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Abstract. Hyperspectral image (HSI) classification has been a hot topic in the
remote sensing community. A large number of methods have been proposed for HSI
classification. However, most of them are based on the extraction of spectral feature,
which leads to information loss. Moreover, they rarely consider the correlation
among the spectrums. In this paper, we see spectral information as a sequential
data which should be relevant to each other. We introduce long short-term memory
(LSTM) model, which is a typical recurrent neural network (RNN), to deal with
HSI classification. To tackle the problem of overfitting caused by limited labeled
samples, regularization strategy is introduced. For unbalance in different classes, we
improve LSTM by weighted cost function. Also, we employ guided filter to smooth
the HSI that can greatly improve the classification accuracy. And we proposed
a method for modeling hyperspectral sequential data, which is very useful for future
research work. Finally, the experimental results show that our proposed method
can improve the classification performance as compared to other methods in three
popular hyperspectral datasets.
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1 INTRODUCTION

Remote sensors can acquire hyperspectral images, which has hundreds of spectral
data channels of the same pixel. The detailed spectral information can increase the
recognition of materials, so as to improve the classification accuracy of materials.
HSI classification has generated considerable attention and has been widely used in
various areas including land cover, environmental protection, and agriculture. How-
ever, there are still two key issues that need to be addressed, curse of dimensionality
and limited number of labeled training samples.

It is generally known that the task of HSI classification is to categorize the
pixels into one of several classes by their spectral features. A large number of pixel-
wise classifiers have been proposed to deal with the HSI classification, including
random forests [7], k-Nearest Neighbor [19], support vector machine (SVM) [20],
and sparse representation [4]. However, most of these traditional methods suffer
from the Hughes phenomenon [I8]. To solve the aforementioned problem, feature
extraction and feature selection are adopted in these methods. Generally, principal
component analysis (PCA) [§] and independent component analysis (ICA) [22] are
common methods in feature extraction. Band selection [9] or subspace projection
techniques [I] are widely adopted in classification of spectral patterns. Although
these methods have improved classification accuracy, both feature extraction and
subspace projection can lead to information loss and cannot make full use of hyper-
spectral features.

In recent years, deep learning has made promising progresses in many fields.
Deep learning based methods also are adopted in HSI classification, including the
autoencoder [3, [16], convolutional neural network (CNN) [2] and deep belief network
(DBN) [B]. The paper [3] proposed a deep learning framework for HSI classification.
Autoencoder learns to reconstruct the input vector and reduce the dimension of
spectrum. Then a multi-class logistic regression was used to classify the HSI. CNN
uses extensive parameter-sharing to tackle the curse of dimensionality and also clas-
sifies hyperspectral data directly in the spectral domain. Hu et al. [I7] proposed
a five-layers network, which can achieve better classification performance. Chen
et al. [2] proposed a regularized 3-D CNN-based feature extraction model to extract
efficient spectral-spatial features for HSI classification. Additionally, spectral-spatial
classification was proposed by many researchers which combines spatial context with
spectral information. However, this research is beyond the scope of this paper.

Autoencoder and CNN model obtain better classification accuracy in hyperspec-
tral image, owing to their feature representation. Yet, there is a large number of
parameters to be trained in the CNN model. For a hyperspectral image with only
a small number of labeled samples, the advantages of CNN model cannot be fully
realized. Moreover, all the aforementioned methods view the spectrum as a vector,
and can result in information loss. The spectrum of a pixel is regarded as inde-
pendent of each other. A pixel is considered a point in an orderless feature space.
However, hyperspectral data is seen as a continuing spectra sequences in continu-
ous spectrum bands. Recurrent neural network is a typical deep learning model for
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solving sequential problems. RNN parameters are less, which is more suitable for
the case of fewer training sets than CNN. So, we make use of a recurrent neural
network (RNN) to characterize the sequential property for classifying the HSI.

Unlike object recognition, it is difficult to train a RNN model for reaching
a steady state. We introduce guided filter to smooth the HSI, which greatly im-
proves the HSI classification accuracy. Other filters (bilateral filter, joint bilateral
filter) also can be used to smooth the noise. We adopt guided filter due to the ability
to preserve edge information and gradient. The detailed steps are as follows:

1. We adopted a recurrent neural network (LSTM) for HSI classification. It is
a very novel idea to regard spectral information as an ordered series. We learn
the correlation between spectrums and LSTM, which is useful for HSI classifi-
cation.

