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Abstract. The deployment of robots in real life applications is growing. For better
control and analysis of robots, modeling and learning are the hot topics in the
field. This paper proposes a method for learning a Petri net model from the limited
attempts of robots. The method can supplement the information getting from robot
system and then derive an accurate Petri net based on region theory accordingly.
We take the building block world as an example to illustrate the presented method
and prove the rationality of the method by two theorems. Moreover, the method
described in this paper has been implemented by a program and tested on a set
of examples. The results of experiments show that our algorithm is feasible and
effective.
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1 INTRODUCTION

Robotics systems and techniques which appeared during the recent years have
achieved astonishing development, and they not only facilitate humans’ lives but
also replace humans’ work in some difficult situations. With the continuous expan-
sion of the field of robot applications, higher requirements are needed for the safety,
correctness and reliability of robots. In order to more effectively control a robot
system and verify the system properties, it is necessary to build a model for the
robot system.

In the field of robotics, many researchers have worked on modeling. Desai [1]
proposed a new modeling method that can control multiple teams of mobile robots
navigating in a terrain with obstacles, while maintaining a desired formation and
changing formations when required. Wieber et al. [2] studied the modeling method
of legged robots, and used the model to generate and control the dynamic motions,
as well as analyze the stability of the robot. However, in some situations, deliberative
planning or pre-programming to achieve tasks will not be always possible. Hence,
there is a growing research interest in imbuing robots not only with the capability of
perception and planning but also of learning [3]. According to current state of the art
of robot learning, most of the successful results presented in the literature are applied
by machine learning. There are many different implementation methods, such as
reinforcement learning, artificial neural network and evolutionary techniques [4, 5, 6].
However, there are few studies on the modeling and learning of robots via formal
methods.

Petri nets (PNs) [7] are a powerful formal modeling tool, which have advantages
in the intuitiveness of its graphical modeling and the rigor of its analytical the-
ory. Especially, they have the ability to describe the complex logical relationships
between systems or process activities, such as concurrency, competition, synchro-
nization, and order. Moreover, there are many PN modeling tools [8] which provide
the functions of establishing, modifying, storing, and dynamic simulation that can
be used to analyze and valid the properties of the PNs. Therefore, they have been
widely applied in various fields, including the field of robotics. Lima et al. [9] in-
troduced distinct Petri net types to model robotic tasks from different views of
the robotic task model. Ziparo et al. [10] presented a language (Petri Net Plans)
based on PNs, which allows for intuitive and effective robot and multi-robot be-
havior design. Chao et al. [11] developed a system for multimodal collaboration
based on a timed Petri net representation, and implemented action interruptions
in reciprocal interaction within the system. In these applications, PNs were mostly
created manually rather than automatically. Chang et al. [12] proposed a learning
method that automatically creates PNs from observation of human demonstrations
to model the underlying structure of tasks. Different from most of the existing
methods, this work enables PNs to be created automatically. But the operation
sequences of imitation need to be designed artificially. It is our hope that the robot
can learn a PN model in a limited number of task-oriented attempts without manual
planning.
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The attempts of the robot can be regarded as the system behavior. There
are two major approaches to obtain a PN model from the information of system
behavior. One approach is process mining technology [13, 14]. Although a PN
model can always be gained by a process mining technology, the obtained model
is not necessarily consistent with the actual model. The other way to transform
the behaviors to a structure description model (PN) is related to the PN synthesis
problem [15], whose method is mainly based on the region theory [16]. The orig-
inal goal of PN synthesis is to construct an elementary PN according to a given
transition system and test whether the reachability graph of the PN is isomorphic
to the transition system. If it is isomorphic, such a PN is constructed. Nowadays,
there are many extensions in this field, such as changing the transition system into
formal languages and execution traces or changing the target from elementary PNs
to Place/Transition nets. Several tools for synthesis have already existed, like pet-
rify [17], genet [18], synet [19] and apt [20]. By this method, we can convert the
effective attempts of a robot into an accurate PN model that describes the operation
process of the robot in a compact form. At the same time, we can learn some rules
from the limited attempts to enrich the known information so as to obtain a more
complete model.

This paper proposes a PN model generation algorithm based on the region theory
and gives two theorems as well as proofs to guarantee the rationality of the method.
Also, to illustrate how to obtain a more complete PN model automatically within
the robot’s limited attempts, the problem of the robot in the building block world
is taken as an example. The main contributions are as follows:

1. An automatic generation and learning scheme of robot model from the robot’s
limited attempts based on PN is given. It provides a new idea for robot model
learning by using PN.

