
Computing and Informatics, Vol. 38, 2019, 1237–1271, doi: 10.31577/cai 2019 5 1237

PROBABILISTIC PAGE REPLACEMENT POLICY
IN BUFFER CACHE MANAGEMENT
FOR FLASH-BASED CLOUD DATABASES

Atul O. Thakare, Parag S. Deshpande

Department of Computer Science and Engineering
Visvesvaraya National Institute of Technology
South Ambazari Road, Nagpur, Maharashtra
India – 440010
e-mail: aothakare@gmail.com, psdeshpande@cse.vnit.ac.in

Abstract. In the fast evolution of storage systems, the newly emerged flash memo-
ry-based Solid State Drives (SSDs) are becoming an important part of the computer
storage hierarchy. Amongst the several advantages of flash-based SSDs, high read
performance, and low power consumption are of primary importance. Amongst
its few disadvantages, its asymmetric I/O latencies for read, write and erase op-
erations are the most crucial for overall performance. In this paper, we proposed
two novel probabilistic adaptive algorithms that compute the future probability of
reference based on recency, frequency, and periodicity of past page references. The
page replacement is performed by considering the probability of reference of cached
pages as well as asymmetric read-write-erase properties of flash devices. The ex-
perimental results show that our proposed method is successful in minimizing the
performance overheads of flash-based systems as well as in maintaining the good
hit ratio. The results also justify the utility of a genetic algorithm in maximizing
the overall performance gains.

Keywords: Cloud databases, data mining, flash solid state drives, adaptive opti-
mization, genetic algorithm

Mathematics Subject Classification 2010: 68Uxx

1238 A.O. Thakare, P. S. Deshpande

1 INTRODUCTION

1.1 Flash Based Systems

Most storage systems built on conventional hard disk drives (HDDs) suffer from
technical limitations, such as low random access performance and high power con-
sumption. The mechanical nature of HDDs prevents these problems to get addressed
via technology evolution. Flash memory based Solid State Drive (SSD) is a type of
electrically erasable and programmable read-only memory (EEPROM) which plays
a crucial role in revolutionizing the storage system design. With the continuous
decrease in price and increase in storage capacity, the usage of SSDs is growing in
mobile devices, embedded computing and portable devices such as PDAs (personal
digital assistants), digital audio players, digital cameras, HPCs (handheld PCs),
etc. Due to its several other attractive features like high reliability (shock resis-
tant), high I/O performance (fast random reads) and low power consumption it is
also considered for replacing magnetic hard disks in enterprise database servers.

Unlike rotating hard disk drives which have mechanical movement overheads
measured in terms of seek time and rotational latency, the flash SSD requires no
movement of any of its mechanical part while read or write access to it. Unlike hard
disks which have nearly uniform read-write cost, random writes to SSDs are much
slower than random reads from it because of its erase-before-write limitation. In
SSDs typically, write operations are about ten times slower than read operations,
and erase operations are about ten times slower than write operations [13].

The storage space of flash memory is divided into fixed-sized blocks, each one
containing fixed-sized pages. Hence block size (usually 16 KB) is multiple of page
size (usually 512 bytes). Read/write operations are performed in units of pages
whereas erase operation is performed in units of blocks. Flash memory has the
typical property of writing a page only once, because of which page data cannot be
updated in-place. Hence when some contents of a page need to be modified, the
entire page must be written into a free page slot and the old page contents need to
be invalidated (out-of-page updates) [25]. The invalidated page can be written only
after erasing the block containing that page, i.e., a written memory must be erased
before it can be written again. SSDs use an additional driver software called flash
translation layer (FTL) which works in coordination with the host operating system,
and whose function is to map the logical blocks to the physical pages on the flash
device [27]. SSDs have limited processing power and random access memory (RAM),
to manage relatively much larger sized flash memory. To achieve good performance
with limited resources, FTLs are designed to hide the mismatch between the write
and the erase operations, by exploiting the localities in the write requests. But
in case there is a high percentage of random write requests, the performance of
SSDs can drop significantly. Especially in cloud environments where the page access
patterns are highly complicated due to numerous clients with diverse requirements
accessing the cloud storage simultaneously, the random write performance of SSDs
is extremely crucial.

Optimizing Performance of Flash-Based Cloud Databases 1239

The erase operation is performed by garbage collection policy, whenever a suffi-
cient number of free slots are not available in the flash memory. Hence the increase
in the number of writes will cause an increase in the number of erase operations,
which are slowest among the 3 flash operations. Another unique feature of flash
memory is limited erase count, i.e., a limited number of erase operations are allowed
to be carried on each block. After a specified number of erase operations (in the
range 10 000 to 1 000 000 depending on its physical characteristics) the block will
become unreliable. Due to this, the lifetime of flash memory is shorter than that of
devices like the hard disk.

Moreover, due to the electrical properties of flash cells, garbage collection over-
heads are higher in the case of random writes as compared to sequential writes. If
the write requests are randomly distributed over the logical block address space,
sooner or later all the physical blocks in flash memory will be fragmented, severely
damaging the performance of garbage collection by increasing I/O latencies [15].

Based on the above facts we can conclude that, in flash SSDs, replacement of
a dirty page can induce more cost than the cost of replacement of a clean page. This
reduces the guarantees of optimizing I/O performance with the reduction in the miss
rate. In other words the relationship between I/O cost and miss rate may not be
consistent in the flash disks. Hence the effectiveness of buffer management schemes
can be measured in terms of hit rate and average I/O service cost per page fault.
The average I/O cost depends on flash memory characteristics as well as read-write
patterns in the workload.

As flash memory is becoming a promising alternative to replace hard disks,
like other software systems, the database systems also need to device techniques to
cope with flash I/O properties to reduce I/O latencies. Unfortunately, most of the
existing disk-oriented buffer replacement algorithms aim at better performance by
considering

1. read and write operations equally, i.e., having the same latency,

2. hit ratio improvement as the only means of performance improvement,

due to which hard disk-based DBMS buffer managers are inefficient to deliver good
DBMS performance on flash-based systems.

While designing the buffer management policy for flash-oriented systems, its
asymmetric read-write feature needs to be taken into account in addition to the
locality of pages in the main memory. Hence the buffer management schemes for
flash memory need to aim at not only the better hit ratios but also to minimize
the replacement costs incurring when a dirty page has to be propagated to flash
memory to make room for a requested page currently not in buffer. In other words,
the replacement policy should be able to minimize the number of erase operations
by controlling the number of write operations on flash memory and, at the same
time, avoid a significant fall in the hit ratio, because the fall in the hit ratio will
lead to an additional increase in the number of read operations.

1240 A.O. Thakare, P. S. Deshpande

1.2 Cloud Databases

Cloud computing has emerged as an important computing paradigm which refers to
both the applications delivered as services over the Internet and the hardware and
systems software in the data centers that provide those services. The services offer
facilities for data storage, data processing, and information management [26]. The
services have been referred to as Software as a Service (SaaS), IaaS (Infrastructure
as a Service) and PaaS (Platform as a Service). A cloud database is a database that
typically runs on a cloud computing platform (private, public or hybrid), access to
it is provided as a service.

Nowadays many applications are hosted on cloud databases where several ap-
plications share the same database instance. Such a database management system
exhibits periodic behavior in terms of data references. For example, US customers
access data at a particular time while Japanese customers access data at some other
time. The periodicity of data references is translated into periodic page references.
This periodicity of page references can be used as a new parameter to improve cache
performance by improving page replacement policy.

1.3 Our Contributions

To meet the above-mentioned challenges on cloud-based flash memory devices, we
propose two cost-based adaptive buffer-management algorithms based on the prob-
abilistic model of page references, namely Accurate Probabilistic Adaptive Clean
First Algorithm (APR-ACF) and Approximate Probabilistic Adaptive Clean First
Algorithm (PR-ACF). Our algorithms focus on achieving the following objectives:

1. Reducing the number of write/erase operations by considering the read-write
cost ratio of flash disks at each replacement.

2. Maintaining the hit rate as high as possible by considering the recency, frequency,
and periodicity of page references.

An additional feature of our algorithms is that it is self-tuning to respond to changes
in page reference patterns, by analyzing the frequency, recency, and periodicity of
page references in an online as well as offline manner.

Summarizing:

• We have introduced the idea of the periodicity of page references considering
recent trends in database applications, especially in a cloud environment.

