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Abstract. The one-sided block Jacobi method (OSBJ) has attracted attention as
a fast and accurate algorithm for the singular value decomposition (SVD). The
computational kernel of OSBJ is orthogonalization of a column block pair, which
amounts to computing the SVD of this block pair. Hari proposes three methods
for this partial SVD, and we found through numerical experiments that the variant
named “V2”, which is based on the Cholesky QR method, is the fastest variant and
achieves satisfactory accuracy. While it is a good news from a practical viewpoint,
it seems strange considering the well-known instability of the Cholesky QR method.
In this paper, we perform a detailed error analysis of the V2 variant and explain
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why and when it can be used to compute the partial SVD accurately. Thus, our
results provide a theoretical support for using the V2 variant safely in the OSBJ
method.

Keywords: Singular value decomposition, one-sided Jacobi method, error analysis,
parallel computing, orthogonalization
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1 INTRODUCTION

Let A ∈ Rm×n, where m ≥ n, be a dense rectangular matrix and consider computing
its singular value decomposition (SVD) A = UΣV >, where U ∈ Rm×n is a matrix
with orthonormal columns, Σ ∈ Rn×n is a diagonal matrix and V ∈ Rn×n is an
orthogonal matrix. This type of SVD is referred to as the thin SVD, in contrast to
the full SVD, where U ∈ Rm×n and Σ ∈ Rm×n. There are two major approaches for
this problem [1]. The first one consists of bi-diagonalization based methods like the
QR [2], Divide-and-Conquer [3] and MRRR [4, 5] methods. The second one is the
one-sided Jacobi method [6], which is an iterative method that starts from A(0) = A.
At the rth step, the method chooses a pair of columns of A(r) and orthogonalizes
them mutually by a Givens rotation [7] from the right, thereby producing A(r+1). If
the column pair at each step is chosen judiciously, A(r) converges to a matrix A(∞)

with orthogonal columns. Then, by writing A(∞) = U (∞)Σ(∞), where U (∞) ∈ Rm×n

is a matrix with orthonormal columns and Σ(∞) ∈ Rn×n is a diagonal matrix, and de-
noting the accumulated Givens matrices by V (∞), we have A = U (∞)Σ(∞)(V (∞))>,
the thin SVD of A. Whereas the bi-diagonalization based approach is generally
more efficient in terms of computational work1, the one-sided Jacobi method has
the advantage that small singular values can be computed to high relative accuracy
under certain conditions [8]. Such an ability is important in applications like vi-
bration analysis by finite element methods and quantum mechanical calculations,
where the smallest singular values are of primary physical interest [9]. Moreover,
thanks to the introduction of QR preprocessing [6, 10], the convergence speed of
the method has been greatly improved. The numerical properties of the one-sided
Jacobi method are well studied and a reliable and accurate SVD solver based on it
has been implemented in LAPACK [10].

To further enhance the performance of the one-sided Jacobi method, two tech-
niques, parallelization and blocking, can be employed. At each step of the algorithm,
it is possible to orthogonalize multiple column pairs simultaneously as long as they

1 When m = n, the bi-diagonalization based methods require at least203 n
3 floating-

point operations (FLOPs), while the OSBJ method requires 6n3 × nsweep + 9n3 FLOPs,
where nsweep is the number of sweeps (see 2.1.2), which is typically between 1 and 10.
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are disjoint, and this brings about inherent parallelism [11]. Blocking refers to or-
thogonalizing a pair of column blocks instead of a column pair. This requires partial
SVD, as we will see later, but greatly enhances the computational intensity by re-
placing level-1 BLAS like operations such as the Givens rotation by level-3 BLAS
operations [12]. The one-sided block Jacobi (OSBJ) method, which adopts both of
these improvements, is highly competitive in terms of computational performance
and sometimes outperforms the bi-diagonalization based ScaLAPACK SVD routine
on modern parallel computers [13]. However, in contrast to the case of the point
Jacobi method, still little is known about its convergence and numerical proper-
ties.

