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Abstract. Pedestrian Dead Reckoning (PDR) helps to realize step frequency de-
tection, step estimation and direction estimation through data collected by inertial
sensors such as accelerometer, gyroscope, magnetometer, etc. The initial position-
ing information is used to calculate the position of pedestrians at any time, which
can be applied to indoor positioning technology researching. In order to improve the
position accuracy of pedestrian track estimation, this paper improves the step fre-
quency detection, step size estimation and direction detection in PDR, and proposes
a particle swarm optimization particle filter (PSO-IPF) PDR location algorithm.
Using the built-in accelerometer information of the smartphone to carry out the
step frequency detection, the step frequency parameter construction model is in-
troduced to carry out the step estimation, the direction estimation is performed
by the Kalman filter fusion gyroscope and the magnetometer information, and the
positioning data is merged by using the particle filter. The fitness function in the
particle swarm optimization process is changed in the localization algorithm to im-
prove particle diversity and position estimation. The experimental results show
that the error rate of the improved step frequency detection method is reduced
by about 2.1 % compared with the traditional method. The angle accuracy of the
direction estimation is about 4.12◦ higher than the traditional method. The overall
positioning accuracy is improved.
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1 INTRODUCTION

In today’s world, information technology is developing rapidly. With the in-depth
development of the Internet, technologies such as the Internet and 5G are gradually
maturing, and location-based services will play an increasingly important role. As
an application based on location services, indoor positioning gradually penetrates
into all aspects of social life. Currently the Global Positioning Systems (GPS) and
the BeiDou Navigation Satellite System (BDS) are widely used in the United States.
These systems have been able to provide users with higher-precision outdoor posi-
tioning, such as on-board map navigation, which makes people’s needs for outdoor
activities met. However, due to a small spatial pattern of the interior, the indoor
positioning has stricter requirements on accuracy. As for indoors signals, outside
signals are easily blocked, attenuated or reflected. Therefore, some problems exist in
the outdoor positioning system, such as insufficient accuracy and signal instability
in indoor positioning, resulting in relatively poor reliability, continuity and stability
of indoor positioning. It is important to develop indoor positioning technology to
provide high-precision, convenience and mature indoor location services [1].

Currently, as smartphones are widely embedded with magnetometers, accelero-
meters, gyroscopes and other sensors, it is possible for smartphone-based pedestrian
dead-reckoning (PDR) to adapt smartphones. PDR technology is mainly divided
into three parts: step frequency detection, step estimation and direction estima-
tion [2]. Poulose et al. [3] proposed a step frequency detection by combining the
acceleration information and the gyro information. Wang [4] proposed a dynamic
constrained gait detection method, which removed the interference caused by jitter,
through using dynamic constraint amplitude and accelerating peak time. In step
estimation, it often combined people’s walking frequency and experience value to
estimate. Manos et al. [5] estimated the direction angle by establishing a model of
gravity-like direction. Kang et al. [6] established indoor positioning for pedestrians
by establishing an inseparable walking mode and real-time deep learning network
module. Lu et al. [7] proposed a new regression model using accelerating data
to perform stride frequency detection. At the same time, it combined with map
information and barometer for spatial three-dimensional positioning. Hasan and
Mishuk [8] used Kalman filtering to fuse acceleration, gyroscope and magnetometer
data for indoor positioning. Since most of the current smartphones have built-in
sensors such as accelerometers, gyroscopes and magnetometers, and the accuracy is
also higher and higher, it is possible to use the smartphone for PDR indoor posi-
tioning.

In this paper, the accelerometer and gyroscope data are filtered and pre-proces-
sed by FIR low-pass filter. Firstly, in step frequency detection, setting the time
threshold, the acceleration threshold and the change of the state value respectively.
Secondly, in step estimation, the steps are counted, and the step frequency pa-
rameters are introduced to estimate the step size to improve the accuracy of the
estimation. Then the magnetometer and gyroscope data are fused by Kalman filter
to estimate the direction. Finally, the particle filter is improved by changing the
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fitness function in the particle swarm optimization algorithm to improve particle
diversity and the accuracy of indoor positioning.