• We have designed the concept of buffer management based on the probability
distribution of page reference which is more generalized and is capable to map
any existing specialized algorithms.

• The probability of reference is used to calculate which pages may be referenced
soon. The probability of reference gives us the information about pages in the
buffer cache, which one of them is a cold/warm/hot page.

Optimizing Performance of Flash-Based Cloud Databases 1241

• Our flash aware buffer management scheme prefers to make replacement in the
COLD REGION; a part of the buffer cache which contains the pages with a low
probability of reference.

• Within the COLD region it prefers to replace the CLEAN page with the lowest
probability of reference. In the absence of a CLEAN page in the COLD region,
it replaces the DIRTY page with the lowest probability of reference.

• Our algorithm is designed to retain in the buffer:

1. The dirty pages with medium to high reference probability (warm/hot dirty
pages).

2. The clean pages with high reference probability (hot clean pages).

• Our algorithm is designed to quickly remove from buffer:

1. The dirty pages with low reference probability (cold dirty pages).

2. The clean pages with low to medium reference probability (cold/warm clean
pages).

If a conflict arises, clean pages are preferred over dirty pages for replacement.
The hotness or coldness of a page is decided based on its current probability of
reference. Here, the reference probability of a page is computed based on recent
references and past historical references, as described in Section 3.

• Our algorithm adapts with the changing page reference patterns by dynamically
resizing the COLD and HOT regions of the buffer cache.

The remainder of this article is structured as follows. The related works in
this field of cache management in hard disks based systems and flash-based systems
are introduced in Section 2 before describing the proposed buffer replacement al-
gorithms APR-ACF and PR-ACF in Section 3. Section 4 describes a page access
probability model and Section 5 explains the proposed page replacement algorithm
using the probabilistic model described in Section 4. Section 6 presents cost-benefit
analysis, whereas Section 7 explains a practically more efficient version of the page
replacement algorithm described in Section 5. The detailed analysis of the simu-
lation experiments and the results on various traces of different characteristics are
explained in Section 8. Section 9 explains the need for finding the optimal set of
time intervals, its application in maximizing the overall performance benefits, and
the use of genetic algorithms in defining the optimal time intervals.

2 RELATED WORK

2.1 Literature Survey

Since the database management system is accessed by various types of users and data
is stored in different types of storage structures, more complex referencing patterns

1242 A.O. Thakare, P. S. Deshpande

are seen. Such page referencing patterns are categorized as sequential references,
random references, hierarchical references and looping hierarchical references [1].
Such referencing patterns describe a new query behavior model, the query locality
set model [QLSM] and based on it, a buffer management algorithm DBMIN was
proposed by Chou and DeWitt [2]. Based on the looping behavior of the operations
the hot set model is proposed by Sacco and Schkolnick [3]. The domain separation
algorithm proposed by authors in [3] divides the buffer pool into several domains.
Each domain represents a separate data structure like B-Tree or Cluster. So when
B-Tree is accessed it is ensured that non leaf parent node always resides in memory.
Another problem in database cache optimization is handling infrequent long queries.
If the query is infrequent and requires lot of disk page access then to bring the re-
quired disk pages in the cache, whole existing buffers will be replaced. This will
lead to removal of existing and stable working set in the cache and can result in lot
of cache misses afterwards. Nowadays most of the database instances are residing
in cloud environment and same database instance can be shared by multiple users
across the globe. Each such user may not access whole data but some specific set of
data. For example users from U.S. may access data of baseball products, while the
users from Brazil may be interested only in football products. So if the data of such
products is stored in clustered table and in data pages 〈Bm . . . Bm+i〉 [pages having
data of baseball products] and 〈Bn . . . Bn+j〉 [pages having data of football prod-
ucts], then the pages, 〈Bm . . . Bm+i〉 may be referred more frequently in 12–18 UTC
while pages 〈Bn . . . Bn+j〉 may be referred more frequently in 17–23 UTC. So the
page referencing pattern shows certain periodicity and can be modeled using some
probability distribution such as Gaussian distribution. Due to advent of superior
hardware and advanced tracing systems in database, the detailed historical page
trace is available indicating page number and page reference time which can be
processed offline to construct probability distribution of page reference.

Nowadays different storage options like index organized tables, clusters, indexes,
and partitions are available for storing data. In such structures, all data related with
same key are stored in the same page or in pages that are physically contiguous to
each other. Same query may generate different referencing pattern if the underlying
storage structure is different. The heterogeneity of users in terms of their likings,
their operating time, 24×7 application environment and different underlying storage
structures has generated many complex reference patterns and conventional buffer
management algorithms, which are based on one or two reference pattern(s), may
not provide better solution for buffer management.

The efficient buffer management system demands accurate estimation of future
probability of reference. The estimation should consider heterogeneity of users and
their operating time, different storage structures and current pattern of references.
Such estimation requires analysis of past references which normally provided by
database management systems and decision of replacement should be taken using
complete past pattern rather than using single event like LRU. Modern machine
learning techniques can be used to estimate probability distribution and allows us
to map the problem of replacement as classification problem. The only argument

Optimizing Performance of Flash-Based Cloud Databases 1243

against such methodology is time required for such complex decision making which is
very critical in cache management. Modern hardware can provide better implemen-
tation of such algorithms and the improvement in hit ratio, which may substantially
reduce disk access, may outweigh cost incurred due to complex buffer management.

2.1.1 Traditional Buffer Replacement Algorithms

Traditional replacement algorithms, which are hard disk-oriented buffer manage-
ment algorithms, primarily focus on the hit ratio for good performance. Many al-
gorithms have been proposed so far, most of which are based on the recency and/or
frequency property of page references. Among them, the best-known algorithms
are LRU, CLOCK [17], LRU-2 [18], 2Q [21], LRFU [19], etc. Few more of them
are algorithms like LIRS [20], ARC, CAR [15], CART, Clock-Pro [22], etc., with
an additional adaptability, i.e., self-tuning feature.

2.1.2 Buffer Management Algorithms for Flash-Based DBMSs

Most of the asymmetry-aware flash buffering algorithms indicate two design points:

1. Distinguish clean pages (pages which contains the same copy of the original
data in flash memory; need not be written back on flash memory at the time
of replacement) and dirty pages (pages which are modified after reading the
original data from flash memory into main memory; hence need to be written
back on the flash memory whenever they are replaced).

2. Compare the locality of the two kinds of pages to make the replacement decision.

Most of these algorithms try to reduce the number of write operations, by de-
laying the process of evicting the dirty pages to enhance the I/O performance. One
of the first flash-based buffering algorithm is proposed by Park et al. [7], namely
CF-LRU which is based on the principle of holding the dirty pages as long as pos-
sible. For giving additional stay to dirty pages it enforces quicker replacement of
clean pages. Li et al. [13] published the Cold-Clean-First LRU (CCF-LRU) algo-
rithm which evict the cold clean pages first. It gives priority to replacing clean pages,
what many times results in quick replacement of newly inserted pages, thus reducing
the hit ratio. In absence of clean page, it prefers to replace cold dirty pages. Based
on CCF-LRU, Jin et al. [8] designed Adaptive Double LRU (AD-LRU) algorithm to
further improve the runtime efficiency. AD-LRU maintains the cold and hot pages
in two separate LRU queues and dynamically adjusts their length according to the
reference patterns. Jung et al. [16] propose the LRU-WSR algorithm which uses a
Write Sequence Reordering (WSR) strategy. LRU-WSR prolongs the stay of hot
dirty pages in the buffer and prefers replacing clean pages or cold-dirty pages. The
authors On et al. [12] develop a FD-Buffer algorithm in which clean and dirty pages
are separated into two pools. The size ratio of the two pools is dynamically ad-
justed based on the read write asymmetry property of the flash memory and the
runtime workload. Prober scheme [10] is efficient to exploit the workloads which

1244 A.O. Thakare, P. S. Deshpande

contain large sequential write sequences, especially in the write-dominant traces.
To address the problem of cache pollution, Prober identifies large sequential write
request at early stage and enforces its quick replacement by labeling it as a cold
page. By monitoring I/O access patterns at runtime, Hystor [11] can effectively
identify pages that can result in long latencies or are semantically critical (e.g. file
system metadata), and stores them in SSDs for future accesses to achieve a signifi-
cant performance improvement. To further enhance write performances, Hystor also
serves a write-back buffer to speed up write requests.

