms are trained for each sub-dictionary. Sparsity threshold C is set to be 5.
All the simulations are conducted in MATLAB R2016a on PC with Intel®) Core™
i7/3.6 GHz/4 GB.

If the number of categories is too small, the differences between the geometric
features of the image patches corresponding to each sub-dictionary will be rather
large. On the other hand, if there are a lot of categories, the discriminations between
sub-dictionaries are low. Therefore, both the factors of accuracy and discrimination
are taken into account in the expression of sub-dictionaries to choose the appropri-
ate number of categories. In the experiments, the number of categories is increased
from 5 to 9, and the average peak signal-noise ratio (PSNR) of each data set is calcu-
lated. The results are shown in Table[I] Experiments show that the reconstruction
results are better when the number of categories (J) is set to 6 or 7. In the later
experiments, J is set to be 6.

J=5 J=6 J=7] J=8] J=9
Seth 27.787 | 27.787 | 27.814 | 27.785 | 27.762
Setl4 | 25.095 | 25.117 | 25.101 | 25.095 | 25.097
B100 | 25.331 | 25.335 | 25.332 | 25.327 | 25.324

Table 1. Mean PSNR of SR reconstructed images using different number of categories

3.1 MCD vs. SCD

In this part, we evaluate the influence of multi-class dictionaries to the quality of
reconstructed HR images. We test two methods: SR reconstruction with single class
dictionary (denote as SCD) [14], and SR reconstruction with multi-class dictionaries
(denote as MCD). In order to find out the contribution of the multi-class dictionaries
independently, we do not apply IBP to enforce global reconstruction constraint in
the experiments for this part.

We select 7 images from Setl4 as the testing set. For each test image, the
mean squared error (MSE) between the reconstructed image and the original one is
calculated, and the result is shown in Table 2] We can see that, compared to SCD,
MCD averagely reduces the squared error by 7.541 per pixel.

3.2 MD_PC vs. MD_KM

In this part, we compare the SR performance by different multi-class dictionaries.
The proposed image patches classification method based on phase congruency is
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SCD MCD
Barbara 271.231 | 253.994
Coastguard | 237.873 | 233.966
Face 77.549 | 76.640
Foreman 109.968 99.542
Man 200.533 | 197.136
Pepper 108.982 | 105.698
Zebra 252.086 | 238.458
Average 179.746 | 172.205

Table 2. MSE of SR reconstructed images using SCD and MCD

denoted as MD_PC. In [25] Dong et al. use k-means for image patches clutering,
denoted as MD_KM. In order to highlight the impact of the image patches classifi-
cation algorithms on SR performance, the SR reconstruction process here does not
introduce any global reconstruction constraints.

Measures MD_KM MD_PC
PSNR (dB) | FSIM | PSNR (dB) | FSIM
Barbara 24.038 | 0.933 24.083 | 0.938
Coastgrard 24.337 | 0.725 24.439 | 0.729
Face 29.322 | 0.871 29.286 | 0.870
Foreman 27.060 | 0.879 28.151 | 0.896
Man 25.098 | 0.932 25.183 | 0.936
Pepper 27.713 | 0.961 27.890 | 0.965
Zebra 24.075 | 0.909 24.357 | 0.920
Average 25.949 | 0.887 26.198 | 0.894

Table 3. Numerical measurements of the reconstructed images by multi-class dictionaries

The results are compared by PSNR and Feature Similarity (FSIM) [31]. The
higher of PSNR and FSIM means much similar of the reconstructed image to
the original image. As shown in Table [3] the numerical measurements of PSNR
and FSIM obtained by proposed MD_PC are higher than that of MD_KM used
in [25].