The rest of the paper is organized as follows. Section 2 brings forward a few re-
lated works. Section 3 focuses on improved PDR algorithm, introduces the algorithm
for step frequency detection, step size estimation and direction angle prediction as
well as a new particle swarm optimization particle filter algorithm. Section 4 mainly
verifies the advantages of the proposed algorithm in indoor positioning, which can
improve the positioning accuracy, and Section 5 concludes the paper.

2 PEDESTRIAN MOBILE SENSING TECHNOLOGY
BASED ON INERTIAL SENSOR

The most important technique for pedestrian motion perception in indoor position-
ing is track estimation. In indoor positioning, track estimation can be evolved into
pedestrian trajectory estimation. Pedestrian dead reckoning mainly consists of three
important parts: step detection, step estimation and direction estimation. The ba-
sis of the stride detection is that the pedestrian motion has periodic characteristics.
The cycle of each step of the movement is from the beginning of a step to the end
of a step. The output value of the acceleration sensor can visually see the waveform
of the motion cycle. The fluctuation of the acceleration value is generally related
to the height of the person and the individual, the exercise habits and road condi-
tions. The step frequency of pedestrian movement can be obtained by analyzing the
acceleration values.

The purpose of the stride detection is to detect whether a pedestrian has walked.
When a person is walking with a smartphone, the horizontal acceleration and the
vertical acceleration will exhibit periodic changes. Therefore, the pedestrian mo-
tion can be detected by periodically changing the acceleration in the walking mo-
tion. Figure 1 is an acceleration signal collected when the pedestrian is holding the
smartphone while walking.

It can be seen from the figure that the acceleration in the Z direction is rela-
tively obvious, the periodicity is better, the acceleration in the X and Y directions
is weaker, and the change is not as obvious as the Z direction. Since the three-axis
output component of the smartphone accelerometer is related to the attitude of the
smartphone itself, in the actual situation, the hand-held smartphone has a certain
randomness, and the result obtained directly by using the Z-axis output in some
severe scenes will appear larger error. Therefore, in order to eliminate the accelera-
tion signal fluctuation caused by the gesture of the smartphone itself, the three-axis
output component of the acceleration information is modulo obtained to obtain the
combined amount Zsyn.

Zsyn =
√
a2x + a2y + a2z. (1)

ax, ay, az are the three-axis output components of the smartphone. Figure 2
is a comparison diagram of changes in acceleration information components and
composite amounts while a person is walking with a mobile phone in his/her pocket.
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Figure 1. Change in acceleration value when walking

Figure 2. Comparison of dynamic Z component and composite quantity

It can be seen from Figure 2 that the Z-axis acceleration information fluctuation
is not obvious when the smartphone is placed in the pocket. If the Z-axis acceleration
information is also used to detect the pace, a large error will be caused, but the
synthesis amount has a good periodicity. Therefore, the raw data of the acceleration
information is used as the step to detect the original data. Moreover, the faster the
walking speed from Figure 3, the larger the peak value and the valley value of the
waveform.
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Figure 3. Acceleration waveform at different walking speeds

Considering that the human body is relatively fluctuating when walking, the
collected acceleration information is mixed with random noise, so the acquired ac-
celeration signal cannot be directly used, and it is necessary to perform related
filtering processing to filter out large accidental noise and false peaks to obtain
more obvious wave forms.

3 PDR ALGORITHM

3.1 Step Frequency Detection

The acceleration signal collected by the smartphone has high-frequency information
interference, and it is particularly important to use the filter for filtering. Because the
FIR filter has the advantages of good stability, high precision, small accumulation
error, linear phase characteristics, etc., the acceleration signal is not easy to be
distorted, so this paper selects the FIR filter to pre-filter the acceleration data.