2. In order to improve the classification accuracy, we employ the guided filter to
smooth HSI. Guided filter can denoise the image and preserve the edge of the
image. So, it can greatly improve the classification accuracy.

3. Since the labeled samples are limited, deep learning model tends to overfit. To
solve it, we adopt some regularization strategies, such as L2 regularization and
dropout.

4. To address the problem of unbalance of the samples in different classes, we
implemented a weighted cost function, which can improve the average accuracy
of the classification.

5. The proposed methods are applied on two widely used hyperspectral datasets.
We do compared experiments with SVM classifier and Autoencoder for three
evaluation metrics.

The rest of this paper is organized as follows. Section [2] describes the related
methodology and work. Section [J] gives the analysis of HSI classification and the
proposed model in detail. Section [d] shows the results of the experiment, which is
followed by conclusions in Section [

2 RELATED METHODOLOGY AND WORK

This section presents the principle of LSTM and guided filter, which is the foundation
of this paper.

2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) are a family of neural networks for processing
sequential data, and have been successfully applied in many fields, such as natural
language processing [21], speech recognition [12], image recognition [I3], etc. RNN
consists of an input layer, a hidden layer, and an output layer. Unlike traditional
neural networks, there are links between hidden layer units. Given an input sequence
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x = (x1,22,...,27), a standard RNN computes the hidden vector sequence h =
(hi,ha, ..., hr) and output vector sequence y = (y1,%2,...,yr) by iterating the
following equations from ¢t =1 to T":

he = g(Wonxy + Wiphe—y + bp), (1)
Ye = Whyht + by (2)

where the W denotes weight matrices (e.g., W,y is input-hidden weight matrix),
the b denotes bias vectors (e.g., b, is output bias vector) and g is the hidden layer
function. Generally, g is a bounded function such as a logistic sigmoid function or
a hyperbolic tangent function.

While RNN is focused on sequential relationship, and has made promising pro-
gresses in many fields, it still encounters difficulty in dealing with long-term se-
quential data since the gradients tend to vanish. An improved RNN model, named
long short-term memory (LSTM) [I1], is proposed for the above problem. The key
to LSTM is the cell state, which takes the former state and current data as input.
LSTM consists of five parts, including input gate, output gate, forget gate, cell input
and cell output. The calculation process is as follows.

First, we compute the values for the input gate i;, and the candidate value C,
for the states of the memory cells at time ¢:

it = U(Wil‘t + Uihtfl + bl), (3)

Ct = tanh(VVicxt + Ucht,1 + bc) (4)
Then, we compute the forget gate activation f; at time ¢:
ft = O'(Wfal‘t + Ufht71 + bf) (5)

Given the value of the input gate activation 4, the forget gate activation f; and
the candidate state value C;, we can compute the memory cells’ new state C;:

Ct = it * Ot + ft * thl- (6)
Finally, we can compute the value of their output gates and their outputs:

op = o(Woxy + Ushy—1 + V,Cy + b,), (7)
hy = o; * tanh(C}) (8)

where x; is the input to the memory cell layer at time ¢, W, U and V denote the
weight matrices, b is bias vector, ¢ is the activation function.
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2.2 Guided Filter

Guided ﬁlteIﬂ was proposed for the first time by He [I5]. Guided filter is widely
used in noise reduction, image abstraction, etc. Given a guidance I and an input
image p, we can obtain an output image ¢ by guided filter. Generally, ¢ is a linear
transform of I in a window wy, centered at the pixel k. If the radius of k is r, the
size of local window wy is (2r + 1) x (2r + 1).

q; = apl; + bk,Vi € Wk (9)

where a;, is linear coefficient and by, is a bias. From the model, it is obvious that
Vq = adl, which means that the filtering output ¢ will have similar edge with
guidance image I.

To obtain the coefficient and bias, a cost function for minimizing the term of
mean error in the window wy, is applied as follows:

E(ak, bk) = Eie:.uk((ak[i -+ bk — pi)Q + Eai). (10)

Here, € is a regularization parameter which could affect the blurring for the guided
filter. According to the literal [10], formula leads to a solution as follows.