2. Two theorems are proved, which are the theoretical basis of this paper. One the-
orem guarantees the accuracy of the model generated from a transition system
and the other reveals the rationality of adding information so that any transition
system getting from a robot system can generate a PN model.

3. A PN model generation algorithm that provides an operational method for the
scheme is recommended. It transforms the behaviors of the robot into a PN
model and rationally supplements the information based on the region theory
and two above theorems. By this means, the purpose of automatic model gen-
eration and learning is achieved.

The next section describes a classical problem in building block world and ex-
pounds the problem to be solved in this paper from the perspective of robot learning
and control. Section 3 briefly reviews the basics of PN and some definitions related
to the proposed approach. After proving two theorems, the PN model generation
algorithm is given. In order to confirm the feasibility of the proposed method, some
examples are shown in Section 4. Finally, conclusions and outlooks are presented in
Section 5.
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2 MOTIVATING EXAMPLE

In some situations, due to the uncertainty of the environment or difficulty of compre-
hensive analysis, it is hard to build accurate models manually. Taking the classical
problem of building block world as an example, it is difficult to consider all the
operation sequences of the robot and obtain a complete model manually. Thus, it
requires a method which can generate a model automatically as well as learn some
information from the existing information. There is no doubt that we can control
robots better with a more complete model.

A building block world scene is as follows: a number of blocks on a table are
placed and a robot is asked to change the initial state of the blocks to the target
state. The robot has a mechanical arm (hand) and just can perform the specified
actions which are shown in Table 1.

Action Explanation Precondition

unstack(A, B) Pick up building block A
from building block B.

Building block A is stacked on build-
ing block B; there is no other building
block on building block A; the robot’s
hand is empty.

putdown(A) Place building block A
on the table.

Building block A is in robot’s hand.

pickup(A) Pick up building block A
from the table.

Building block A is on the table; there
is no other building block on building
block A; the robot’s hand is empty.

stack(A, B) Place building block A
on building block B.

There is no other building block on
building block B; building block A is
in robot’s hand.

Table 1. The actions of robot

We define that if the robot executes the action “unstack(A, B)”, it must put
the building block A on the table before taking another action. That is to say, it is
not allowed to place the building block A on another building block after executing
the action “unstack(A, B)”. So we can combine the action “unstack(A, B)” and
the action “putdown(A)” into one operation, that is, “unstack(A, B)-putdown(A)”
is an atomic operation. In addition, we suppose the robot can only pick up one
building block at a time which means robot needs to put down block in hand before
executing another action, so “pickup(A)-stack(A, B)” and “pickup(A)-putdown(A)”
are also atomic operations. Because the atomic operation “pickup(A)-putdown(A)”
doesn’t change the state of the building block, we consider to ignore it. In summary,
the operations that the robot can perform are “unstack(A, B)-putdown(A)” and
“pickup(A)-stack(A, B)”. For ease of writing, we will record the first operation as
USPD(A, B) and the second one as PUS(A, B).

For states of this scene, we only consider the upper and lower relative positions
of the blocks and the position of the blocks and the table, regardless of the left and
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right relative positions of the blocks. For example, Figure 1 shows the initial state
and target state of the building blocks that we assume. As in the target state, we
only require the building block A is on the building block B, the building block C is
on the building block D and the building blocks B and D are on the table, without
concerning about the left and right relative positions of the building block AB and
the building block CD. If multiple operations can be executed in a situation, robot
can perform an operation at will until the state of all blocks is consistent with the
target state.

a) b)

Figure 1. a) Initial state and b) target state of the building blocks

Then, based on the above scene assumptions, how can robots learn a PN model
by limited attempts without human intervention? This question is answered in this
paper.

3 METHODS

In this section, we first give the basic concepts of PN and PN synthesis, which
are derived from [15, 21, 22, 23]. Next, we present two theorems which are the
theoretical foundation of the proposed method. Finally, based on the definitions
and theorems, we put forward the algorithm for generating PN models.

3.1 Preliminaries

Definition 1. A net is a quad N = (P, T, F,W ), where P is a finite set of places, T
is a finite set of transitions such that P 6= ∅, T 6= ∅, P∩T = ∅, F ⊆ (P×T )∪(T×P )
is the flow relation, and W is a weight function such that W (x, y) ∈ N+ (here
N+ = {1, 2, 3, . . . }) if (x, y) ∈ F and W (x, y) = 0 if (x, y) /∈ F .