The method of the digital filter design includes a window function method,
a frequency sampling design method, and a multi-filter parallel processing method.
In this paper, the window function method is selected to complete the filter design.
The design idea is to choose an ideal frequency selection filter, which has an infinite
impulse response and uses a suitable window function to cut off its impulse response
to obtain a linear phase. The RF filter of the excited response is designed as follows:

Hd(e
jw) represents an ideal low-pass filter and the ideal bandwidth filter is given

by Formula (2):

Hd(e
jω) =

e
−jω, |ω| ≤ ωc,

0, ωc < |ω| ≤ π.
(2)
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In this formula, ωc is the cutoff frequency, and the impulse response is:

hd(n) =
1

2π

∫ π

−π
Hd(e

jw) dω =
sin[ωc(n− α)]

(n− α)π
. (3)

In the formula: α = M−1
2

, in order to obtain an FIR filter from the ideal filter,
it must be truncated by a windowing function to obtain a linear phase filter whose
length is M :

h(n) =

hd(n), 0 ≤ n ≤M − 1,

0, otherwise.
(4)

The windowing function shows that h(n) can be seen as the result of hd(n)
multiplying by a window function:

h(n) = hd(n)ω(n),

ω(n) =

0 ≤ n ≤M − 1, on the function of α-symmetry,

0, otherwise.
(5)

h(n) is the filter required for the filter implementation. The filter order is M .
At the same time, compared with the filters designed by different window func-
tions, the Kaiser window not only has the lowest order, but also has a flat and
minimum attenuation, so the Kaiser window is selected for design. After filtering
and pre-processing the acceleration signal, the steps are counted by setting the time
threshold, the acceleration threshold and the change of the state value. The specific
algorithm steps are as follows:

• Set the status value to 0.

• Read the acceleration data to determine whether the time threshold is met,
and if so, continue the subsequent judgment, if not, continue to read the next
acceleration data.

• Process the acceleration data to obtain a target value, determine whether the
target value is greater than the acceleration threshold, and if greater than the
threshold, set the state value to 1, continue the third step of judgment, otherwise
return to the first step.

• Determine whether the target value is greater than the current peak value. If
it is greater, set the value to the new peak value, and then repeat the process
until the maximum value is found, otherwise proceed to the next step.

• Determine whether the target value is less than zero. If it is less than 0, set the
status value to 2, otherwise return to the first step.

• Determine whether the target value is less than the current minimum value, if
it is less, set the value to the new minimum value, and then repeat the process
until the minimum value is found, otherwise proceed to the next determination.
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• Determine whether the current target value is greater than 0. If it is greater
than 0, it means that the step counting process is completed, otherwise return
to the first step.

3.2 Step Estimate

Since different people’s step sizes are different, individual differences can be reflected
in the walking frequency of pedestrians. The model calculation formula is as follows:

stepLenk = (1− η)
(

0.56 2
√
ACCpv + 0.1 l b(ACCpv)

)
+ η(af 2 + bf + c). (6)

In Formula (6), ACCpv is the difference between the maximum and minimum
values of acceleration in each step cycle; a, b and c are the step control parameters
of the acceleration model, respectively, taken as 0.3, 0.2 and 0.1, η is step frequency
weighting factors, taking 0.4, f is steps frequency. The selection of the experimental
data is based on the step size of a large number of different people for statistical
analysis, and then calculate the average.

3.3 Direction Angle Estimation

Since the carrier coordinate system of the mobile phone is different from the navi-
gation coordinate system used in the actual positioning process, the sensor data is
transformed between the two coordinate systems. The acceleration of the mobile
phone and the sensor data acquired by the gyroscope are all for the carrier coor-
dinate system. During the movement, the position change of the user is for the
navigation coordinate system. The navigation coordinate system used in this paper
takes the carrier centroid as the origin and the X axis along the West to the East,
the Y axis is northward along the meridian, and they are all in the local horizontal
plane. The Z coordinate axis is vertically upward along the local geographic vertical
line, that is, the east-north-up geographic coordinate system. The coordinate system
transformation can be realized by rotating the matrix. In this paper, the quaternion
method is used for conversion. The gyro-based incremental rotation matrix based
on the quaternion is shown in Formula (7):

∆R =

 q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 . (7)
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qi (i = 1, 2, 3, 4) corresponds to the four sub-elements in the quaternion and can be
solved by Formula (8):

Q = [q0, q1, q2, q3]