B ﬁ D icwy, Libi — 1D 1
= o+ e ’ ( )
3

by = P — arfix (12)

where j1;; and o7 are the mean and variance of I in wy, |w| is the number of pixels
in the local window, and pj, is the mean of p in the window. After obtaining the
coefficient ay, by, we can compute the filtering output ¢;. Through the above process,
we can get a linear transform image ¢.

3 THE ANALYSIS AND MODELING OF HSI CLASSIFICATION
3.1 The Analysis of HSI Spectrums

LSTM model is better at dealing with sequence data. We analyze the feature of HSI
from two dimensions. One is whether spectral information has sequence character-
istics. The other is whether the spectral information of different classes is separable.
We selected three categories in the KSC dataset (Figure . We can see that the
hyperspectral data have sequence characteristics and have different spectral charac-
teristics between each other to classify. This is the assumption based on which we
examine the proposed idea in this paper.

! http://kaiminghe.com/eccv10/index.html
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Figure 1. Spectral data of the 3 classes selected from KSC dataset with 176 channels

3.2 The Proposed Method of HSI Classification

We proposed a novel LSTM model for HSI classification with guided filter. First,
we obtain a color guidance image from the original HSI by PCA method. Then, we
filter the original HSI by guidance image. Finally, filtered HSI was classified by the
improved LSTM model. The process is shown in Figure 2]

Filtering
—_—

Classified by
LSTM

Filtered HSI

Original HSI

PCA
decomposition

DODD eee OOOOO

Classification map

3-d Guidance
Filter

Figure 2. Framework of HSI classification by the proposed method

3.2.1 Filtering the HSI with Guided Filter

From Figure [1] (especially class-1), we can see that the regularity with spectral data
is obvious. That is, materials in the same class have similar waveforms. However,
there is still a lot of noise, inconsistent with the overall trend. Just like class-7, the
right of the waveform is of some confusion. To solve this problem, we introduce
guided filter to smooth the noises. Guided filter is an edge-preserving filter, which
can be used for edge-aware smoothing. In this paper, the spectral data in Figure []
were converted into the data in Figure [3] by guided filter. As Figure [3] shows, the
spectral data is more obvious after filtering. The implementation of the method is
as follows.
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Figure 3. Spectral data of the 3 classes selected from KSC dataset with 176 channels after
filtering

First, we need to obtain a guidance image by Principal Component Analysis
(PCA). We take the first three principal components as a color guidance image.
Given a dataset D = {dy,ds,...,ds}, we adopt PCA to obtain the following result.
Here d; is the information of the ™ band, and S denotes the number of bands.

[pl>p27 . 7p5] = PCA(D). (13)

So, the guidance image is G = [p1, p2, p3]. Then, based on the formula @, @,
using input image d; and guidance image G, we can get the filtering output u;. By
the same way, we can yield all the d; which construct a new hyperspectral image
U ={uy,ug,...,us}.

3.2.2 LSTM Model for HSI Classification

The limited number of training samples makes the overfitting a serious problem. To
tackle this problem, a regularization strategy based on L2 regularization and dropout
is utilized. Meanwhile, HSI samples are in unbalance. The number of samples in
some categories is large while in other categories it is small. Previous experiments
show that the accuracy of category with the small size is worse than that with
the large size. To handle this problem, we implement the weighted cost function,
increasing the penalties of small sample misclassification. So, the cross-entropy cost
function of LSTM network develops into the following formula:

n C
A
Loss(T,Y) = — ek tie k1 ie + =||W 14
oss(T.¥) = = 3 3wt wog (et 317 (1)

i=1 c=1

where n and C denote the number of samples and categories, respectively. A is
a coefficient of the regularization. We use gradient descent method to learn it. t;. is
a true classification label for i*" sample in the test set. When the i*" sample belongs
to the class ¢, t;. value is one, otherwise, t;. value is zero. y;. is a predicted value of

ith sample, which has the same definition with ¢;.. w, is the weighted term, obtained
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by the following formula:

Nmaxz — T

we =1+ X 0 (15)

nmaa:

where 7., denotes the number of the largest class, the n. denotes the number of
c-class. 0 is a parameter which needs to be learnt.