In this paper, we focus on the mutual orthogonalization of a pair of row blocks,
which is a kernel operation in the OSBJ method, and perform its roundoff error ana-
lysis. The numerical errors arising in this operation influence both the convergence
speed of the algorithm and the accuracy of the final results, so its analysis should
be of great importance. However, to the best of our knowledge, no such analysis
has been provided so far. There are several algorithms proposed for this mutual
orthogonalization. Among them, the LHC method [14] is based on the Householder
QR decomposition. On the other hand, Hari et al. propose three methods named
V1, V2 and V3 [15]. In this paper, we focus on Hari’s V2 method, which is based on
the Cholesky QR algorithm. This method is superior to the LHC and V1 method in
terms of parallel granularity or computational work and has better (experimental)
numerical stability than the V3 method. We perform a detailed roundoff error
analysis of the V2 method and derive a bound on the orthogonality of the column
block pair updated by the V2 method, as well as a bound on the backward error
of orthogonalization. If the QR preprocessing is applied to the OSBJ method, it is
observed in many cases that the column-scaled and row-scaled condition numbers of
A(k) approach to 1 quickly. Under these conditions, we show that both of the above
bounds become O(u), where u is the unit roundoff. Thus, our analysis will provide
a necessary theoretical background for using Hari’s V2 method safely in the OSBJ
method for the SVD.

The rest of this paper is organized as follows. Section 2 summarizes the overall
procedure of the one-sided block Jacobi method, as well as the details of orthogo-
nalization methods of the column block pair. In Section 3, we present the roundoff
error analysis of the V2 method for orthogonalization. Numerical results that sup-
port our theoretical results are provided in Section 4. Finally, Section 5 concludes
the paper.

2 THE ONE-SIDED BLOCK JACOBI METHOD

2.1 The Overall Procedure of OSBJ

The overall procedure of the OSBJ method consists of three parts, namely, prepro-
cessing, the SVD of the preprocessed matrix, and the postprocessing. For the first
and the third parts, we use the QR pre/postprocessing proposed by Drmač and



1206 S. Kudo, Y. Yamamoto, T. Imamura

adopted in the LAPACK implementation of the one-sided point Jacobi method [10].
This will be explained in 2.1.1 below. The pre/postprocessing switches among sev-
eral variants depending on the properties of the input matrix A, but here we explain
only the most basic version. The SVD of the preprocessed matrix, which is the cen-
tral part, will be described in 2.1.2.

In this section, we adopt the MATLAB notation for submatrices. Thus, for
example, the jth column vector of a matrix A is denoted by A(:, j). The 2-norm
condition number of A is denoted by κ2(A).

2.1.1 QR Pre/Postprocessing

The goal of QR pre/postprocessing is to reduce the condition number of the input
matrix A, thereby accelerating the convergence of the OSBJ method. In the pre-
processing, we first perform two QR decompositions (QRD) with column-pivoting
on the input matrix A:

AP1 = Q1R1, (1)

R>1 P2 = Q2R2, (2)

where P1 and P2 are permutation matrices. Then, we let B = R>2 ∈ Rn×n. This is
the preprocessed matrix. We compute its SVD, B = ŪΣV̄ > by OSBJ. Finally, we
recover the SVD of A by the following postprocessing:

U = Q1P2Ū , (3)

V = P1Q2(R
−>
2 ŪΣ). (4)

Figure 1 shows the pseudocode of the OSBJ method with QR pre/postprocessing.
Here, U and V are the matrices of the left and right singular vectors, respectively,
and S is a diagonal matrix whose diagonal elements are the singular values. “osbj”
is the OSBJ method for the preprocessed matrix B to be explained in 2.1.2.

1: procedure posbj(A)
2: [Q1, R1, P1] = qr(A)
3: [Q2, R2, P2] = qr(R1′)
4: B = R2′

5: [Ub, S, V b] = osbj(B)
6: U = Q1 ∗ P2 ∗ Ub
7: V = P1 ∗Q2n(R2′) ∗ Ub ∗ S
8: return U, S, V

Figure 1. Pseudocode of the OSBJ method with QR pre/postprocessing. We are using
MATLAB-like notations. Thus, “ ’ ” denotes the transposition, “*” denotes the matrix
product and “\” denotes the solution of a linear system. “qr” is the MATLAB function to
compute the QR decomposition with column-pivoting. “osbj” is the OSBJ code defined
in Figure 2. Note that “Ub”, “S” and “V b” are used to denote Ū , Σ and V̄ .
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Thanks to the column-pivoting in the first QRD, the row-scaled condition num-
ber of R1 is bounded by a constant independent of κ2(A), typically of O(n) [10,
Remark 3.2]. Here, the row-scaled condition number κR(A) and the column-scaled
condition number κC(A) of A are defined as

κR(A) := κ2(D
−1
r A) (5)

where Dr = diag(||A(1, :)||, ‖A(2, :)||, . . . , ‖A(n, :)||),

κC(A) := κ2(AD
−1
c ) (6)

where Dc = diag(||A(:, 1)||, ‖A(:, 2)||, . . . , ‖A(:, n)||).
The same holds true also for the second QRD, and thus both κR(B) and κC(B)

become small. This explains why the QR preprocessing is so successful in reducing
the number of sweeps of the one-sided Jacobi method. LAPACK implements some
more tricks to improve performance or accuracy for special cases. For a well con-
ditioned matrix, it uses the pivot-less QRD instead of (2) for better performance,
and for a badly conditioned matrix, it may add one more QRD. The details are
described in [10, Section 5]. We used LAPACK’s QR preprocessing code in our
numerical experiments.