=

[
cos

θ

2
, sin

θ

2

(
ωx√

ω2
x + ω2

y + ω2
z

,
ωy√

ω2
x + ω2

y + ω2
z

,
ωz√

ω2
x + ω2

y + ω2
z

)]
. (8)

In Formula (8), ωx, ωy, ωz are the output components of the smartphone in the
carrier coordinates, θ is the angular velocity mode, |ω| is the angular velocity incre-
ment obtained by integrating the time. Since the gyroscope cannot obtain the initial
direction, it is possible to obtain an initial rotation matrix Rc by the smartphone
at rest and then multiply the incremental rotation matrix of the gyroscope with the
previous matrix to obtain the rotation matrix of the gyroscope. The initial rotation
matrix Rc can be obtained by the roll angle ϕ, pitch angle φ and heading angle θ
at res.

Assume that the accelerometer measures the three-axis component of the accel-
eration: ab = [ax, ay, az] in the carrier coordinates. Under the navigation coordinate
system, it is: an = [aE, aN , aU ], we can get:

ab = Rca
n. (9)

In the static state, an = [0, 0, g]T , in which the local gravity acceleration is taken
as 9.8. According to the attitude angle conversion formula, the formula can be
obtained:

θ = arctan

(
Mx cosφ+Mz sinφ

(Mx sinφ+Mz cosφ) sinϕ+My cosϕ

)
, (10)

 ax

ay

az

 =

 −g sinϕ cosφ

g sinφ

g cosϕ cosφ

 . (11)

According to Formula (10), the heading angle can be obtained, and the roll
angle and the pitch angle can be obtained according to Formula (11). Then solve
the four variables of the quaternion by the relationship between the quaternion and
the attitude angle:

q0

q1

q2

q3

 =


cos γ

2
cos θ

2
cos ϕ

2
+ sin γ

2
sin θ

2
sin ϕ

2

sin γ
2

cos θ
2

cos ϕ
2
− cos γ

2
sin θ

2
sin ϕ

2

cos γ
2

sin θ
2

cos ϕ
2

+ sin γ
2

cos θ
2

sin ϕ
2

cos γ
2

cos θ
2

sin ϕ
2
− sin γ

2
sin θ

2
sin ϕ

2

 . (12)

After the initial rotation matrix is calculated, the incremental rotation matrix
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updated by the gyroscope is continuously multiplied by the previous rotation matrix
to obtain the updated gyroscope rotation matrix.

Rk
g = Rc

k∏
i=0

∆Rk
g , (13)


θ = arctan

(
T (2,2)
T (1,2)

)
,

ϕ = arcsin
(
−T (3,1)

1

)
,

φ = arctan
(
−T (3,3)
T (3,1)

)
.

(14)

∆Rk
g is the gyroscope incremental rotation matrix from the k− 1 to the k sam-

pling; Rk
g is the gyroscope rotation matrix incremented for the k sampling. After

obtaining the rotation matrix of the gyroscope Rk
g , the posture information in the

navigation coordinate system can be solved. T (i, j) represents the i row and j col-
umn elements in the rotation matrix.

Considering the complementary advantages of gyroscope and magnetometer in-
formation, Kalman filter can be used to fuse the two kinds of information. The
specific fusion process is: assuming that θk is the estimated direction of the pedes-
trian at time k; ∆θk is the amount of change of the gyroscope at the time k−1 to k,
then the system state equation is:

Sk = ASk−1 +B∆Sk + Ck. (15)

In the formula, Sk = [θk] is the system state, A = B = [1] is the system
parameter; Ck is the system process noise, and the system observation variable Dk

is the magnetometer output, so the observation equation is:

Dk = HSk + ξk. (16)

H = [1] is the system parameter and ξk is the noise the system observes, so the
Kalman filter prediction and update process is as follows:

Observation process:{
Sk|k−1 = ASk−1|k−1 +B∆Sk,

Pk|k−1 = APk−1|k−1A
T +B∆θk + Ck.

(17)

Update process: 
Kk = Pk|k−1H

T (HPk|k−1H
T + ξk)−1,

Sk|k = Sk|k−1 +KkDk −KkHSk|k−1,

Pk|k = Pk|k−1 −KkHPk|k−1.