In addition to the improvements mentioned above, the LSTM model is affected
by many other factors, such as normalization, modeling, and optimization function,
etc. We investigated the influence of different normalization methods on the HSI
classification accuracy. We adopt min-max normalization to normalize the raw data
to [0, 1]. The normalization formula is Z,orm = (T —Zmin)/ (Tmaz — Tmin), Where x de-
notes the raw data, x,,;, and %, are minimum and maximum values, respectively.
Experimental results show that the normalization in the spectral data of a pixel is
better than that of the spectral band.

Optimization algorithm is the heart of machine learning, which affects the con-
vergence and optimization of the algorithm. We also found that the Adam is faster
and better than the stochastic gradient descent (SGD) optimization method.

Moreover, the network structure of the LSTM model plays an important role in
the HSI classification, including input nodes, steps, and hidden layer nodes. We only
discuss the influence of input nodes and steps, in this section. Hidden layer nodes
are discussed in Section [l Taking Indian Pines dataset as an example, we study
the influence of the number of different input nodes on the classification accuracy.
Parameters of the input node and step are set by the following groups, including
(2, 100), (5, 40), (8, 25), (10, 20). In which, the product of the number of input
nodes and steps is equal to the numbers of bands. The overall accuracy of different
modeling methods can be seen from Figure @ Although (2, 100) looks better at the
result, it takes longer training time due to having more time steps. Considering the
stability and convergence, we choose (5,40) as the experimental modeling method.

0.8 T T
0.6 B
— {2,100}
4 —{5,40)
0.4 F (8,28)
— {020
0.2 B
0 0. 5k Tk 1. 5k ok 2.5k 3k

Figure 4. Accuracy of different modeling methods
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4 EXPERIMENTS AND RESULTS

All our programs are implemented using Python 2 language and Tensorflow 1.0
library. We implemented all the methods on our PC with 32 GB memory and
8-core CPUs. LSTM methods and AE methods were implemented with a GTX1060
GPU for acceleration. In the following section, we first show the experimental setup,
and then describe the experimental process and results in detail.

4.1 Experimental Setup

4.1.1 Datasets

Three hyperspectral data, including Indian Pines and Kennedy Space Center (KSC),
are employed to evaluate the effectiveness of the proposed method. The Indian Pines
dataset was gathered by Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines test site in Northwest Indiana. This dataset consists of
145 x 145 pixels with 200 spectral bands in the wavelength range from 0.4 to 2.5 pym.
In this scene, there are 16 categories to be classified, including woods, grass-pasture,
ete.

KSC data was also collected by the AVIRIS sensor, acquired in 224 bands of
10 nm with center wavelengths from 0.4 to 2.5 um. After removing water absorption
and low SNR bands, 175 bands were used for the analysis. There are 13 categories
to be classified.

Salinas scene was collected by the 224-band AVIRIS sensor over Salinas Valley,
and it is characterized by high spatial resolution. It contains 512 x 217 pixels in
all. We also discarded the 20 water absorption bands and selected 200 bands for
experiments.

Detailed information of categories and samples is shown in Table [T}

4.1.2 Evaluation Metrics

To evaluate the performance of different HSI classification algorithms, we apply
three widely used quality indexes, including the overall accuracy (OA), the average
accuracy (AA), and the kappa coefficient (KA). OA shows the number of hyperspec-
tral pixels that are classified correctly, divided by the number of all test samples.
AA is the mean of the classification accuracies of all classes. KA is a statistical
measurement of agreement, based on the confusion matrix of different classes. If we
have a confusion matrix A, where m;; is the element in row 4, column j. OA, AA
and KA also can be computed by formulas , , , where N and C denote
the number and classes of samples.
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No. Indian Pines KSC Salinas
Categories smp | Categories smp | Categories smp
C1 Alfalfa 46 | Scrub 761 | Brocoli-G-W_1 2009
C2 Corn-N 1428 | Willow swamp 243 | Brocoli-G_-W_2 3726
C3 Corn-M 830 | CP hammock 256 | Fallow 1976
C4 Corn 237 | CP/Oak 252 | Fallow_R_P 1394
C5h Grass-M 483 | Slash pine 161 | Fallow_smooth 2678
C6 Grass-T 730 | Oak/Broadleaf 229 | Stubble 3959
Cc7 Grass-P-M 28 | Hardwood 105 | Celery 3579
C8 Hay-W 478 | Graminoid 431 | Grapes_untrained 11271
C9 Oats 20 | Spartina 520 | Soil.V_D 6203
C10 | Soybean-N 972 | Cattail marsh 404 | Corn . S_.G.W 3278
C11 | Soybean-M 2455 | Salt marsh 419 | Lettuce R 4wk 1068
C12 | Soybean-C 593 | Mud flats 503 | Lettuce_R_5wk 1927
C13 | Wheat 205 | Water 927 | Lettuce R_6wk 916
C14 | Woods 1265 Lettuce R_Twk 1070
C15 | Build-G-T-D 386 Vinyard_untrained 7268
C16 | Stone-S-T 93 Vinyard _V_T 1807
Total 10249 | Total 5211 | Total 54129
Table 1. Categories and samples of three datasets
Ziczl Mg
OA = N (16)
S
AA = N (17)