3.3 SC_MCD vs. Other Algorithms

We compare the proposed MCD (without IBP) and MCD_IBP methods with Bicu-
bic interpolation method, Kim’s method using sparse regression and natural image
prior denoted as SR-NIP [32], Zeyde’s sparse coding-based SR using a universal
dictionary denoted as SC_SR [14], Dong’s method by k-means clustering, adaptive
sparse domain selection and adaptive regularization denoted as ASDS_AR_NL [25],
and Dong’s method by deep convolutional neural network denoted as SRCNN [I§].
The comparison experiments are based on the matlab versions of the source code
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Figure 3. Original “Coastguard” image and images reconstructed by different methods.
a) Original image, b) Bicubic, ¢) SR-NIP [32], d) SC_SR [14] ¢) ASDS_AR_NL [25], f) SR~
CNN [18], g) MCD, h) MCD_IBP.

s
/4

\
7

€) f) g h)

Figure 4. Original “Foreman” image and images reconstructed by different methods.
a) Original image, b) Bicubic, ¢) SR.NIP [32], d) SC_SR [I4], ¢) ASDS_AR_NL [25],
f) SRCNN [18], g) MCD, h) MCD_IBP.
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or demos provided by the above papers, so it is very fair. The results are com-
pared by visual quality subjectively and by numerical measurements of PSNR and

FSIM.
Image Measures |Bicubic SRJ\[;IZ SC*{?Z ASDS*AR?;{; SRCEQ MCDMCD_IBP
Baboon PSNR (dB)| 20.199| 20.436|20.407 20.476| 20.423(20.476| 20.499
FSIM 0.849| 0.890| 0.892 0.904| 0.886/0.904 0.904
Barbara PSNR (dB)| 23.440| 24.077|23.797 24.120| 23.982|24.083 24.118
FSIM 0.896/ 0.934| 0.931 0.936/ 0.932/0.938 0.938
Bridge PSNR (dB)| 22.873| 23.440|23.519 23.561| 23.421(23.552| 23.610
FSIM 0.870/ 0.904| 0.909 0.913] 0.901/0.916 0.916
PSNR (dB)| 23.821| 24.333|24.367 24.374| 24.33924.439 24.479
Coastguard
FSIM 0.639] 0.685| 0.696 0.724] 0.692/0.729 0.729
Comic PSNR (dB)| 22.022| 20.767|20.730 20.909| 20.820|20.782 20.841
FSIM 0.702| 0.750| 0.749 0.765| 0.760| 0.761 0.761
Face PSNR (dB)| 28.620| 29.156(29.235 29.437| 29.015/29.286 29.333
FSIM 0.826| 0.845| 0.856 0.872| 0.850| 0.870 0.870
Flowers PSNR (dB) 23.560| 24.552(24.403 24.662| 24.601|24.491 24.548
FSIM 0.770/  0.809| 0.806 0.822| 0.815| 0.819 0.819
Foreman PSNR (dB) 25.756| 27.640(27.718 27.553| 26.596|28.151 28.222
FSIM 0.850] 0.888]| 0.888 0.890] 0.882(0.896 0.896
Lena PSNR (dB) 27.973| 29.186/29.040 29.333| 29.029/29.151 29.201
FSIM 0.935]  0.959| 0.960 0.967| 0.956| 0.965 0.965
Man PSNR (dB)| 24.187| 25.234|25.109 25.315| 25.212(25.183 25.251
FSIM 0.892| 0.930] 0.930 0.939, 0.929| 0.936 0.936
Monarch PSNR (dB)| 25.867| 27.780(27.300 27.764| 28.125(27.419 27.517
FSIM 0.922| 0.954| 0.945 0.956| 0.956| 0.949 0.949
Pepper PSNR (dB)| 26.974| 27.864|27.757 27.923| 27.660|27.890 27.918
FSIM 0.937]  0.963| 0.962 0.967| 0.960| 0.965 0.965
PPT3 PSNR (dB)| 20.203| 21.465|21.341 21.435| 21.920|21.569 21.635
FSIM 0.824| 0.883| 0.886 0.892| 0.896| 0.889 0.889
Zebra PSNR (dB) 22.438| 24.380(24.115 24.329| 24.457|24.357| 24.466
FSIM 0.851] 0.914]| 0.910 0.919] 0.916/0.920 0.920
Average PSNR (dB)| 23.995| 25.022|24.917 25.085| 24.971/25.059 25.117
FSIM 0.840| 0.879| 0.880 0.890| 0.881(/0.890 0.890