(18)
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Pk is the system co-variance matrix; Kk is the Kalman filter gain.

3.4 (PSO-PF) Particle Swarm Optimization Particle Filter

Traditional particle swarm optimization particle filter algorithm (PSO-PF) in the
search field to fitness function as evaluation standard updates the size of the parti-
cle state change quantity, and then adjusts the spatial distribution of particles, the
particle state concentrated in the fitness function extremum near. Filtering algo-
rithm introduces the latest measurement values to the sampling distribution, makes
particles move backward probabilistic higher area, and in the process of optimiza-
tion iterations, because each particle state change amount of random variation, it
ensures the diversity of particles, thus improves the particle degradation problems
of particle filter. However, the fitness function used by this algorithm which selects
the optimal particle is based on the difference between the current measured value
and the predicted value of measured value as the evaluation standard. When the
noise variance becomes high, it directly affects the selection of the optimal particle,
resulting in a significant decrease in the filtering performance with the increase of
noise variance.

The PSO-IPF algorithm proposes a new fitness function, which takes the differ-
ence between each particle state and state estimation as the evaluation standard,
weakens the influence of random measurement noise and improves the filtering ac-
curacy of the algorithm.

General dynamic time-varying systems can be described as (19) and (20):

xk = f(xk−1) + vk ∼ p(xk|xk−1), (19)

zk = h(xk) + wk ∼ p(zk|xk). (20)

Xk ∈ Rn is the n-dimensional state measurement vector of the system at the
time of k; Zk ∈ R1 is the l-dimensional measurement of the system at the time of
k, Vk ∈ Ra, Wk ∈ R1 are process noise and measurement noise, respectively. The
algorithm takes the particle prior probability as the importance function, calculates
the corresponding particle weight by extracting the particle sample, and then obtains
the weight to normalize, and finally obtains the weighted particle set. After re-
sampling, the particle set is {xik, 1/N}Ni=1.

In the optimization process, the particle state set is taken as the initial state
of the particle swarm optimization, xip(m) and xg(m) are the individual optimal

value and the local optimal value of the mth iterative particle state, respectively,
and finally according to the particle fitness function (21) to choose. In the formula,
σ2 is the measuring noise variance, and zpre = h(xik(m− 1)) is the predicted value.

sik(m− 1) = exp

[
− 1

2σ2
(zk − zpre)2

]
. (21)

In the m times iteration, if the value of the nth particle fitness function is larger,
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then the current state of the particle is updated to its individual optimal value,
otherwise the result of the last iteration is retained. Then, the model is updated
according to the state variable, and the particle state change is calculated as fol-
lows:

vix(m) = ωvix(m− 1) + ϕ1(x
i
p(m− 1)− xik(m− 1)) + ϕ2(xg(m− 1)− xik(m− 1)),

m = 1, 2, . . . , D. (22)

In Formula (22), ω is the inertia weight factor, V i
x(m) is the uniform distribution

of [0,1], ϕ1 : ϕ2 is the random number of [0,1], and D is the total number of iterations.
The updated particle state value is:

xik(m) = xik(m− 1) + vix(m). (23)

Although this algorithm improves the particle degradation problem and main-
tains the particle diversity and improves the filtering accuracy, the fitness function
is based on the difference between the current measured value and the measured
predicted value as the evaluation standard, which is largely affected by the mea-
surement noise, causing lower filtering accuracy. Therefore, the filter value (state
estimation value) which is less affected by the noise variance is selected as the ref-
erence value of the selected particle, and the improved fitness function expression is
in Formula (24).

sik(m) = exp

(
− 1

C

(
xik(m)− ∧x

k

)2)
. (24)

In Formula (24), xik(m) is the state value of the mth iteration of the ith particle;
x∧k is the state estimation value of the pre-optimization particle filter, and C is the
constant selected according to the convergence of the iteration.

The algorithm steps are as follows:

Step 1: Importance sampling process. According to the system model, obtain par-
ticles {xik | xik ∼ p(xik|xik−1)}, and then obtain the normalized weight of the parti-
cle filter part of the particle, and finally get the weighted particle set {xik, wik}Ni=1.