c c
KA — N Zi:1 Mii — Zi:1 MM+ My
= - .
N2 =3 mimy,

4.2 Influence Factors of the Experiments

4.2.1 Analysis of Sampling Proportion

The proportion of sampling is an important factor affecting the training model.
Indian Pines dataset was taken as a case. We exacted samples as training set at the
ratio of 5%, 10%, 15%, 20 %, 25 %, and 30 %. We tested three methods including
SVM, Autoencoder, and general LSTM, on the above six cases. The experimental
results are shown in Figure [f] It illustrates the changes in the accuracy over the
proportion from 5% to 30 %. The increasement of SVM and Autoencoder methods
become slow gradually. However, LSTM seems to have a large increase to promote.
This shows that LSTM is more dependent on sample size. This is consistent with
the fact that deep learning requires a large number of training samples. In order to
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accommodate less labeled samples, we choose 10 % as the experimental ratio in this
paper.

Accuracy

0.7a
— WM
Autoencoder
0.7 — LS
Sampling proportion
0.65 - 3 : :
9% 10% 15% 20% 25% 30%

Figure 5. Analysis of sampling proportion in Indian Pines

4.2.2 Analysis on the Number of Hidden Layer Nodes and Iterations

How many iterations does the LSTM model need to reach a stable state? What is
the number of hidden nodes to achieve the best classification accuracy? Experiments
are done on three datasets. The number of hidden layer nodes are set by 100, 150,
200, 250, and 300, respectively. The results of LSTM with different hidden nodes on
three datasets are shown in Figure 5l We can see from the chart, when the number
of nodes is 200, the accuracy is the best on Indian Pines dataset. For Kennedy
Space Center (KSC) dataset, the number of hidden nodes is 150 for the best result.
Salinas dataset choose 200 hidden nodes for our experiment, which is not affected
by the number of hidden nodes.

100

50

ACCUFAC

B0 |

40+

a7

Indian Pines KEC Salinas
Figure 6. Accuracy of LSTM with different nodes on three datasets

The results of LSTM with different hidden nodes on Indian Pines are shown
in Figure[7 It is clear that the accuracy grows sharply for the first one thousand
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iterations. They get stable after three thousand iterations. So, we set the number
of iterations to 3 x 103 in the following experiments. Surprisingly, we found that
the less nodes the hidden layer has, the slower the initial growth rate is, which is
different from our expectations. Another finding is that the network structure with
fewer nodes is more prone to underfitting and is more unstable than that with more
nodes.

—100-nodes
140-nodes [
— 200-nodes
240-nodes
300-nodes 4

0z

Accuracy

] 1 1
0. 5k 1k 1. 5k 2k 2. 5k 3k

Figure 7. Accuracy of LSTM with different nodes on three datasets

4.3 Experimental Results

To examine the effectiveness of our proposed methods, we do experiments on three
widely used datasets. Ten percent of the dataset is taken as training set, and the
remaining 90 % as the test set. In this section, the proposed methods are compared
with two widely used classification methods, SVM [20] and autoencoder [3], which
are typical examples of traditional methods and deep learning methods, respectively.