The marking of a net is a function M : P → N (here N = {0, 1, 2, 3, . . . }}). It is
represented by a multiset expression or a |P |-vector (M(p1), . . . ,M(p|P |))

T , where
M(p) is the number of tokens in place p ∈ P . A PN PN = (N,M0) is a net N with
an initial marking M0.

A transition t ∈ T is said to be enabled at marking M , which is denoted as
M [t >, if ∀p ∈ P , M(p) ≥ W (p, t). Firing an enabled transition t results in
changing M into M ′, represented by M [t > M ′, where ∀p ∈ P,M ′(p) = M(p) −
W (p, t) + W (t, p). A sequence of transitions σ = t1t2 . . . tk is a firing sequence if
there exists a sequence of markings such that M [t1 > M1[t2 > . . .Mk−1[k > Mk, it
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can be written as M [σ > Mk, and Mk is said to be reachable from M by firing σ.
The reachability set R(M) is a set of all markings reachable from M .

The reachability graph of PN is a directed graph with the set of vertices R(M0),
and arcs {(M, t,M ′)|M,M ′ ∈ R(M0) ∧M [t > M ′}.

Definition 2. A place p ∈ P is said to be bounded or K-bounded if ∀M ∈ R(M0),
M(p) ≤ K, where K ∈ N+ (here N+ = {1, 2, 3, . . . }). A PN PN is said to be
bounded if its every place is bounded. If K(PN) = max{K(p)|p ∈ P} = 1, PN is
a safe PN.

Here, we only consider the PN with an arc weight of 1, so the weight function W
of the PN can be omitted, represented by PN = (P, T, F,M0). Unless otherwise
stated, the PNs referred in this paper are all safe PNs.

Definition 3. A transition system (S,E,∆) consists of a set of states S, a set of
events E, and a set of transitions ∆ ⊂ S × E × S. An initialized transition system
TS = (S,E,∆, S0) consists of a transition system (S,E,∆) and an initial state
s0 ∈ S.

An event e is enabled in a state s, denoted by s
e→, if there is a state s′ such that

(s, e, s′) ∈ ∆. This situation is written as s
e→ s′ and means that state s′ is reachable

from state s through the execution of event e. The definitions of enabledness and
of the reachability relation are extended as usual to event sequences (or directed

paths) σ ∈ E∗ : s
ε→ and s

ε→ s′ are always true; s
σe→ (s

σe→ s′) iff there is a state s′′

with s
σ→ s′′ and s′′

e→ (s′′
e→ s′, respectively). A state s′ is reachable from a state

s if there is an event sequence σ such that s
σ→ s′. A state s′ is reachable if it is

reachable from state s0. By s→, we denote the set of states reachable from state s.

Definition 4. An initialized transition system TS = (S,E,∆, s0) is called finite if
S and E (hence also ∆) are finite sets. It is deterministic if for any reachable state

s, s′, s′′ and event e, s
e→ s′ and s

e→ s′′ implies s′ = s′′ and it is totally reachable if
S = s→0 and ∀e ∈ E : ∃s ∈ s→0 : s

e→.

A transition system characterizes the migration process of the system states,
which can be either artificially designed or actually obtained. It should be noted
that the transition systems involved in this paper are all gained by robot’s actual
attempts.

Definition 5. Two TS1 = (S1, E,∆1, s01) and TS2 = (S2, E,∆2, s02) over the same
set of evens E are isomorphic if there is a bijection ζ: S1 → S2 with ζ(s01) = s02
and (s, t, s′) ∈ ∆1 ⇔ (ζ(s), t, ζ(s′)) ∈ ∆2, for all s, s′ ∈ S1.

The reachability graph of a PN PN can be seen as an initialized transition
system. If there is a PN PN whose reachability graph is isomorphic to a given
initialized transition system TS, then we will say that PN solves TS [23].
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Definition 6. A region of an initialized transition system TS = (S,E,∆, s0) is
a triple (R,B,F) ∈ NS ×NE ×NE such that the following holds:

∀s e→ s′ ∈ ∆ : R(s) > B(e) ∧ R(s′) = R(s)− B(e) + F(e).