Step 2: The initial state estimation process. The state estimation of the particle
filtering part is performed according to Formula (25), the initial filtering result
x∧k is obtained, and the estimation result is taken as an important parameter of
the fitness function in the optimization step.

∧
x
k

=
N∑
i=1

wikx
i
k. (25)

Step 3: PSO processing is divided into three steps:

1. Initialize the population, and use the particles obtained by the current par-
ticle filtering as the initial population {xik(0), wik}Ni=1 = {xik, wik}Ni=1.
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2. Calculate the fitness function and update the individual optimal value and
the global optimal value by calculating the fitness function of each particle.

• If sik(m) ≥ sik(m− 1), then xip(m) = xik(m).
• If sik < sik(m− 1), then xip(m) = xip(m− 1). Find the maximum particle

number I(m) in the sik(m).

• If s
I(m)
k (m) ≥ s

I(m−1)
k (m − 1), then xg(m) = x

I(m)
k (m). If s

I(m)
k (m) <

s
I(m−1)
k (m− 1), then xg(m) = xg(m− 1).

3. Adjust the state of the particles, and update the position and velocity of the
particles to obtain the state change vix(m + 1) of the (m+ 1)th iteration of
each particle and the state xik(m+ 1), i = 1, 2, . . . , N .

4. Return to step 2 until the optimization is complete.

Step 4: Output state estimation: Select the final global optimal value of the particle
x̂k = xg(D) as the exact filtered output.

In order to verify the filtering effect of the PSO-IPF algorithm proposed in
this paper, the nonlinear non-Gaussian system model is filtered by the algorithm,
standard PF algorithm and PSO-PF algorithm, respectively.

Figure 4. The particle distribution of the three algorithms (k = 20)

It can be seen from Figure 4 that at the time of k = 20, the particle state
of PF is unique, which is due to the serious loss of particle diversity caused by
re-sampling, while PSO-PF and PSO-IPF can ensure the diversity of particles. In
contrast, PSO-IPF algorithm has the best results.
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4 EXPERIMENTAL VERIFICATION

The experimental site was held on the third floor corridor of the Science Building
of North University of China. The total length of the route in the corridor is 40 m,
and the width of the corridor is 1.6 m. The plan view is shown in Figure 5. The size
of the floor tile (0.8 m × 0.8 m) divides the experimental area into 100 grid cells of
the same size, and the vertices of each grid cell serve as sampling reference points
for a total of 303 reference points.

Figure 5. A plan view

The mobile phone used in this article is equipped with a three-axis magnetome-
ter model AK09915 manufactured by AKM. The magnetometer has a measurement
accuracy of 0.12856238 and is equipped with sensors such as the LSM6DS3 ac-
celerometer and the LSM6DS3 gyroscope. Set the mark on the ground to record the
pedestrian walking process, and use the smartphone to collect pedestrian walking
data, collect acceleration, gyroscope and magnetometer data through the mobile
phone, and set the sampling frequency to 50Hz; the experimental scene and mobile
phone collection information are shown in Figures 6 and 7.

4.1 Step Frequency Test

In order to verify the accuracy of the step detection, the experiment chose to allow
three experimenters with different heights and weights to carry the same smartphone
to walk in the same experimental environment. Each person made three experiments
to record the actual number of steps and walking of the experimenter. Acceleration
sensor data in the process, for the reliability of the result, each person’s route is
different each time. Then after the collected original acceleration data is subjected to
FIR low-pass filtering, the step frequency detection method and the traditional peak
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Figure 6. Experimental scene diagram

Figure 7. Smartphone data collection site map

detection method of this article are used. The zero detection method is compared,
and the experimental results are shown in Table 1.

It can be seen from Table 1 that the accuracy of our algorithm in 9 groups
experiments is:

1− 0 + 2 + 2 + 1 + 3 + 3 + 1 + 2 + 3

63 + 69 + 80 + 71 + 85 + 79 + 72 + 79 + 83
× 100 % = 97.6 %.

The accuracy of the peak detection in the experiments is:

1− 4 + 4 + 3 + 4 + 3 + 10 + 4 + 7 + 10

63 + 69 + 80 + 71 + 85 + 79 + 72 + 79 + 83
× 100 % = 92.9 %.