4.3.1 Experiment on Indian Pines Dataset

Parameter Settings. In this experiment, we use libSVMP designed by Lin [6].
The 1ibSVM has two mainly parameters C' and g to be set. The C and g are
determined by cross validation. C' changes from 1072 to 10*, g ranges from 27! to 24,
The parameters of SVM are set by the same way in the following two experiments.
The Autoencoderﬂis based on radius r and regularization parameter ¢. Radius r
is used to express the range of smooth. € is used to control the degree of smooth.
We set r = 3 and € = 0.001 in this paper. It has the same settings on next two
experiments. So, we do not represent them anymore in the following sections.
LSTM, RG-LSTM and GF-LSTM has the same network structure in our experi-
ments. They have three layers, including input layer, hidden layer and output layer,

2 mttp://www.csie.ntu.edu.tw/~cjlin/libsvm
3 https://github.com/hantek/deeplearn_hsi
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which are set to 5, 200, and 16, respectively. The step of LSTM is 40. The number
of training is set to 5 x 103. RG-LSTM and GF-LSTM have two extra parameters.
They are weight coefficient § and regularization coefficient A, which are set to 1072
and 1073, respectively. Besides, radius » and regularization parameter ¢ of guided
filter are two important parameters for GF-LSTM. In our previous work [14], the
performance of methods is the best when radius r is set to 3 on Indian Pines. In
this experiment, we set 7 = 3 and € = 1073,

Experimental Results. To evaluate our methods, we compared the performance
of the methods using the quantitative index of OA, AA and KA. The detailed per-
formance of these methods is shown in Table Pl It can be seen from Table 2l that the
OA results of SVM and Autoencoder are better than LSTM by 4 %. LSTM with
regularization and weight (RG-LSTM) has improved the classification accuracy of
LSTM, which is better than SVM and Autoencoder. Obviously, LSTM with guided
filter (GF-LSTM) outperforms all the above methods on all the indexes. Especially
in the OA index, GF-LSTM reaches 90.15 %, which is 10 % higher than other meth-
ods. Also, overall classification maps of different methods are illustrated in Figure [§]
It can be seen from this figure that the proposed methods (RG-LSTM, GF-LSTM)
achieve better classification performance than other compared approaches. Besides,
the classification results of C9 are poor, especially with Autoencoder. That is be-
cause the sample size of C9 is only 20. This explains that sample size has a greater
impact on Autoencoder.

For all the methods, the value of OA is higher than that of AA, which means
that the class with large samples has a better performance than that with small
samples. This problem is more serious in the LSTM. Compared the LSTM, RG-
LSTM and GF-LSTM are improved by regularization strategy, which has partly
solved the problem of unbalance.

a) Ground truth b) SVM c) Autoencoder d) LSTM e) RG-LSTM  f) GF-LSTM

Figure 8. Qualitative results on Indian Pines dataset

4.3.2 Experiment on KSC Dataset

Parameter Settings. For this dataset, there are 4 layers for Autoencoder in-
cluding two hidden layers. Each hidden layer has 60 nodes. The iteration of pre-
training is set to 33 x 102. Compared to Indian Pines, the hidden layer is reduced,
and the iteration is increased. That is because there are too few samples of KSC
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SVM Autoencoder LSTM RG-LSTM GF-LSTM

C1 83.33 70.52 60.71 76.92 91.30
C2 76.34 74.50 66.53 70.44 84.95
C3 71.73 70.17 73.31 78.14 86.84
C4 48.68 53.77 47.49 50.90 64.63
Ch 87.38 85.05 82.34 79.86 90.61
C6 95.06 95.50 89.45 93.05 99.23
c7 86.66 90.00 80.00 68.75 74.71
C8 99.02 95.62 98.75 99.74 100.00
C9 52.63 30.56 52.63 48.57 51.67
C10  75.38 79.41 67.71 74.01 86.00
Cl1 8397 69.16 77.56 89.75 93.00
Cl2 T71.12 87.36 69.23 77.33 76.96
C13  93.75 93.07 87.66 88.44 95.59
Cl4  94.26 94.83 95.22 90.95 98.36
Cl5  59.77 88.73 55.58 73.23 85.24
C16  86.79 77.48 73.02 91.67 88.00
OA 81.01 81.48 77.02 81.76 90.15
AA 79.12 78.94 74.46 77.99 87.19
KA 78.29 77.29 74.20 79.17 88.24

Table 2. Classification accuracy of methods on the Indian Pines dataset (%)

dataset. Other parameters of Autoencoder are the same as the previous experi-
ment.