In the above formula, the first condition states that no transition in the initialized
transition system may be prevented, and the second condition enforces consistency
between R, B, and F. Intuitively, this describes a possible place in a PN generating
TS where B(e) and F(e) describe the number of tokens consumed and produced,
respectively, by a transition e ∈ E, and R(s) is the number of tokens on this place
in state s ∈ S [23].

For every region (R,B,F) if s
σ→ s′ for some s, s′ ∈ S and σ = ea1ea2 . . . eak ∈ E∗,

then R(s′) = R(s) +
∑k

i=1(F(eai) − B(eai)). Since we are assuming that the TS is
totally reachable, R is thus fully determined by R(s0) via R(s) = R(s0)+

∑n
i=1 ψs(ei)·

(F(ei)−B(ei)), where ψs(ei) is the number of times that ei occurs in σ when s0
σ→ s.

We identify a region ρ = (R,B,F) with a vector ρ ∈ N1+2n:

ρ = (ρ0, . . . , ρ2n) = (R(s0),B(e1), . . . ,B(en),F(e1), . . . ,F(en)).

The function that reconstructs the value R(s) for a state s ∈ S from such a vector
is given by tokens (ρ, s) = ρ0 +

∑n
i=1 ψs(ei) · (ρn+i − ρi).

Definition 7. For a region set R of an initialized transition system TS = (S,E,∆,
s0), the corresponding PN PN = (P, T, F,M0) has P = R, T = E and for each
ρ = (Rρ,Bρ,Fρ) ∈ R defines F (ρ, e) = Bρ(e), F (e, ρ) = Fρ(e) and M0(ρ) = R(s0). If
the reachability graph of the corresponding PN is isomorphic to the TS, i.e., TS is
isomorphic to the reachability graph of the net system synthesized from R, we will
say that the region set R solves TS.

For example, a region set R = {(1, 0, 1, 0, 1, 0, 0, 0), (1, 1, 0, 0, 1, 1, 1, 0)} can be
found in the transition system shown in Figure 2 a). For each region in R, we can
define a place and the flow relationship between the place and transitions in the PN
model. As shown in Figure 2 b), the region ρ1 = (1, 0, 1, 0, 1, 0, 0, 0) corresponds to
place p1, and the region ρ2 = (1, 1, 0, 0, 1, 1, 1, 0) corresponds to place p2. Moreover,
it can be seen that the reachability graph of PN1 shown in Figure 2 c) is isomorphic
to transition system TS1, that is, the region set R solves TS1.

Remark 1. It is a hope that the number of places in the PN is as small as possible,
so it leads to the emergence of sink transitions. The sink transitions will not affect
the normal behavior of the PN.

Definition 8. A state separation problem SSP(s, s′) is a set of two states {s, s′} ⊆ S
with s 6= s′ that must be distinguishable and it is solved by a region ρ with Rρ(s) 6=
Rρ(s

′). The corresponding predicate is SSP(ρ, s, s′) := (tokens(ρ, s) 6= tokens(ρ, s′)).
A counterexample is given in the Figure 3 a) which shows an initialized transition
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a) b) c)

Figure 2. a) A transition system TS1, b) the corresponding PN PN1, and c) the reacha-
bility graph of the PN1

system in which states s3 and s4 cannot be separated by any region. If all the
state separation problems of a TS can be solved, we call this TS satisfies the state
separation property.

An event/state separation problem ESSP(s, e) is a pair (s, e) ∈ S × E with

¬(s
e→). This problem is solved by a region (Rρ,Bρ,Fρ) iff Rρ(s) < Bρ(e), which

means that event e is prevented in state s. This is expressed by the predicate
ESSP(ρ, s, ei) := (tokens(ρ, s) < ρi). One of its counterexamples is shown in the
Figure 3 b). It demonstrates that event e3 cannot be separated from state s1 by any
region in the initialized transition system. If all the event/state separation problems
of a TS can be solved, we call this TS satisfies the event/state separation property.

The set of all separation problems of TS is called SP. For readability, given any
kind of separation problem pr ∈ SP, we define SP(ρ, pr):

SP(ρ, pr) :=

{
SSP(ρ, s, s′) = (tokens(ρ, s) 6= tokens(ρ, s′)), if pr = SSP(s, s′),

ESSP(ρ, s, ei) = (tokens(ρ, s) < ri), if pr = ESSP(s, ei).