2.1.2 SVD of the Preprocessed Matrix

Now we will explain the second (central) part, the computation of SVD of B by
OSBJ. Let B be partitioned into column blocks as B = [B1B2 . . . Bq] ∈ Rn×n, where
Bi ∈ Rn×ni and n1 + n2 + · · · + nq = n. The OSBJ method starts from B(0) = B
and orthogonalizes a pair of column blocks at each step by post-multiplication by
an orthogonal matrix. Let the indices of the column blocks chosen at step r be
(Ir, Jr). Then, the orthogonalization is performed in the following manner.

1. The matrix X = [B
(r)
Ir
B

(r)
Jr

] is formed.

2. The thin SVD of X is computed as X = UXΣXV
>
X .

3. B
(r)
Ir

and B
(r)
Jr

is updated as [B
(r+1)
Ir

B
(r+1)
Jr

] = XVX = UXΣX .

4. B
(r)
Ir

and B
(r)
Jr

are replaced by B
(r+1)
Ir

and B
(r+1)
Jr

.

We call step 2. the “partial SVD.” By post-multiplying X by VX obtained in the
partial SVD, its column vectors are orthogonalized, since XVX = (UXΣXV

>
X )VX =

UXΣX and UXΣX is a column-scaled version of UX , which has orthonormal columns.
Steps 2. and 3. are the most time-consuming parts in the OSBJ algorithm and there
are several approaches for performing them; they will be explained in Subsection 2.2
in detail. By choosing the sequence {(Ir, Jr)}r=0,1,... properly (see the paragraph
below) and repeating this orthogonalization process for r = 0, 1, . . ., B(r) converges
to a matrix with orthogonal columns [12].

The overall procedure of the OSBJ method for the preprocessed matrix is shown
in Figure 2. Here, lines 4 through 6 correspond to the orthogonalization of the
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column block pair. After all the columns have been orthogonalized to a specified
level, the singular triplet U, S and V are computed in lines 8 through 12. See [13]
for details.

1: procedure osbj(B)
2: r = 0; I = 1; J = 2; B0 = B; S = O
3: while ortho(B) > tol do
4: [I, J ] = next pivot(I, J, r)
5: X = [B[I], B[J ]]
6: [B[I], B[J ]] = V 2(X)
7: end while
8: for j = 1, n
9: S(j, j) = norm(B(∗, j))

10: U(∗, j) = B(∗, j)/S(j, j)
11: end for
12: V = B\B0
13: return U, S, V

Figure 2. Pseudocode of the OSBJ method for the preprocessed matrix. Here,
“next pivot” is a function to generate the indices of the column block pair to be orthog-
onalized at the rth step. “ortho” is a function to compute the measure of orthogonality

defined by Equation (8). “B[I]” is the Ith block column of B (that is, B
(r)
I ). [A,B] de-

notes the concatenation of two matrices A and B. In the pseudocode, the procedure V 2
defined in Figure 3 is used for orthogonalization, but procedures V 1 and V 3 can be used
as well.

Now, we will give some details on the choice of the sequence {(Ir, Jr)}r=0,1,... and
the stopping criterion.

Ordering of pairs. Many strategies have been proposed for choosing the sequence
{(Ir, Jr)}r=0,1,.... Among them, we use the row-cyclic ordering, which belongs to
the simplest class called cyclic ordering. In the cyclic ordering, we first choose

a finite sequence {(Ir, Jr)}q(q−1)/2r=0 in such a way that every possible pair (I, J),
where 1 ≤ I < J ≤ q, appears exactly once in the sequence. This finite sequence
is called sweep. Then, the iteration using this sweep is repeated until convergence.
The pair in the row-cyclic ordering is defined as follows:

(Ir, Jr) =


(1, 2), r = 0,

(Ir−1,Jr−1 + 1), r > 0, Jr−1 < q,

(Ir−1 + 1, Ir−1 + 2), otherwise.