3 PROPOSED WORK

3.1 Estimating Probability of Reference

In the proposed work we have provided a method for estimating the probability
of reference of the page in any time interval and suggested buffer management
algorithm based on it. We have also shown how different types of patterns can
be accommodated in this model and how algorithms like LRU and LFU can be
simulated by changing different algorithm parameters. We have also discussed the
cost-benefit analysis and analyzed to find out under what conditions the current
strategy provides benefit to cost ratio.

Moreover the proposed page referencing model essentially captures most of the
page referencing behavior [24]. The proposed method is based on the following
assumptions which are valid in most of the practical conditions.

1. The 24 × 7 internet-based database systems show periodicity of references due
to different users across the globe.

2. The queries are made efficient by using various storage structures that store the
related data physically adjacent to each other.

3. The query load generally comprises periodic frequent queries and infrequent
queries.

4. Based on the estimated probability of references we can determine cold, warm
and hot pages in the buffer cache.

5. Performance of flash-based database system can be optimized by modifying the
buffer management policy to minimize the replacement of hot or warm dirty
pages as well as hot clean pages if possible.

4 MODELING PAGE ACCESS PROBABILITY

The probability model [5] of page reference is based on recent references of the page
and periodic references of the page which are captured from past data in a specific
time interval. Generally in managing buffer cache, the page with a lower probability
of reference is replaced and page with a higher probability of reference is kept in the

Optimizing Performance of Flash-Based Cloud Databases 1245

buffer cache. The probability of future reference from current time τc to future time
τc + Θ is estimated using following principles:

1. If the page is referred frequently in the recent past, then its probability of ref-
erence in the future is higher. The probability estimated using the principle is
denoted as Rbi,t1,t2 where bi is page id and t1−t2 (t2 > t1) indicates time interval.

2. If the page is referred frequently in some interval in the past, then there is higher
probability of referencing it in future in the same interval. The probability
estimated using this principle is denoted as Hbi,t1,t2 .

3. The total probability of reference Tbi,t1,t2 is calculated as weighted sum Rbi,t1,t2

and Hbi,t1,t2 . Thus Tbi,t1,t2 = ω1Rbi,t1,t2 + ω2Hbi,t1,t2 where ω2 + ω1 = 1, ωi ∈
Domain of real numbers between 0.0 and 1.0.

In calculating probability in all cases, probability distribution is estimated using
Parzen window technique with Gaussian kernel [4]. This technique provides all
the essential properties to capture behavior of page referencing pattern which is
explained in the remaining part of this section.

4.1 Calculating Probability Rbi,t1,t2 Based on Recent References

Using Parzen window classifier with normal distribution [4], probability density
estimation function of each page is estimated (Parzen window is used because the
approximate estimation can be chosen by changing distribution parameters).

Let

• N be total number of page references in time period t.

• t be total time period of data collection specified in small time units. For
example, if data is collected for 10 days and time unit is minutes then T =
10 ∗ 1 440 = 14 400 where 1 440 is the number of minutes for one day, i.e.,
24 hours.

• τi be time instance when page b is referred to in the specified interval.

• S = τ1, τ2, τ3, τ4, . . . , τk indicate the set of time units where a page is referred.
For example, if a page is referred at 11 am on day 1 and 11.05 am on day 2 then
S = {660, (1 440 + 665)}.

• P be periodicity of reference. For example, page referencing pattern is repeated
for each day, then P = 1 440, i.e., the number of time units in one day.

• σ be a user-defined parameter which controls the effect of past reference on
probability. The higher value of σ indicates bigger effect of reference on the
future pattern. For experimentation, value of σ is chosen as 1.

Hence, if page bi is accessed at time τ1, τ2, . . . , τk then probability density func-
tion of page bi is

Pbi =
1

N

k∑
i=1

1√
2πσ2

e
−1
2 (t−τiσ)

2

. (1)

1246 A.O. Thakare, P. S. Deshpande

Pbi = 0 if bi is not referred in the past. Probability of page reference bi in the interval
t1 to t2 is

Pbi,t1,t2 = Pbi(t1 ≤ t ≤ t2) =

∫ t2

t1

(
1

N

k∑
i=1

1√
2πσ2

e
−1
2 (t−τiσ)

2

)
dt. (2)

The density function satisfies following essential properties of probability function:

Pbi(t1 ≤ t ≤ t2) 6= 0 if t2 > t1, (3)

Pbi(−∞ ≤ t ≤ ∞) =
NK

N
(4)

where NK is total historical references of page bi. If B = b1, b2, . . . , bn is set of all
pages then

Pbi(−∞ ≤ t ≤ ∞) =
n∑
i=1

Pbi,−∞,∞ =
1

N

n∑
i=1

Nk = 1. (5)

4.2 Calculating Probability Hbi,t1,t2 Based on Past References
of Historical Data

In this case, the time period is divided into fixed interval of equal size. For example if
the time period is a day then it is divided into time intervals of one hour, so number
of time intervals is 24 from 0–1 am, 1–2 am, etc. For practical implementation, they
are represented using number of minutes from the start of period as 0–60, 61–120,
121–180, etc. If the page is referred many times in the past in some interval then
it is also likely to be referred in the same interval in future. For each such interval
working set of pages is calculated as set of top N pages in terms of probability of
reference in that interval.

Here probability density function is similar to previous case but instead of using
τ1, τ2 as absolute time, the time is calculated from start of the period. For example
if page is referred on day 1 at 5:30 pm and on day 2 at 5:45 pm then τ1 & τ2 are
taken as 1 050 and 1 065 minute, i.e. number of minutes from start of the period.
The probability density function of reference of page bi is indicated as

Hbi =
1

N

k∑
i=1

1√
2πσ2

exp

(
−1

2

(
| t− τi |

σ

)2
)

(6)

where | t− τi | indicates time difference between t and τi considering circular scale.
The probability of reference between time period t1 and t2 is

H(t1 ≤ t ≤ t2) =

∫ t2

t1

Hbidt. (7)

Optimizing Performance of Flash-Based Cloud Databases 1247

4.3 Finding Out LRU (Least Recently Used), MRU (Most Recently
Used), MFU (Most Frequently Used) Buffers from Probability Model

The above probabilistic model of page reference is able to capture various types of
buffers which may be used to implement existing conventional algorithms. Many of
the replacement policies consider least recently used buffers (LRU), most recently
used buffers (MRU), frequently used buffers (FUB) as criteria for replacement or
stay in buffer cache. These buffers are determined using following formulas. The
least recently used buffer (LRU) can be found out using Equation (8):

BLRU = argmin
i Pbi,tc,∞ (8)

where Pbi,tc,∞ is calculated based only on most recent reference of bi. The most
recently referred buffer (MRU) can be found out using Equation (9):

Bi = argmax
i Pbi,tc−θ,tc (9)

where σ � θ.
The most frequently used buffer (MFU) can be found out using Equation (9)

with the following constraints on the value of σ:

0� σ < θ.

5 PROPOSED ALGORITHMS

Based on the above probabilistic model of page reference the proposed algorithm is
designed as follows:

• Divide the period into number of intervals T0, T1, T2, . . .

• For each interval calculate the historical working set based on SQL traces as
given in Section 4.2 and Section 5.1.

• For each page in working set, calculate probability according to Equation (9).
For fast access the information of page and its probability is kept in a hash table.

5.1 Selecting Pages for Working Set

For each time interval, pages are sorted in descending order based on their computed
probability value in that interval and first k pages are chosen where k is the size of
buffer cache. The pages are chosen only if their probability is higher than predefined
threshold.

5.2 Assigning Ranks to Working Set Pages

Within each working set, pages are given ranks based on their probability values.

1248 A.O. Thakare, P. S. Deshpande

5.3 Buffer Cache Organization

• Maintain list of pages which are referred in past along with their time of ref-
erence. This list is used to calculate probability Rbi,t1,t2 according to equations
given in Section 4.1. Since it is not possible to store all past references, the size
of list is m times the size of buffer cache where m > 1.

• Maintain list of pages in cache with their total probability value. The list is
sorted in descending order of their probability value. The page having lowest
probability is at the one end of the list which is called as COLD END while
page having highest probability is at another end which is called as HOT END.
The pages at the COLD END and HOT END are referred as ‘bc’ and ‘bh’,
respectively.