3.2 Relevant Theorems

According to the above definitions, we present the following two theorems which
provide theoretical support for the subsequent algorithm. The first theorem states
that the model generated by the algorithm is accurate. The second guarantees that
any transition system can generate a PN model by supplementing the transitions if
it failed, and the supplement of the information is reasonable.

Theorem 1. If there is a region set R of the initialized transition system TS =
(S,E,∆, s0) that can solve all separation problems SP in the TS and satisfies ∀p ∈ R,
tokens(ρ, s) ≤ 1, where s ∈ S, then the corresponding PN is safe and its reachability
graph is isomorphic to the TS.
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a) b)

Figure 3. a) A transition system where state separation fails, and b) a transition system
where event/state separation fails

Proof. Let SN(TS) be the PN obtained by TS = (S,E,∆, s0), and its reachability
graph is RG(SN(TS)), which is denoted as TS2 = (S2, E2,∆2, s02). Assuming
that TS2 is not isomorphic to TS, then either the event sets of TS2 and TS are
different or there is no bijection ζ : S → S2 with ζ(s0) = s02 and (s, t, s′) ∈
∆ ⇔ (ζ(s), t, ζ(s′)) ∈ ∆2, for all s, s′ ∈ S. In view of synthesis method, the
event sets of TS2 and TS are the same. Then we consider the second assumption,
that is, ∃s, s′ ∈ TS2, ζ(s0) 6= s02 or (s, t, s′) ∈ ∆1 ⇔ (ζ(s), t, ζ(s′)) ∈ ∆2 is not
satisfied. Because the region set R can solve all the separation problems SP in
TS, by Definition 6, the region in R considers all the constraints of s

e→ s′ ∈ ∆
and ¬(s

e→) for all s, s′ ∈ S and e ∈ E, there must exist a bijection ζ : S → S2

with ζ(s0) = s02 and (s, t, s′) ∈ ∆ ⇔ (ζ(s), t, ζ(s′)) ∈ ∆2, for all s, s′ ∈ S, which
opposites to the assumption. In addition, ∀s ∈ S, ρ ∈ R, tokens(ρ, s) ≤ 1 conforms
to the definition of safe PN. Hence, the proof is complete. �

This theorem is proposed based on the summary of the existing conclusions and
here we give its proof. For a more detailed introduction of region theory, please refer
to [16].

Theorem 2. Let TS = (S,E,∆, s0) be an initialized transition system and it
satisfies the state separation property. For any event/state separation problem

ESSP(s, e) in the TS, if there is no region to solve the problem, then s
e→ or s

e→ s′

(s′ is a new state) can be added to the TS, and this supplement is reasonable.

Proof. For an event/state separation problem ESSP(s, e) in TS, i.e. ¬(s
e→), if the

problem can be solved by a region ρ, then ρ satisfies Rρ(s) < Bρ(e). But such region

does not exist, that is to say, all regions ρ satisfy Rρ(s) ≥ Bρ(e), which means s
e→

by Definition 6. Since Rρ(s
′) = R(s)− B(e) + F(e), state s′ can be calculated. If s′

does not exist in the state set S, it is necessary to add it into S. It can be seen from
the above analysis that the event set is not changed and the supplemental state can
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be obtained by occurring the event actually, what complies with the rules of the
system. Hence, the supplement is reasonable. �

In Theorem 2, we prove that it is reasonable to add some transitions to the TS
when facing the failure of PN generation. Corresponding to the real scene, the other
information gained according to the known one by the robot is consistent with the
actual. Obviously, this is a manifestation of learning.

3.3 Generation Algorithm for Petri Net Model

As stated above, we can construct a PN according to an initialized transition sys-
tem TS based on the region theory. If the regions of the TS satisfy the certain
conditions, a PN whose reachability graph is isomorphic to the initial transition can
be generated. In a robot scene, an initialized transition system can be obtained
by the records of execution sequences and state changes. Then, we can use it to
produce a PN model automatically. If it failed to generate a PN model, this work
gains some information from the known one and adds them to the initial transition
system, which shows the robot has the ability to learn. Here we introduce the PN
model generation algorithm.