For LSTM model, we set three layers to train, input layer, hidden layer and
output layer. The size of hidden layer is 150, and the input size is 5. The size of
time step in the KSC dataset is 35. That is, how many times it carries out the
forecast. For the RG-LSTM and GF-LSTM, we set coefficient of the regularization
A = 107%, and weight coefficient § = 1072, The other settings are the same as the
previous experiment.

Experimental Results. The KSC dataset only has about 5 thousand samples.
This makes the results different from the previous experiment. The qualitative
results are indicated in Figure [ The results of different methods are shown in
Table Bl It can be seen from Table B, comparing the OA results of SVM, Au-
toencoder and LSTM, SVM is the best, followed by LSTM, and Autoencoder is
the worst, which is 10 % worse than the other two methods. It can be attributed
to the small sample size, which makes Autoencoder not fully trained. However,
SVM is more suitable for small sample classification. The improved LSTM (RG-
LSTM, GF-LSTM) is better than the first three method at OA; AA, and KA.
In particular, OA of GF-LSTM increases by 10% compared with other methods.
All these prove that our proposed methods are very effective for HSI classifica-
tion.
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Comparing OA and AA for all the methods, we can see that the gap of Au-
toencoder is the biggest, which means that Autoencoder is greatly affected by the
sample size and sample imbalance. LSTM is less affected by sample imbalance than
SVM and Autoencoder. Let us take a look at the classification results of C7, which
has the least samples. Autoencoder only has an accuracy about 10.47 %, and LSTM
has an accuracy about 57.94 %. With regluarization and weighted cost function, the
accuracy of C7 upgrades to 78.79 % by RG-LSTM. Then, with the guided filter, the
accuracy is up to 100 % by GF-LSTM, which effectively solves the small size and
imbalance of the samples.

a) Ground truth ¢) Autoencoder

d) LSTM ) RG-LSTM f) GF-LSTM

Figure 9. Qualitative results on KSC dataset

4.3.3 Experiment on Salina Dataset

Parameter Settings. For this dataset, there are still 6 layers for Autoencoder as
Indian Pines has. Each hidden layer has 60 nodes. Other parameters of Autoencoder
are the same as the previous experiment in Indian Pines dataset.

For LSTM model, we set three layers to train, input layer, hidden layer and
output layer. The size of hidden layer is 200, and the input size is 5. The size
of time step is 40. That is, how many times it carries out the forecast. We set
coefficient of the regularization A = 10~%, and weight item # = —1 x 1072,

Experimental Results. The last experiment is performed on the Salinas dataset,
which is the biggest one we have chosen. The qualitative results are shown in
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SVM Autoencoder LSTM RG-LSTM GF-LSTM

C1 95.59 89.49 90.43 100.00 100.00
C2 73.39 72.94 74.76 71.30 87.20
C3 92.23 27.15 80.08 78.91 98.48
C4 65.47 21.12 61.85 73.10 82.72
Ch 76.24 43.38 66.67 72.85 84.03
C6 58.76 24.60 61.39 75.01 97.41
c7 64.58 10.47 57.94 78.79 100.00
C8 79.30 61.92 83.62 90.34 95.58
C9 84.01 78.40 87.91 98.01 100.00
C10  96.87 76.35 83.25 84.87 89.69
Cll  85.45 98.90 93.28 94.92 96.41
C12  92.09 58.88 87.78 87.33 90.53
C13  100.0 99.75 98.86 95.87 99.66
OA  87.38 71.86 86.06 88.46 95.48
AA  81.84 58.72 84.37 85.12 93.98
KA  85.87 68.51 79.06 87.08 94.94

Table 3. Classification accuracy of methods on the KSC dataset (%)

Figure [I0] It is apparent from this figure that the GF-LSTM obtains the best
results, which has the fewest noise points. The detailed results are illustrated in
Table il All the methods perform well on this dataset. The worst is about 87.4 %
by Autoencoder. The OA results of LSTM, RG-LSTM, GF-LSTM are all over 90 %,
especially GF-LSTM reaches 98.15 %, outperforming other methods greatly. It can
be seen that LSTM with guided filter can significantly improve the classification
accuracy.