• The variable SPLIT divides the buffer cache into two parts which are HOT
REGION and COLD REGION. Initially SPLIT is initialized to 50 % of the
buffer cache size, hence it divides buffer cache into two equal parts. The first
part of the buffer cache starting with HOT END is called as HOT REGION and
the remaining part ending with COLD END is called as COLD REGION. The
other END of the HOT REGION opposite to HOT END is called as WARM
END.

• In order to keep adaptability with changing reference patterns, we maintain
a LRU list (LIST1) of recently replaced pages from the buffer cache. The length
of the list is same as the length of the buffer cache.

5.4 Accurate Probabilistic Adaptive Clean First Algorithm (APR-ACF)

When page bi is referred at time Ti then following procedure is called (assume buffer
full condition). We call this algorithm as Accurate Probabilistic Adaptive Clean
First Algorithm (APR-ACF).

Replacement (bi,Ti)
Begin
If (bi is not in buffer cache)

1. scan the COLD REGION from the COLD END towards the WARM END for
the first CLEAN page.

• if found then replace first CLEAN page with bi. (a)

• if not found then replace the COLD END page with bi.

2. Add replaced page to MRU end of LIST1. If LIST1 is already FULL, delete the
LRU END page from it, and add replaced page to MRU end. (a1)

3. Update probabilities of each page with new time reference Ti. (b)

4. Sort the list. (c)

Optimizing Performance of Flash-Based Cloud Databases 1249

5. resize() (d)

6. End

Following procedure resize() adapts with the changes in the reference patterns
of the working set pages and normal pages. This is achieved by resizing the COLD
and HOT regions at each page reference as follows:

resize ()

• If referred page bi is a working set page and is present in the LIST1 (list of re-
cently replaced pages), then update variable SPLIT to decrease length of COLD
REGION by 5 % of the buffer cache length. This will increase the length of
HOT REGION by the same 5 %.

• If referred page bi is a normal page (does not belong to working set of current time
interval) and is present in the LIST1, then update variable SPLIT to increase
length of COLD REGION by 5 % of the buffer cache length. This will decrease
the length of HOT REGION by the same 5 %.

• The range of values that SPLIT variable can take are 10 %–90 % of the buffer
cache length (boundary condition). In case both the above two conditions fails
or increase/decrease of lengths of buffer cache parts causes violation of boundary
condition, the COLD and HOT regions will not be resized.

Step (a) executes in O(1) time. Step (b) is executed in O(k) time while Step (c)
is executed in O(k log k) time where k is size of buffer cache. Step (d) is an adaptive
step which responds quickly to changes in page reference patterns (can take place in
constant time). Adaptation occurs whenever the page fault corresponds to a page
which is recently replaced. In case it is a working set page, the length of HOT region
will be increased. In other case when it is a normal page, length of COLD region
will be increased. Our algorithm assumes that in the cache most of the working
set pages will be present in the HOT region and most of the normal pages will
be present in the COLD region. Generally, working set pages will join the buffer
cache in the HOT region, whereas normal pages will join the buffer cache in the
COLD region. Afterwards, based on their relative reference patterns with respect
to other cached pages, they will move towards the HOT end or COLD end of the
buffer cache. Step (a1) can also happen in a constant time. The proposed algorithm
is capable of providing performance for most of the common referencing patterns
which is explained as follows.

Sequential References. In a sequential scan, pages are referenced and processed
one after another. For non repeated scan, the probability of buffer goes on
decreasing and finally buffer is edged out of the cache. In case of repeated
scan the frequency of reference is increased and according to Equation (9) the
probability is increased which will increase stay of page in the buffer cache.
In the case of clustered sequential access (CS) like merge join, the buffer is
frequently referred and according to Equation (9) its probability is increased.

1250 A.O. Thakare, P. S. Deshpande

Hierarchical References. This reference behavior is observed where index is re-
peatedly used, non leaf nodes of the index tree are referred frequently and their
probability of stay is increased according to the Equation (9).

Infrequent Long Query. If the query is infrequent and requires lot of disk page
access then to bring the required disk pages in the cache, whole existing buffers
will be replaced. This will lead to removal of existing and stable working set in
the cache and can result in lot of cache misses afterwards. The pages of such
long infrequent queries will not appear in the working set due to their infrequent
access pattern and they are inserted towards COLD END and subsequently they
will be replaced quickly without disturbing the stable working set.

6 COSTS BENEFIT ANALYSIS

The above proposed algorithm (APR-ACF) enhances flash I/O performance by in-
creasing the hit ratio and minimizing the write-erase operations, but the cost of
replacement policy is very high because it involves updating probabilities and sort-
ing list. The overall performance of the system can be analyzed by considering
overheads in replacement strategy and improved hit ratio as explained in following
section.

Suppose

• C: size of buffer cache,

• B: hit ratio,

• N : number of memory references made by replacement algorithm,

• M : time required for one memory access,

• D: time required for one disk access,

• B0: minimum hit ratio assuming elementary replacement policy,

• B1: maximum hit ratio gain by most complex algorithm.

Normally hit ratio is improved if more information is used to decide replacement
buffer, but the improvement is not linear. Practically after reaching certain value
there will be only marginal increase in hit ratio even if large information is scanned
for deciding replacement buffer. Thus the gain in hit ratio gain is inversely propor-
tional to the hit ratio hence the relationship can be approximated using following
equation:

B = B0 +B1(1− exp(−αinC)) (10)

where 0 < B0 +B1 < 1.
Assuming replacement decision is made by analyzing n bytes of information and

it is repeated C times, i.e. for each buffer in the cache. The α1 is proportionally
constant which is approximately equal to improvement in hit ratio by scanning ad-
ditional one information byte. Here exponential function is used because the hit
ratio will increase less as proportion to increase in complexity of the replacement

Optimizing Performance of Flash-Based Cloud Databases 1251

algorithm, and after certain value it cannot be increased by the most complex re-
placement algorithm.

The cost of replacement policy depends on number of information bytes scanned
in deciding replacement. This cost is linearly proportional to number of information
bytes scanned.

Cost of replacement strategy = (α0+α2nC) where α0 is minimum bytes scanned
for each reference and α2 is proportionality constant.

If there are N references, then the total access time (T0) with elementary re-
placement strategy is given by following equation:

T = N (M + (1−B0)D) +Nα0M = N (M + (1−B0)γM) +Nα0M (11)

where D = γM .

According to current technology parameters, γ � 106.

When replacement is done using complex algorithm by scanning n bytes of
information then the total access time (T) is

T0 = N (M + (1−B)γM) +NM (α0 + α2nC)

= N (M + (1−B0 −B1exp(−αinC))γM) +MNα0 +Nα2nCM, (12)

T = T0 −NγB1exp(−αinC)M +Nα2nCM, (13)

T = T0 − T− + T+ (14)

where

• T− is reduction in time due to improved hit ratio due to complex replacement
strategy,

• T+ is increase in replacement time due to complex replacement strategy.

The overall reduction in time requires, T− � T+

γB1exp(−α1nC)� α2nC. (15)

If γ is more than n, then the proposed algorithm always gives good performance,
however, if buffer cache size is very large then n is also higher because information
of more buffers is to be kept and cost of replacement policy tends to be very high
making proposed algorithm less practically feasible. The cost can be reduced by
avoiding updating and sorting list for each reference.

By using efficient data structures n can be reduced and inequality given in
Equation (15) can be satisfied. To reduce cost of replacement we are proposing
approximate algorithm which is having reduced replacement cost without much
decreasing hit ratio.

1252 A.O. Thakare, P. S. Deshpande

7 APPROXIMATE ALGORITHM

To avoid modification of probabilities in step (b) and sorting of the list in step (c) of
the above mentioned proposed algorithm, only historical count (HC) in the interval
time of the current reference and frequency count (FC), which is the number of
references in current time in that interval, are maintained. The total count (TC)
is calculated as sum of historical count and frequency count which is not changed
unless page is referred so the list will remain sorted and page which is referred is
always inserted to maintain it in sorted order. The modified algorithm is:

Replacement (bi, Ti)
If (bi is not in buffer cache)
bi.FC = 0;
bi.HC = (count from historical list if it exists in historical list, otherwise 0);

• scan the COLD REGION from the COLD END towards the WARM END for
the first CLEAN page.

– if found then replace first CLEAN page with bi. (a2)

– if not found then replace the COLD END page with bi.