Algorithm 1 Petri Net Model Generation Algorithm

Input: an initialized transition system TS = (S,E,∆, s0)
Output: a PN Model PN
1) Let the region set Π and unresolved separation problem set Ξ be ∅(empty);
2) For each separation problem pr ∈ SP in TS, do
3) If find a region ρ can solve pr and ∀s ∈ S, tokens(ρ, s) ≤ 1, then
4) Put ρ into the set Π;
5) Else
6) Put pr into the set Ξ;
7) End if
8) End for
9) If unresolved separation problem set Ξ is not empty, then
10) For each separation problem ESSP(si, ei) in Ξ, do
11) Calculate state s′i which is reachable from si through the execution of ei
12) If state s′i is not in state set S, then
13) Add state s′i to state set S;
14) End if

15) Add transition si
ei→ s′i to transition set ∆;

16) End for
17) Return step 1; // Repeat steps, where TS has been changed.
18) Else
19) Synthesize a PN model PN by region set Π according to Definition 7;
20) End if
21) Output PN model PN ;
End
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In Algorithm 1, we first calculate solutions to all separation problems in TS by
using a general PN synthesis algorithm [23] (steps 3–4). Then for the purpose of
adding information to construct a PN whose reachability graph is isomorphic to the
TS, we put the current unsolvable separation problem(s) into the set Ξ (step 6). If
the set Ξ is empty, the PN model can be synthesized by the region set Π according to
the Definition 7 (step 19); otherwise, some information needs to be added. As for an
actual system, we require that any two states of the system should be distinguished,
so the TS which comes from the reality satisfies the state separation property, that is,
there are only event/state separation problems in the unresolved separation problem
set Ξ. Thus, we can add some arcs (or arcs with states) by performing the steps 10
to 16. It can be seen from Theorem 2, the added information is reasonable. After
that, return to step 1 and re-solve problems in the new TS until the region set of
TS satisfies the conditions. Finally, the PN model PN can be output (step 21).

a) b)

Figure 4. a) The initialized transition system TS2, and b) the corresponding PN PN2

Here we use the example shown in Figure 1 to explain the algorithm. It is
assumed that a part of the initialized transition system TS can be obtained by the
robot’s autonomous attempts shown in Figure 4 a), where a state is represented by
si (0 ≤ i ≤ 4) and an event is represented by ei (1 ≤ i ≤ 2). For convenience,
we show the position of building blocks next to the state and list the operations
in the dashed box. Taking the TS as an input of Algorithm 1, the output can be
obtained as shown in Figure 4 b). In Algorithm 1, the first operation is to solve
each separation problem pr ∈ SP in TS. For example, in state s2, the event e2 is
not enabled, so pr = ESSP(s2, e2) is an event/state separation problem. Because
state s2 is reached from state s0 via event sequence e1e2, we can obtain SP(ρ, pr) =
(tokens(ρ, s2) < ρ2) = (ρ0 + 1 · (ρ4− ρ1) + 1 · (ρ5− ρ2) + 0 · (ρ6− ρ3) < ρ2) according
to the Definition 6 and the Definition 8. In addition, the following inequalities can
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be produced owing to the region constraints:

ρi ≥ 0 (0 ≤ i ≤ 6)

∧ ρ1 ≤ tokens(ρ, s0) = ρ0

∧ ρ2 ≤ tokens(ρ, s1) = ρ0 + (ρ4 − ρ1)
∧ ρ3 ≤ tokens(ρ, s1) = ρ0 + (ρ4 − ρ1)
∧ ρ3 ≤ tokens(ρ, s2) = ρ0 + (ρ4 − ρ1) + (ρ5 − ρ2).

Considering the target PN is a safe PN, the constraint tokens(ρ, si) ≤ 1 (0 ≤ i ≤
4) should also be satisfied. We can compute that the vector ρ = (0, 0, 1, 0, 1, 0, 0) is
a possible solution of the above constraints. In this example, there is no unsolvable
separation problem, so the PN can be obtained according to the Definition 7 as
shown in Figure 4 b), where the vector ρ = (0, 0, 1, 0, 1, 0, 0) is corresponding to
place p1 in the PN.

4 SIMULATION AND EXPERIMENTS

In Section 3, we give the algorithm of Petri net model generation and prove the
corresponding theorems to ensure the rationality of the algorithm. In order to
exhibit the effectiveness of the method better, in this section, we achieve a program
to simulate the scene introduced in Section 2 and implement the algorithm. After
experiments and comparisons, it is indicated that the method is reasonable and
effective.