The accuracy of the zero-crossing detection in the experiments is:

1− 3 + 2 + 3 + 3 + 1 + 5 + 3 + 4 + 6

63 + 69 + 80 + 71 + 85 + 79 + 72 + 79 + 83
× 100 % = 95.5 %.
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Experi- Group Real Calculation Step Error [Step]
ment Step Peak Zero-Cross Improved Peak Zero-Cross Improved

Detection Detection Method Detection Detection Method

Tester 1 1 63 67 66 63 4 3 0
2 69 73 71 69 4 2 2
3 80 83 83 81 3 3 2

Tester 2 4 71 75 74 72 4 3 1
5 85 88 86 85 3 1 3
6 79 89 84 77 10 5 3

Tester 3 7 72 76 75 72 4 3 1
8 79 86 83 78 7 4 2
9 83 93 89 86 10 6 3

Table 1. Analysis of the results of the step detection test

Figure 8 is an acceleration detection waveform diagram using the method herein.

Figure 8. Step detection waveform and step count statistics

4.2 Pedestrian Step Estimation Experiment

In order to verify the accuracy of the step estimation method, experiments were
carried out on the corridor, and the data collected by the experiment was compared
with the conventional nonlinear model by using the step size and linear model cal-
culated by the method. Figure 9 compares the three different methods of step size
calculation, Figure 10 shows the average error of each step (the absolute value of
the step difference between each step and the measured average).
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Figure 9. Comparison of three methods of step size calculation

Figure 10. Average error per step

It can be seen from Figure 9 that the step sizes calculated by the method are
distributed between 0.5 m and 0.8 m, which is in accordance with the actual value
of the walking step of the person. As can be seen from Figure 10, the error of each
step of the method is relatively small, and is distributed between 0 m and 0.1 m.
Considering this, the method has certain advantages.
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4.3 Direction Angle Estimation Experiment

In order to verify the effectiveness of the direction estimation algorithm, a path that
changes direction is selected in the laboratory environment to verify the validity of
the method estimation. The gyro and magnetometer data collected by the smart-
phone are used for Kalman filter fusion and localization, and compared with the
method of using the gyroscope and the magnetometer alone. Figure 11 presents
a direction angle estimation value obtained by different methods, and Figure 12
shows a direction estimation cumulative error probability distribution curve.

Figure 11. Comparison of different method direction angles

It can be seen from Figure 11 that the direction angle estimation method pro-
posed in this paper is applicable to the process of changing direction. At the same
time, it can be seen from Figure 12 that the cumulative probability distribution of
the estimation method error within 5 degrees is 0.78, which is significantly higher
than the other two. 0.52 using of the gyroscope alone and 0.29 using the magne-
tometer alone, the cumulative probability distribution with an error of less than
10 degrees is 0.91, which is significantly higher than 0.81 using the gyroscope alone
and 0.65 using the magnetometer alone.

4.4 PDR Indoor Positioning Experiment

In order to verify the positioning of the improved PDR positioning algorithm in
indoor positioning, two different experiments were performed in the laboratory en-
vironment. Figure 13 shows the positioning of the experimenter’s rectangular path,
and Figure 14 presents the positioning of the experimenter’s straight path.

It can be seen from Figures 13 and 14 that whether the pedestrian walks a rectan-
gular path or a straight path, the improved PDR localization algorithm is improved
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Figure 12. Directional estimation cumulative error probability distribution curve

Figure 13. Position trajectory of rectangular path

compared with the traditional PDR localization algorithm, and the positioning ac-
curacy is also improved.

5 CONCLUSION

In order to increase the indoor positioning accuracy of PDR, this paper firstly im-
proves the step frequency detection, step size estimation and direction angle estima-
tion in PDR algorithm, and then passes the problem of particle diversity weakening
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Figure 14. Position trajectory of straight path

over time in the particle filtering process. The fitness function in the particle swarm
optimization algorithm is modified to optimize the particle filter to increase particle
diversity and improve positioning accuracy.
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tés, J. M.: Pedestrian Dead Reckoning Towards Indoor Location Based Ap-
plications. 2011 8th International Conference on Electrical Engineering, Com-
puting Science and Automatic Control, Merida City, Mexico, 2011, 6 pp., doi:
10.1109/ICEEE.2011.6106608.