• Add replaced page to MRU end of LIST1. If LIST1 is already FULL, then delete
the LRU END page from it, and add replaced page to MRU end. (a22)

bi.FC = bi.FC + 1; (b21)
bi.TC = bi.TC + 1; (b22)
cnt+ +;
Insert bi in page replacement list in sort order; (c2)
If (cnt > threshold) decrease FC and HC of each page; (c3)
resize() (d)
End

Steps a2, b21, b22 are executed in O(1) times and step (c2) is executed in
O(log k) times where k is size of buffer cache. If there is page in page reference list
having the same total count then bi is always inserted towards hot end in the sorted
order.

If the reference pattern shows periodicity of references then historical count is
increased and page is moved towards hot end. If the page is referred frequently then
its current count is increased and it is moved towards hot end. If the page is referred
by infrequent query then it is inserted towards cold end and it is finally moved out
of buffer cache. If the page is referred frequently initially but its recent references
are very less then it is moved towards cold end because of step (c3). In the COLD
REGION likelihood of replacement will be high. The cost of replacement policy
depends on step (c3) and can be reduced by increasing threshold. The algorithm
finally guarantees longer stay to non-cold DIRTY pages and HOT CLEAN pages
and a shortest possible stay to COLD CLEAN pages, followed by warm CLEAN
pages and COLD dirty pages.

Optimizing Performance of Flash-Based Cloud Databases 1253

8 EXPERIMENTATIONS

For performance evaluation, we compare the best of our two algorithms, i.e., PR-
ACF with the performance of five best competitors, namely CF-LRU, LRU-WSR,
CCF-LRU, AD-LRU and PR-LRU. The performance measures used are buffer hit
ratio, number of write operations and runtime.

8.1 Experimental Environment

The simulation experiments are conducted based on flash memory simulation frame-
work, called FlashDBSim. FlashDBSim is a reusable and reconfigurable framework
for the simulation-based evaluation of algorithms on flash disks [23]. FlashDB-
Sim uses a modular design approach, which includes Virtual Flash Device Module
(VFD), Memory Technology Device Module (MTD), and Flash Translation Layer
Module (FTL). The VFD module is a software layer that simulates the actual flash
memory devices. Its most important function module is to provide virtual flash
memory using DRAM or even magnetic disks. It also provides manipulating op-
erations over the virtual flash memory, such as page reads, page writes, and block
erases. The MTD module maintains a list of different virtual flash devices, which
enables us to easily manipulate different types of flash devices, e.g., NAND, NOR,
or even hybrid-flash disks. The FTL module simulates the virtual flash memory
as a block device so that the upper-layer applications can access the virtual flash
memory via block-level interfaces. The FTL module employs the EE-Greedy algo-
rithm citeref14 in the garbage collection part and uses the threshold for wear-leveling
proposed in [6]. In our experiment, we simulate a 128 MB NAND flash device with
64 pages per block and 2 KB per page. The I/O characteristics of the flash device
are shown in Table 1 and the erasure limitation of blocks is 100 000 cycles.

Operation Access Time Access Granularity

Read 20µs/page Page (2 KB)

Write 200µs/page Page (2 KB)

Erase 1.5 ms/block Block (128 KB = 64 pages)

Table 1. The characteristics of NAND flash memory

8.2 Dataset Characteristics

We have performed a trace-based simulation to evaluate the performance of the
proposed PR-ACF algorithm in comparison with the competitor algorithms. We
have done the experimentation on four different traces of 24× 7 days which contain
a mixture of random, sequential and repetitive patterns along-with different read
and write localities. The first six days traces are used as a training dataset to define
working sets for different time intervals and seventh days trace is used as a test

1254 A.O. Thakare, P. S. Deshpande

dataset for performance evaluation. The details of the traces are given in Tables 2
and 3.

Trace-ID No. of Refs No. of Pages Read/Write Ratio Locality

T1 250 000 12 000 80 %/20 % 60 %/40 %

T2 250 000 12 000 20 %/80 % 40 %/60 %

T3 250 000 12 000 50 %/50 % 80 %/20 %

T4 250 000 12 000 60 %/40 % 80 %/20 %

Table 2. Characteristics of four traces Set-A

A read/write ratio “X %/Y %” in Table 2 means that the read and write opera-
tions in the traces are of X and Y percentages, respectively. The locality expression
in Table 2, e.g. X %/Y %, means that X % of total number of accesses call Y %
of total number of data pages. Hence the likelihood of our working sets having
members as the subset of these Y % data pages is very high.

Another workload that we have used for experimentation is OLTP one hour
test trace in a real bank system containing 607 391-page references to a CODASYL
database with a total size of 20 Gigabytes. The number of different pages accessed is
51 870 with each page having the size of 2 048 bytes. Ratio of read/write operations
is 77 %/23 %. Table 3 gives the distribution of various types of references in each
workload trace.

8.3 Performance Metrics

Three performance metrics, write count, hit ratio, and runtime were used in our
simulation experiments to evaluate the results. The erase operations are not consid-
ered because the erase counts are nearly proportional to the write counts, as they
are triggered due to call to write operations.

The read operations are not considered because firstly reads are covered in the
hit ratio parameter and secondly they are less significant to overall performance due
to its low latency compared to write operations.

Runtime parameter is highly influenced by hit ratio and the number of writes
to the flash memory.

Trace-ID Periodic Refs Sequential Refs Repetitive Refs Random Refs

T1 7.22 % 14.43 % 60.26 % 18.09 %

T2 10.47 % 18.33 % 24.51 % 46.69 %

T3 19.32 % 21.62 % 29.58 % 29.48 %

T4 3.47 % 57.81 % 21.42 % 17.30 %

Table 3. Characteristics of four traces Set-B

Optimizing Performance of Flash-Based Cloud Databases 1255

8.4 Parameter Settings

For all the datasets, parameter w of the CFLRU algorithm is set to 0.5, which means
half of the buffer is used as clean-first window. Parameter min lc of AD-LRU is set
to 0.2.

8.5 Results and Results Analysis

Figures 1–4 illustrate the comparison of the hit ratios on traces T1 to T4 for various
buffer sizes.

Figure 1. Hit ratio comparison on trace T1

On all the four traces, PR-ACF has a better hit ratio than the other algo-
rithms, as shown in Figures 1–4. PR-ACF considers the locality of pages from
recent as well as historical references. At each replacement, it selects the page from
the COLD region, and within the COLD region, it prefers the COLDEST clean
page for a replacement. In absence of CLEAN page in the COLD region, it re-
places the COLDEST dirty page. Here, the COLD page corresponds to a page
having a low probability of reference in the near future. Hence using this COLD
first policy PR-ACF has achieved the best hit ratio in read-most as well as write-
most scenarios, as the replaced page has a high probability of not getting re-
ferred shortly. On traces with a high percentage of random page references, PR-
ACF manages to outperform all the competitor algorithms, because of its online
adaptivity in which it continually controls the growth in the miss rate by resiz-
ing HOT and COLD regions, according to changes in the page access patterns.
One of the important advantages of probabilistic cache is that pages in sequen-
tial reads and sequential writes are directly inserted in the COLD region hence
quickly replaced, eliminating the possibility of cache pollution. Pages in random

1256 A.O. Thakare, P. S. Deshpande

Figure 2. Hit ratio comparison on trace T2

Figure 3. Hit ratio comparison on trace T3

reads and random writes also will have a short stay in the buffer cache, whereas
pages in periodic and repetitive reads-writes will have longer stay in the buffer
cache.

The other way around, many of the competitor algorithms evicts clean pages
without considering their access frequencies, to protect dirty pages. Few of them
protect HOT clean pages by selecting COLD dirty pages for replacement, but they
consider only recent access patterns to predict the HOT and COLD pages. This
adversely affects their hit ratio, what is the reason why our proposed algorithm
outperforms them considerably. The increase in the hit ratio by PR-ACF when

Optimizing Performance of Flash-Based Cloud Databases 1257

Figure 4. Hit ratio comparison on trace T4

compared with other best-performing algorithms CCF-LRU, AD-LRU and PR-LRU
is 6.3 %, 4.5 %, and 2.7 %, respectively, on trace T3.

Figures 5–8 show the number of write operations for each algorithm on traces T1
to T4 for different buffer sizes. As shown in Figures 5–8, the write count of PR-ACF
is less than all the competitor algorithms on all the traces. The primary reason for
this is that all the HOT dirty pages (having close to largest write and erase cost) are
saved from getting replaced, as all the HOT (having high probability of access at
current instance of time) pages are in the HOT region, a region which is forbidden
for replacement in PR-ACF. In the COLD region, PR-ACF favors evicting clean
pages first from the buffer so that the number of writes incurring from replacements
of COLD dirty pages can be reduced.