Comparing AA and OA, we see interesting phenomena that the results of AA are
higher than those of OA, which is different from the previous two experiments. This
means that when the sample size reaches a certain extent, increasing the sample
does not improve the classification accuracy. The gap between AA and OA for
Autoencoder is bigger than with other methods. Maybe the number of samples
is the main influence factor of Autoencoder. LSTM has better robustness than
SVM and Autoencoder. LSTM with regularization (RG-LSTM) can improve the
imbalance to some extent. Then, LSTM with guided filter, the results are further
improved, whose OA and AA are consistent. Take C8 for example, which is the
biggest category, the accuracy is 79.47 % by LSTM. However, the accuracy is up
to 88.25% by RG-LSTM (with regluarization and weighted cost function), and the
accuracy reach the highest 97.75 % by GF-LSTM (with guided filter).

From the three experiments we can reach the conclusion that Autoencoder is
greatly affected by the sample size. It cannot obtain good results if the size is too
large or too small. SVM and LSTM have better robustness. LSTM performs better
than SVM on big dataset. RG-LSTM solves the problem of small size and unbal-
ance of samples to a certain extent. GF-LSTM outperforms all the methods at all
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a) Ground truth b) SVM ¢) Autoencoder d) LSTM e) RG-LSTM  f) GF-LSTM

Figure 10. Qualitative results on Salinas dataset

the datasets for all indexes. So, GF-LSTM is an effective way to HSI classifica-
tion.

SVM Autoencoder LSTM RG-LSTM GF-LSTM

C1 99.94 99.27 99.34 100.00 100.00
C2 99.24 99.75 99.17 100.00 99.85
C3 92.16 95.36 98.49 98.34 99.70
C4 97.22 99.58 99.15 97.77 99.33
C5 98.62 94.67 99.44 99.53 99.32
C6 100.0 99.97 99.86 99.97 99.86
C7 98.93 99.80 99.14 99.20 99.23
C8 80.13 97.13 79.47 88.25 97.75
C9 99.54 99.94 98.95 98.98 99.91
C10  84.39 94.77 96.36 98.67 99.01
Cll  85.38 92.03 96.29 97.32 99.59
Cl2  96.35 100.00 98.45 99.09 99.94
C13 9497 99.87 95.24 95.00 100.00
Cl4 94.20 95.63 91.28 96.68 96.31
Cl5 63.83 18.38 70.67 75.76 93.37
C16  96.15 97.61 94.80 95.38 96.45
OA 88.09 87.40 90.30 91.88 98.15
AA 92.57 92.74 94.76 96.23 98.72
KA  86.65 85.85 89.09 90.89 97.93

Table 4. Classification accuracy of methods on the Salinas dataset (%)
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4.3.4 Analysis of Time Cost

In order to compare time cost with the same platform, we reproduced SVM and
Autoencoder methods for three datasets. We take the average running time of five
times as the time cost, and the results are shown in Table 5] We can see that the
running time of LSTM and its improved models are more expensive than SVM and
Autoencoder on Indian Pines. For other datasets, LSTM and its improved models
are better than SVM on running time cost. Although time cost of Autoencoder is
the best, the classification accuracy is the worst. SVM is more sensitive to the size
of data, and its running cost will rise rapidly when the amount of data increases.
Autoencoder, LSTM, RG-LSTM and GF-LSTM are not particularly sensitive to
data size, which is mainly affected by the number of model parameters.

SVM Autoencoder LSTM RG-LSTM GF-LSTM

Indian Pines 4.011 0.234 4.4548 4.4098 4.4706
KSC 28.507 1.517 1.5554 1.5748 1.5868
Salinas 38.464 0.928 22.5939 23.6033 23.2382

Table 5. Time cost of methods on three datasets

5 CONCLUSION

We proposed a guided filter based LSTM model for HSI classification, under the as-
sumption that the spectral data can be regarded as an ordered sequence. To tackle
the problem of unbalance and limited labeled samples, we introduce weighted cost
function and regularization strategy. Compared with SVM classifier and Autoen-
coder model, the proposed model could achieve higher accuracy at all the experi-
mental datasets, with a 10 % samples to train.

Our work is an exploration of using LSTM for HSI classification. The modeling
of HSI classification by LSTM can be a useful reference for further research. It is
noteworthy that we only take into account the spectral data in this paper, therefore,
some spatial-spectral techniques can be employed to improve the LSTM model for
classification in the future.
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