[11] Basiri, A.—Lohan, E. S.—Moore, T. et al.: Indoor Location Based Services
Challenges, Requirements and Usability of Current Solutions. Computer Science Re-
view, Vol. 24, 2017, pp. 1–12, doi: 10.1016/j.cosrev.2017.03.002.

[12] Phan, A. V.—Nguyen, M. L.—Bui, L. T.: Feature Weighting and SVM Parame-
ters Optimization Based on Genetic Algorithms for Classification Problems. Applied
Intelligence, Vol. 46, 2017, No. 2, pp. 455–469, doi: 10.1007/s10489-016-0843-6.

[13] Wang, W.—Liu, X. M.—Li, M. Z.—Wang, Y. B.—Wang, C. H.: Optimiz-
ing Node Localization in Wireless Sensor Networks Based on Received Signal
Strength Indicator. IEEE Access, Vol. 7, 2019, pp. 73880–73889, doi: 10.1109/AC-
CESS.2019.2920279.

[14] Wang, H.: Implementation of RSSI-Based Localization Algorithm in Wireless Sensor
Network. Beijing University of Posts and Telecommunications, Vol. 8, 2010, pp. 26–27.

[15] Lin, S. W.—Ying, K. C.—Chen, S. C.—Lee, Z. J.: Particle Swarm Optimiza-
tion for Parameter Determination and Feature Selection of Support Vector Ma-
chines. Expert Systems with Applications, Vol. 35, 2008, No. 4, pp. 1817–1824, doi:
10.1016/j.eswa.2007.08.088.

[16] Song, J.—Xu, Y.—Liu, Y.—Zhang, Y.: Investigation on Estimator of Chirp
Rate and Initial Frequency of LFM Signals Based on Modified Discrete Chirp Fourier
Transform. Circuits, Systems, and Signal Processing, Vol. 38, 2019, No. 12, pp. 58–61,
doi: 10.1007/s00034-019-01171-5.

https://doi.org/10.3390/s19020420
https://doi.org/10.1007/s11277-018-5688-3
https://doi.org/10.1109/WISP.2009.5286542
https://doi.org/10.1109/ICEEE.2011.6106608
https://doi.org/10.1016/j.cosrev.2017.03.002
https://doi.org/10.1007/s10489-016-0843-6
https://doi.org/10.1109/ACCESS.2019.2920279
https://doi.org/10.1109/ACCESS.2019.2920279
https://doi.org/10.1016/j.eswa.2007.08.088
https://doi.org/10.1007/s00034-019-01171-5


360 W. Wang, C. Wang, Z. Wang, X. Zhao

Wei Wang received his B.Sc. degree from China University of
Mining and Technology, Xuzhou, Jiangsu, China, in 2002, the
M.Sc. degree from North University of China, Taiyuan, Shanxi,
China, in 2007, and the Ph.D. degree from Taiyuan University
of Technology, Taiyuan, Shanxi, China, in 2011. His research
interest includes wireless sensor networks and signal processing,
fundamental study of WSN node location, and intelligent al-
gorithms. Since 2016, he has served as Assistant Professor in
the Information and Communication Engineering Department,
North University of China. He is the author of one book and
more than 20 articles.

Cunhua Wang received his B.Eng. degree from North Univer-
sity of China. He is currently pursuing the M.Sc. degree with
the North University of China. His research interests include
signal processing and magnetic field indoor positioning.

Zhaoba Wang is Professor in the Department of Information
and Communication Engineering, North University of China. He
received his Ph.D. degree from the Detection Technology, Nan-
jing University of Science and Technology in 2002. His main
research interests include signal and information processing. He
is the author of more than 80 articles.

Xiaoqian Zhao received her B.Eng. degree from Xinzhou
Teachers University. She is currently pursuing her M.Sc. de-
gree with the North University of China. Her research interests
include signal processing and magnetic field indoor positioning.