In absence of clean page in the COLD region, PR-ACF replaces the COLDEST
dirty page, thereby protecting the HOT clean pages from replacement, and avoiding
unnecessary degradation of the hit ratio. As COLDEST dirty page will be having
the lowest probability of reference in the cache, there is less chance of it getting
referred and causing an increase in the number of write counts in the current time
interval. As the time interval changes so as the working set and the decisions of
PR-ACF about which pages to protect from replacement also changes. Hence the
above working principle benefits PR-ACF in all the three read-most, write-most
and random-most scenarios in maintaining the low write count and high hit ratio
simultaneously. The reduction in the number of writes by PR-ACF when compared
with other best-performing algorithms CCF-LRU, AD-LRU and PR-LRU is 42.7 %,
29.6 %, and 24.2 %, respectively, on trace T2.

Figures 9–12 show the overall runtime of various replacement algorithms. The
runtime of an algorithm is the sum of time required for read, write and erase oper-
ations plus the memory time. The access time for each type of operation is given

1258 A.O. Thakare, P. S. Deshpande

Figure 5. Write count comparison on trace T1

in Table 1. The total runtime of an algorithm can also be calculated as a number
of read operations ∗ read access time + a number of write operation ∗ write access
time+a number of erase operation∗erase access time. The total runtime of an algo-
rithm is highly influenced by its hit ratio and the number of write operations (write
count) involved.

Figure 6. Write count comparison on trace T2

Optimizing Performance of Flash-Based Cloud Databases 1259

Figure 7. Write count comparison on trace T3

Specifically, total runtime is directly proportional to the write count and in-
versely proportional to the hit ratio. Figures 9–12 show that PR-ACF has the
lowest runtime. This is because PR-ACF maintains the highest hit ratio and lowest
write count amongst all the algorithms. The reduction in the runtime by PR-ACF
when compared with other best-performing algorithms CCF-LRU, AD-LRU and
PR-LRU is 30.4 %, 7 %, and 5.1 %, respectively, on trace T4.

Figure 8. Write count comparison on trace T4

1260 A.O. Thakare, P. S. Deshpande

In most of the cases, total runtime is less influenced by running time of the
algorithm (also called memory time) as compared to the I/O operational time (time
taken by read, write and erase operations). However, with the weak locality, memory
time has a greater impact on the runtime. With the increasing buffer cache size, the
ratio of increase in memory time and decrease in total runtime keeps on increasing.

Figure 9. Runtime comparison on trace T1

Figure 10. Runtime comparison on trace T2

Optimizing Performance of Flash-Based Cloud Databases 1261

Figure 11. Runtime comparison on trace T3

Figure 12. Runtime comparison on trace T4

Figures 13, 14, 15 show the hit ratio, write count and runtime comparison,
respectively, of various replacement algorithms on real OTLP trace. PR-ACF has
a clear advantage over other algorithms in terms of hit ratio, write count and runtime
for most of the buffer cache sizes.

1262 A.O. Thakare, P. S. Deshpande

Figure 13. Hit ratio comparison on OLTP trace

9 OPTIMAL SET OF TIME INTERVALS

The above-proposed method uses static intervals like 9–10 am, 10–11 am and so on
for calculating the predictive working set. This will give a simple and less computa-
tional algorithm for replacement but it may not give optimal predictive working set.
Calculating correct intervals to get an optimized predictive working set and to get

Figure 14. Write count comparison on OLTP trace

Optimizing Performance of Flash-Based Cloud Databases 1263

Figure 15. Runtime comparison on OLTP trace

minimum cache misses is a challenging task. Since it is a combinatorial optimization
problem, techniques like genetic algorithms can be used.

9.1 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the
evolutionary ideas of natural selection and genetics. As such, they represent an in-
telligent exploitation of a random search used to solve optimization problems. After
an initial population is randomly generated, the algorithm evolves through three
operators:

• Selection, which equates to the survival of the fittest.

• Crossover, which represents reproduction by the crossover between solutions.

• Mutation, which introduces random modifications.

9.2 Proposed Genetic Algorithm for Finding Optimal Set
of Time Intervals

For finding an optimal set of time intervals we have defined a system that can
generate a solution under specified constraints. Initially, it reads values for the
following three input parameters.

• Total number of time intervals in a solution (N).

• The minimum length of the time interval (minlength).

1264 A.O. Thakare, P. S. Deshpande

Algorithm 1 Generic Genetic Algorithm

1: randomly initialize population (p)
2: determine fitness of population (p)
3: while best individual is not good enough or number of evolutions does not reach

its limiting value do
4: select parents from population (p)
5: perform crossover on parents creating population (p+ 1)
6: perform mutation of population (p+ 1)
7: determine fitness of population (p+ 1)
8: end while

• The maximum length of the time interval (maxlength).

After receiving these 3 inputs, the system randomly creates an initial population of
M solutions (P) in which each solution has exactly N time intervals and the length
of each time interval is between minlength and maxlength. Each solution needs to
cover a complete daytime of 24 hours represented by 1 to 1 440 (1 min to 1 440 min
(24 ∗ 60)). Where 1 represents 00:01 and 1 440 represents 00:00.

Example 1. Each solution of the sample solution set has the following charac-
teristics: N = 12, minlength = 80, maxlength = 160. In the initial population
of 100 solutions (M = 100) one of the solution is given in Table 4.

Interval-ID Start-Time End-Time Fitness

1 1 065 1 148 0.56

2 1 148 1 283 0.64

3 1 283 1 419 0.64

4 1 419 66 0.58

5 66 178 0.66

6 178 305 0.6

7 305 415 0.72

8 415 538 0.68

9 538 672 0.63

10 672 826 0.7

11 826 959 0.66

12 959 1065 0.71

Solution: 21 Total Fitness 7.78

Table 4. Sample solution

The proposed algorithm works as follows: Within the minimum and maximum
length constraints on the duration of the time interval, our algorithm randomly
generates a population of M solutions each having N time intervals. M and N are
predefined parameters that remain constant throughout the evolutionary process.
Fitness of each solution is computed by taking the summation of the fitness of its

Optimizing Performance of Flash-Based Cloud Databases 1265

all the N time intervals. Fitness of each time interval is computed using the com-
puteFitness function which takes the starttime and endtime of the time interval as
input parameters and returns the summation of access probabilities of the top 15 %
pages (working set pages) in that time interval. The information about pagewise
reference probabilities for a given time interval is derived from the historical data
by applying the probabilistic model discussed in Section 4.

An initial population P of M solutions is generated through the 3 steps of
Algorithm 2.

9.2.1 Generating Initial Population of 100 Solutions

9.2.2 Finding Fairly Optimal Solution

The more the fitness of the solution, it can be expected that the higher is the overall
daywise benefits to the cache performance from the N working sets of the solution.
Here the N working sets of a solution are associated with N different intervals of time
(of unequal duration) having different fitness values (For example refer to Table 4).
To maximize the overall daywise benefits to the cache performance, i.e., to maximize
the cache optimization, we search heuristically for the close to an optimal solution.
For that the initial population of M solutions evolves through T iterations, using
the selection, mutation and crossover operators (described in Section 9.3). After
T iterations, in the final population of solutions, the solution with the highest fitness
value is to be selected as close to an optimal solution (fairly optimal solution).

9.3 Genetic Operators

9.3.1 Selection

This operator picks the top 25 % solutions (in terms of fitness) from the initial/pre-
vious population for reproduction. The top 25 % solutions (in terms of fitness) from
initial or previous population P are copied into the new population P ′. The rest of
the solutions in the new population P ′ are generated by crossover (50 % solutions)
and mutation (25 % solutions) operators.

9.3.2 Crossover

This operator picks randomly any 2 solutions parent1 and parent2 from P and
creates a new child solution having combined features of parent1 and parent2. The
child or a new solution is included in the new population P ′. We compute Avg1 and
Avg2 as the average fitness value of parent1 and parent2 respectively.

Avg1 = Total Fitness of parent1/N,

Avg2 = Total Fitness of parent2/N.