Table 4. Numerical measurements of the reconstructed images of Set14 by different meth-

ods

Figure [3] shows the original “Coastguard” image and images reconstructed by
different methods. Figure [ gives the results of “Foreman” image. Table d] shows
numerical measurements of the reconstructed images of Set14. Table [§] shows the av-
erage PSNR and FSIM measurements on several benchmarks, including Set5, Set14
and B100. We can see ASDS_AR_NL [25], the proposed MCD and MCD_IBP meth-
ods have best results, which outperform SR-NIP [32], SC_SR [14] and SRCNN [I8].
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Method Measures SetH Set14 B100
Bicubic PSNR (dB) 26.226 23.995 24.463
FSIM 0.837 0.840 0.791

- PSNR (dB) 27.638 25.022 25.220

SRNIP [32 FSTM 0870 | 0.879 | 0.784
PSNR (dB) 27.569 24.917 25.204

SCSR [14] FSIM 0.872 0.880 0.793
. PSNR (dB) 27.951 25.085 | 25.355

ASDS_AR.NL [25] FSIM 0.883 0.890 0.812
PSNR (dB) | 27.677 | 24.971 | 25.200

SRCNN [I8] FSIM 0.885 0.881 0.791
PSNR (dB) 27.787 | 25.117 25.332

MCD.IBP FSIM 0.878 | 0.890 | 0.812

Table 5. Average numerical measurements of the reconstructed images of Set 5, Set14 and
B100

SRNIP | SC.SR | ASDS_AR_NL | SRCNN
Image 32 he) [25] IS MCD | MCD_IBP
Baboon 31.596 1.583 103.039 10.481 | 1.897 1.954
Barbara 44.494 2.679 185.560 19.267 | 3.306 3.391
Bridge 41.816 1.684 117.051 11.446 | 2.061 2.127
Coastguard 11.041 0.635 36.238 2.574 | 0.775 0.817
Comic 21.218 0.557 34.803 2.410 | 0.683 0.706
Face 4.294 0.471 25.832 2.047 | 0.575 0.603
Flowers 25.238 1.163 75.181 7.510 1.398 1.452
Foreman 13.245 0.635 36.788 2.671 | 0.776 0.803
Lenna 23.240 1.684 110.869 11.246 | 2.048 2.138
Man 39.288 1.682 112.917 11.226 | 2.070 2.135
Monarch 39.786 2.521 183.439 17.681 | 3.099 3.207
Pepper 24.084 1.669 110.913 11.209 | 2.067 2.127
PPT3 46.084 2.102 163.759 16.059 | 2.303 2.392
Zebra 39.680 1.436 99.953 9.544 1.764 1.841
Average 28.936 | 1.464 99.739 9.669 | 1.773 1.835

Table 6. Reconstruction time(s) of different methods

Table[f]shows the reconstruction time to investigate the time complexity. Among
the four algorithms with the best reconstruction effect, the proposed MCD and
MCD_BP are much faster than SRCNN and ASDS_AR_NL. The average time for re-
constructing an image is less than 2 seconds using the proposed MCD and MCD _IBP
algorithms, whereas the SRCNN needs about 10 seconds and ASDS_AR_NL needs
nearly 100 seconds.

Considering all the factors including subjective visual quality, objective assess-
ment and time complexity, the proposed method obtains good performance for image
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SR reconstruction. The proposed methods not only significantly improve the im-
age reconstruction speed, but also significantly improve the image reconstruction
quality.

4 CONCLUSIONS

In this paper, we propose a SR reconstruction algorithm based on sparse coding
with multi-class dictionaries. A novel method for image patch classification is put
forward, and a sub-dictionary is selected adaptively for each given image patch.
IBP is used to enforce global reconstruction constraint. Our approach produces
comparable or even better SR reconstruction results with some existing algorithms.
The robustness of the proposed algorithm under different imaging conditions will be
our future work.
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