The program is coded in Java and requires input of the initial state and the
target state of the building blocks. In the program, when a path from the initial
state to the target is found, the Algorithm 1 is called to generate the PN model.
In the process of simulation, there may be cases where the known information is
insufficient and the PN cannot be obtained. At this time, some information needs
to be added according to the unresolved separation problem set, that is, steps 9
to 17 of Algorithm 1 will be executed. Then an accurate PN model which is more
complete can be obtained.

In the beginning, we introduce another example, as shown in Figure 5. Fig-
ures 5 a) and 5 b) show the initial state of the building block and the target one.
When the initialized transition system TS1 is produced by robot’s attempts, as
shown in Figure 6 a), it fails to generate a PN model. Therefore, the information
can be supplemented according to the unresolved event/state separation problems.

That is to say, the transitions s0
e2→ s10, s10

e0→ s5 and s10
e1→ s9 (s10 is a new state)

should be added to TS1 what results in TS2, as shown in Figure 6 b). The initial
state of the TS is marked in red labeled with s0 and the target state is marked in
green labeled with s4. Besides, we mark the position of the building blocks in the
state. For instance, “A-B” in s0 means that the building block A is on the building
block B, and “@” separates the pile of building blocks. That is, “A-B” and “C-D”
are two piles of building blocks. Then a PN model (Figure 7) can be automatically
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generated by TS2, where places are represented by circles, transitions are repre-
sented by rectangles and the red place (p2, p3, p5, p8) means the place containing
one token. It’s obvious that the operation USPD (E, F) can be performed in state s0
to reach the state s10. That is, this supplement is in line with reality, so as others.
Consequently, the information is increased reasonably.

a) b)

Figure 5. a) Initial state and b) target state of the building blocks

Then, in order to demonstrate the effectiveness of the algorithm better, we design
three more complex examples and simulate them. The initial state and target state
of the examples are shown in Table 2. In the simulation, we specify that the PN
model is going to be generated when the program finds a path from the initial
state to the target. For each example, we compare the results of the exhaustive
generation and supplementary generation by program. The exhaustive generation
means the generation of a PN model according to the known information directly
and the supplementary generation means the generation of a PN model via using
Algorithm 1 which includes the information added steps. The results are shown in
Table 3. For exhaustive generation, the number of attempts to generate a PN model
as well as the failure times is computed during the period of generating a complete
TS. For supplementary generation, the number of attempts to generate a PN model
by Algorithm 1, the states and arcs added to the TS during the whole process are
calculated. The total number of states and arcs of TS are also listed in the table.
Definitely, we can avoid the failures of model generation thanks to Algorithm 1,
so there are no failure times in supplementary generation. It can be seen that the
attempt times of supplementary generation are less than exhaustive generation for
all examples listed in Table 3. Even more, supplementary generation can add some
states and arcs to TS which lead to the reduction in attempt times. In other words,
by using the proposed algorithm, we can obtain a complete PN model without
traversing completely. Consequently, it is available to learn a PN model based on
the method presented in this paper.

Initial State Target State

1 A-B@C-D@E-F A@B-C@F@D-E

2 A-B-C@D-E E-C-B@A-D

3 A@B@G-C@D@F-E A-B@D-C@E@F@G

Table 2. Examples of simulations
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a)

b)

Figure 6. a) The initialized transition system TS3 which is produced by robot’s attempts,
b) the initialized transition system TS4 after adding information to TS3

5 CONCLUSIONS

With the development of intelligent technology, more and more researchers begin
to join in the field of robotics and devote to the modeling and learning of the
robot system. PN is an abstract formal modeling method, which can represent
the sequence and concurrent events as well as the restrictions of various conditions.
In view of the flexibility and effectiveness, PN can be applied to the robot field.
Motivated by the scene of building block world, this paper introduced two theorems
and a PN model generation algorithm based on region theory, which achieves a PN
model generated automatically according to a transition system, as well as makes
model more complete to some extent. Besides, the effectiveness of the method
is demonstrated by a program which simulates the robot scene and applies the
algorithm.
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Figure 7. The corresponding PN of TS4

Exhaustive Generation Supplementary Generation
Attempt Failure Attempt Number of Number of Total Total

Times Times Times Added States Added Arcs States Arcs

1 90 33 75 6 24 40 90

2 243 106 183 28 95 98 249

3 175 85 128 15 65 62 171

Table 3. Results of simulations

In future work, we intend to improve the performance of the algorithm as well
as studying the model analysis methods. Furthermore, we will focus on the ex-
tension of the method to multi-robot systems and other automated manufacturing
systems.
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