1266 A.O. Thakare, P. S. Deshpande

The new – child solution will also have total N time intervals. The combined features
(best of each of them) of parent1 and parent2 are copied into a new solution in the
following way: The endtime of ith time interval of parent1 is copied into the endtime
of ith time interval of a new solution if parent1 has the best solution for the interval I,
i.e., interval I of parent1 satisfies the following conditions:

• Its fitness value > than Avg1 as well as Avg2.

• Its fitness value > fitness value of ith time interval of parent2.

The starttime of ith time interval of new solution is set to endtime of the previous –
(i−1)th interval of the new solution or to the starttime of ith time interval of parent1
if i = 1 (first interval).

A similar policy is employed for copying best fitness intervals of parent2 into
a new solution. For the time interval I if neither parent1 nor parent2 has the best
solution, we follow the following strategy: The starttime of ith time interval of new
solution is set to endtime of the previous – (i− 1)th interval of the new solution or
to the average of starttime of ith time interval of parent1 and parent2 (for the first
interval of a new solution).

The endtime of ith time interval of new solution is set to the average of endtime
of ith time interval of parent1 and parent2.

In case of violation of interval length constraint in computing endtime in the
above way, the endtime is recomputed using formula (16).

endtime = (starttime + random(maxlength−minlength) + minlength) %high. (16)

9.3.3 Mutation

This operator selects the top 25 % solutions in terms of fitness from population P and
adds them to empty set S. Each solution from set S is mutated randomly before
adding it to a new population P ′. The mutation is carried out in the following
way.

From the solution find the top N/4 time intervals with the lowest fitness value.
Mutate these intervals, i.e., regenerate the endtime of each of these intervals using
formula (16). Recompute their fitness and add them to the mutated solution. If
mutated intervals cause violation of interval length constraints for the subsequent
intervals regenerate the endtimes of subsequent intervals using formula (16), up to
the interval for which violation stops.

9.3.4 Experimental Results

We have taken a seven days OLTP traces from the commercial MIS database server.
These traces are timestamped and have the page size of 2 KB. After analyzing, the set
of intervals reported by the proposed genetic algorithm (Number of Iterations = 100,
Population Size = 100, Number of Intervals = 11) is as follows:

31–158–303–425–520–695–829–937–1 099–1 254–1 382–31.

Optimizing Performance of Flash-Based Cloud Databases 1267

Algorithm 2 Generating initial population of 100 solutions

1: Step 1: . Parameters which are constant for all the solutions in the
population are initialized.

2: M = 100 . No of solutions in the initial population
3: Low = 1 . represents 00:01 hrs
4: High = 1 440 . represents 00:00 hrs
5: Read N . number of time intervals in each solution
6: Read minlength . minimum length of each time interval
7: Read maxlength . maximum length of each time interval
8: [end of Step 1]
9: Step 2: . create initial population P

10: for I = 1 to M repeat Step 3.
11: [end of Step 2]
12: Step 3: . create Ith solution in P
13: Solution (I).Interval (1).Starttime = Low + random(High− Low); . Set

starttime of first interval randomly by value between the range Low to High.
14: Solution (I).Interval (1).Endtime = (Solution (I).Interval (1).Starttime +

random (maxlength−minlength) + minlength) % High; . Set
the endtime of first interval by adding a random value between minlength and
maxlength to the starttime of first interval.

15: Solution (I).Interval (1).Fitness = computeFitness (Solution (I).Interval
(1).Starttime, Solution (I).Interval (1).Endtime); . Compute Fitness of first
time interval of Solution I

16: for J = 2 to N repeat Step 4. . Repeat the process
for remaining N − 1 time intervals of Solution I, all the time intervals will have
starttime equal to endtime of the previous time interval.

17: [end of Step 3]
18: Step 4:
19: Solution (I).Interval (J).Starttime = Solution (I).Interval (J − 1).Endtime;
20: Solution (I).Interval (J).Endtime = (Solution (I).Interval (J).Starttime +

random (maxlength−minlength) + minlength) % High;
21: Solution (I).Interval (J).Fitness = computeFitness (Solution (I).Interval

(J).Starttime, Solution (I).Interval (J).Endtime); . Compute Fitness of J th

time interval of Solution I
22: [end of Step 4]
23: Step : . Compute Fitness of a solution Solution(I).Fitness =

∑N
j=1

[Solution(I).Interval(J).Fitness]
24: [end of Step 5]

1268 A.O. Thakare, P. S. Deshpande

We defined working sets for the above optimal set of time intervals as well as
working sets for the static time intervals of one-hour fixed length on the above
dataset.

Here a new working set (corresponding to new time interval) is loaded automat-
ically at the expiration of each time interval (which coincides with the start of the
next time interval).

Experimental results prove that the use of optimal time intervals in PR-ACF
maximizes the overall day-wise performance gains considerably in comparison to the
results achieved with static time intervals (one hour each), as shown in Figure 16.

Figure 16. Performance comparison of PR-ACF algorithm with static (S) and optimal
(O) time intervals

10 CONCLUSION

In this paper, we focus on a cache replacement policy for database systems equipped
with flash memory as a secondary storage. We propose a new replacement policy,
called PR-ACF, which considers the imbalance of read and write costs of flash
memory while replacing pages. The basic idea behind PR-ACF is to avoid the
replacement of dirty pages present in the buffer cache to minimize the number of
write operations and at the same time preventing the significant degradation in the
hit ratio to achieve the fairly close to overall optimal performance. To determine
the coldness and hotness of the cached pages we propose a probabilistic model that
calculates the probability of future reference of each cached page and organizes the
cache based on computed probability. To improve the accuracy of prediction, the
probability is calculated based on the study of reference patterns from a history
of references along with recent reference patterns. The buffer cache is divided into

Optimizing Performance of Flash-Based Cloud Databases 1269

HOT and COLD regions which are dynamically resized according to the changing
access patterns. The page replacement always happens in the COLD region, and
within the COLD pages, the COLDEST clean page is targeted for replacement,
thus deliberately keeping the COLD dirty pages in the cache to avoid performance
degradation due to costly write and erase operations on flash memory. The proposed
PR-ACF algorithm was tested on the flash simulation platform Flash-DBSim, by
comparing its performance with best-known flash-based replacement algorithms.
The experimental results show that our proposed algorithm performs better than
the top-performing algorithms like CCF-LRU, AD-LRU, and PR-LRU with respect
to write count, runtime as well as hit ratio. Experimental results also prove that
the use of optimal time intervals maximizes the overall day-wise performance gains
considerably in comparison to the results achieved with static time intervals.

REFERENCES

[1] Robinson, J. T.—Devarakonda, M. V.: Data Cache Management Using
Frequency-Based Replacement. ACM SIGMETRICS Performance Evaluation Re-
view, Vol. 18, 1990, No. 1, pp. 134–142, doi: 10.1145/98460.98523.

[2] Chou, H.-T.—DeWitt, D. J.: An Evaluation of Buffer Management Strategies for
Relational Database Systems. Algorithmica, Vol. 1, 1986, No. 1-4, pp. 311–336, doi:
10.1007/BF01840450.

[3] Sacco, G. M.—Schkolnick, M.: Buffer Management in Relational Database Sys-
tems. ACM Transactions on Database Systems, Vol. 11, 1986, No. 4, pp. 473–498,
doi: 10.1145/7239.7336.

[4] Pan, Z.-W.—Xiang, D.-H.—Xiao, Q.-W.—Zhou, D.-X.: Parzen Windows for
Multi-Class Classification. Journal of Complexity, Vol. 24, 2008, No. 5-6, pp. 606–618,
doi: 10.1016/j.jco.2008.07.001.

[5] Shen, H.—Yan, X.-L.: Probability Density Estimation over Evolving Data Streams
Using Tilted Parzen Window. 2008 IEEE Symposium on Computers and Communi-
cations, 2008, pp. 585–589, doi: 10.1109/ISCC.2008.4625751.

[6] Lofgren, K. M. J.—Norman, R. D.—Thelin, G. B.—Gupta, A.: Wear Lev-
eling Techniques for Flash EEPROM Systems. United States Patent US6850443B2,
2005.

[7] Park, S.-Y.—Jung, D.—Kang, J.—Kim, J.—Lee, J.: CFLRU: A Replacement
Algorithm for Flash Memory. Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES ’06), ACM,
2006, pp. 234–241, doi: 10.1145/1176760.1176789.

[8] Jin, P.—Härder, T.—Li, Z.: AD-LRU: An Efficient Buffer Replacement Algo-
rithm for Flash-Based Databases. Data and Knowledge Engineering, Vol. 72, 2012,
pp. 83–102, doi: 10.1016/j.datak.2011.09.007.

[9] Yuan, Y.—Shen, Y.—Li, W.—Yu, D.—Yan, L.—Wang, Y.: PR-LRU:
A Novel Buffer Replacement Algorithm Based on the Probability of Reference for

https://doi.org/10.1145/98460.98523
https://doi.org/10.1007/BF01840450
https://doi.org/10.1145/7239.7336
https://doi.org/10.1016/j.jco.2008.07.001
https://doi.org/10.1109/ISCC.2008.4625751
https://doi.org/10.1145/1176760.1176789
https://doi.org/10.1016/j.datak.2011.09.007

1270 A.O. Thakare, P. S. Deshpande

Flash Memory. IEEE Access, Vol. 5, 2017, pp. 12626–12634, doi: 10.1109/AC-
CESS.2017.2723758.

[10] Zhou, W.—Feng, D.—Hua, Y.—Liu, J.—Huang, F.—Chen, Y.—Zhang, S.:
Prober: Exploiting Sequential Characteristics in Buffer for Improving SSDs Write
Performance. Frontiers of Computer Science, Vol. 10, 2016, No. 5, pp. 951–964, doi:
10.1007/s11704-016-5286-z.

[11] Chen, F.—Koufaty, D. A.—Zhang, X.: Hystor: Making the Best Use of
Solid State Drives in High Performance Storage Systems. Proceedings of the In-
ternational Conference on Supercomputing (ICS ’11), ACM, 2011, pp. 22–32, doi:
10.1145/1995896.1995902.

[12] On, S. T.—Gao, S.—He, B.—Wu, M.—Luo, Q.—Xu, J.: FD-Buffer:
A Cost-Based Adaptive Buffer Replacement Algorithm for Flash Memory De-
vices. IEEE Transactions on Computers, Vol. 63, 2014, No. 9, pp. 2288–2301, doi:
10.1109/TC.2013.52.

[13] Li, Z.—Jin, P.—Su, X.—Cui, K.—Yue, L.: CCF-LRU: A New Buffer Replace-
ment Algorithm for Flash Memory. IEEE Transactions on Consumer Electronics,
Vol. 55, 2009, No. 3, pp. 1351–1359, doi: 10.1109/TCE.2009.5277999.

[14] Kwon, O.—Lee, J.—Koh, K.: EF-Greedy: A Novel Garbage Collection Policy
for Flash Memory Based Embedded Systems. In: Shi, Y., van Albada, G. D., Don-
garra, J., Sloot, P. M. A. (Eds.): Computational Science – ICCS ’07. Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 4490, 2007, pp. 913–920, doi:
10.1007/978-3-540-72590-9 138.

[15] Consuegra, M. E.—Martinez, W. A.—Narasimhan, G.—Rangaswami, R.—
Shao, L.—Vietri, G.: Analyzing Adaptive Cache Replacement Strategies. arXiv
preprint arXiv:1503.07624, 2015, 26 pp.

[16] Jung, H.—Shim, H.—Park, S.—Kang, S.—Cha, J.: LRU-WSR: Integra-
tion of LRU and Writes Sequence Reordering for Flash Memory. IEEE Trans-
actions on Consumer Electronics, Vol. 54, 2008, No. 3, pp. 1215–1223, doi:
10.1109/TCE.2008.4637609.

[17] Corbató, F. J.: A Paging Experiment with the Multics System. In Honor of Philip
M. Morse, MIT Press, Cambridge, Mass., 1969, pp. 217–228.

[18] O’Neil, E. J.—O’Neil, P. E.—Weikum, G.: The LRU-K Page Replacement Al-
gorithm for Database Disk Buffering. ACM SIGMOD Record, Vol. 22, 1993, No. 2,
pp. 297–306, doi: 10.1145/170036.170081.

[19] Lee, D.—Choi, J.—Kim, J.-H.—Noh, S. H.—Min, S. L.—Cho, Y.—
Kim, C. S.: LRFU: A Spectrum of Policies That Subsumes the Least Recently Used
and Least Frequently Used Policies. IEEE Transactions on Computers, Vol. 50, 2001,
No. 12, pp. 1352–1361, doi: 10.1109/TC.2001.970573.

[20] Jiang, S.—Zhang, X.: LIRS: An Efficient Low Inter-Reference Recency Set
Replacement Policy to Improve Buffer Cache Performance. ACM SIGMET-
RICS Performance Evaluation Review, Vol. 30, 2002, No. 1, pp. 31–42, doi:
10.1145/511399.511340.

https://doi.org/10.1109/ACCESS.2017.2723758
https://doi.org/10.1109/ACCESS.2017.2723758
https://doi.org/10.1007/s11704-016-5286-z
https://doi.org/10.1145/1995896.1995902
https://doi.org/10.1109/TC.2013.52
https://doi.org/10.1109/TCE.2009.5277999
https://doi.org/10.1007/978-3-540-72590-9_138
https://doi.org/10.1109/TCE.2008.4637609
https://doi.org/10.1145/170036.170081
https://doi.org/10.1109/TC.2001.970573
https://doi.org/10.1145/511399.511340

Optimizing Performance of Flash-Based Cloud Databases 1271

[21] Johnson, T.—Shasha, D.: 2Q: A Low Overhead High Performance Buffer Man-
agement Replacement Algorithm. Proceedings of the 20th International Conference
on Very Large Data Bases (VLDB ’94), 1994, pp. 439–450.

[22] Bansal, S.—Modha, D. S.: CAR: Clock with Adaptive Replacement. Proceedings
of the 3rd USENIX Conference on File and Storage Technologies (FAST ’04), 2004,
pp. 187–200.

[23] Su, X.—Jin, P.—Xiang, X.—Cui, K.—Yue, L.: Flash-DBSim: A Simulation
Tool for Evaluating Flash-Based Database Algorithms. 2009 2nd IEEE International
Conference on Computer Science and Information Technology (ICCSIT ’09), Beijing,
China, 2009, doi: 10.1109/ICCSIT.2009.5234967.

[24] Zhou, Y.—Chen, Z.—Li, K.: Second-Level Buffer Cache Management. IEEE
Transactions on Parallel and Distributed Systems, Vol. 15, 2004, No. 6, pp. 505–519,
doi: 10.1109/TPDS.2004.13.

[25] Jung, H.—Yoon, K.—Shim, H.—Park, S.—Kang, S.—Cha, J.: LIRS-WSR:
Integration of LIRS and Writes Sequence Reordering for Flash Memory. In: Ger-
vasi, O., Gavrilova, M. L. (Eds.): Computational Science and Its Applications (ICCSA
2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4705,
2007, pp. 224–237, doi: 10.1007/978-3-540-74472-6 18.

[26] Hayes, B.: Cloud Computing. Communications of the ACM, Vol. 51, 2008, No. 7,
pp. 9–11, doi: 10.1145/1364782.1364786.

[27] Intel Corporation. Understanding the Flash Translation Layer (FTL) Specifi-
cation. White Paper, http://www.embeddedfreebsd.org/Documents/Intel-FTL.

pdf, 1998.

Atul O. Thakare received his post-graduate degree (M.Eng.
(CSE)) from SGB Amravati University, Maharashtra, India and
his under-graduate degree (B.Eng. (CT)) from RTM Nagpur
University, Maharashtra India. Currently, he is pursuing his
Ph.D. from VNIT, Nagpur, Maharashtra, India. He has a total
of 16 years of experience, six years in the IT industry and ten
years in the academic profession.

Parag S. Deshpande has completed his Ph.D. from Nagpur
University, Nagpur, India and his M-Tech from IIT Powai, Mum-
bai, India. He is currently working as Professor in the Depart-
ment of Computer Science and Engineering, VNIT, Nagpur, Ma-
harashtra, India. He has 31 years of academic experience. He
is the author of several books including C and Data Structure,
Data Warehousing Using Oracle, SQL/PLSQL for Oracle 11g.
He is member of ISTE and SAE-India.

https://doi.org/10.1109/ICCSIT.2009.5234967
https://doi.org/10.1109/TPDS.2004.13
https://doi.org/10.1007/978-3-540-74472-6_18
https://doi.org/10.1145/1364782.1364786
http://www.embeddedfreebsd.org/Documents/Intel-FTL.pdf
http://www.embeddedfreebsd.org/Documents/Intel-FTL.pdf