(7)

Termination. As shown in the pseudocode in Figure 2, the iteration of the OSBJ
method is terminated when the normalized column vectors of B(r) are orthogonal to
working accuracy. For the one-sided point Jacobi method, Drmač recommends to
use the following stopping criterion to achieve high relative accuracy of the computed
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singular values.

ortho(B) ≡ max
1≤i<j≤n

|b(r)
i · b

(r)
j |

‖b(r)
i ‖2‖b

(r)
i ‖2

≤ tol. (8)

Here, b
(r)
i is the ith column of B(r) and tol =

√
nu [10, Remark 2.2]. We also adopt

this criterion for our OSBJ. The dot products b
(r)
i · b

(r)
j for 1 ≤ i < j ≤ n are

computed at once using a level-3 BLAS routine xSYRK for high performance.

2.1.3 Numerical Properties of Orthogonalization
of the Column Block Pair

In concluding this subsection, we make two comments on the numerical properties
of orthogonalization of the column block pair (steps 2. and 3. of 2.1.2), which will
be useful in the error analysis in Section 3. First, X is a tall-and-skinny matrix
whose aspect ratio is q : 2. Moreover, its column-scaled condition number κC(X) is
usually small, because κC(X) ≤ κC(B(r)) and it is usually observed that κC(B(r))
does not grow much during the computation. In fact, in our numerical experiments,
we observe that κC(B(r)) converges to one. This observation is important in the error
analysis to be given in the next section. Second, while the post-multiplication by the
orthogonal matrix VX in step 3. seems harmless, it can cause potential difficulties in
finite precision arithmetic, as the following analysis by Drmač suggests [12]. Let V̂X
be the computed right singular vector matrix of X and assume that δVX = V̂X−VX
is small. Furthermore, Let X ′ be the matrix obtained by normalizing the columns
of X and write X = X ′D, where D is diagonal. Then, we have

XV̂X = XVX +XδVX = (U +X ′δF )ΣX , (9)

δF = DδVXΣ−1X . (10)

Since δF can be large even if δVX is small, this means that the normalized columns
of the updated column block pair can be far from orthogonal. This will retard the
convergence. The above observation suggests that a more intricate error analysis of
steps 2. and 3. is necessary and it will be the main subject of this paper.

2.2 Methods for Orthogonalization of the Column Block Pair

As stated in 2.1.2, there are several methods for the partial SVD, or orthogonaliza-

tion of the column block pair X = [B
(r)
Ir
B

(r)
Jr

] ∈ Rn×l, where l = nIr + nJr . Here, we
review them briefly, discuss their advantages and disadvantages, and explain why
we focus on Hari’s V2 method in this paper.

The simplest approach is to apply the one-sided point Jacobi method directly
to X, but it is inefficient because the whole X matrix must be updated by the Givens
rotation, which is a level-1 BLAS-like slow operation. To avoid this, two approaches
have been used. The first is to form the Gram matrix C = X>X and compute its
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eigendecomposition C = VXDV
>
X [22]. The second approach, known as the LHC

method [14], is to compute the (thin) QR decomposition X = QR, where Q ∈ Rn×l

and R ∈ Rl×l, and compute its SVD, R = URΣXV
>
X . The one-sided (point) Jacobi

method can be used for this SVD. In either way, the orthogonalized column block
pair is computed by Y = XVX or Y = QURΣX .

In the LAPACK implementation of the LHC method, the QR decomposition is
computed by the Householder QR method and then the matrix QUR is formed as
the column-normalized version of Y = XVX . This guarantees that the columns of
QUR are highly orthogonal. However, its computational cost is roughly twice that
of the Cholesky QR-based methods to be described below. Moreover, since QUR is
not directly computed from X and VX but from Q and UR, it is not straightforward
to show that the backward error ‖QURΣX −XVX‖2 is small.

As an alternative, the Cholesky QR method can be used to compute the QR
decomposition of X. This method forms the Gram matrix C = X>X, computes
its Cholesky decomposition C = R>R and finally obtain the orthogonal factor by
Q = XR−1. While the method is known to be unstable when the condition num-
ber of X is large, it requires only half as much computational work as the House-
holder QR method. Furthermore, it is suited to high performance computing since
most of its computations can be done with the level-3 BLAS such as xSYRK and
xTRSM.

Hari et al. propose three algorithms for using the Cholesky method in the partial
SVD, which they call V1, V2 and V3 [15]. They all use the one-sided point Jacobi
method to compute the SVD of R, R = URΣXV

>
X , but differ in the way of computing

the orthogonal matrix VX . V1 computes VX as a product of the Givens rotations
used in the Jacobi method. In V2, the Givens rotations are not accumulated and
VX is computed as VX = R−1URΣX . In V3, VX is computed as VX = R>URΣX .
These three algorithms are shown in Figure 3. From the viewpoint of high perfor-
mance computing, V2 and V3, which do not require the accumulation of the Givens
matrices, are desirable. However, Hari et al. report that OSBJ using V3 does not
converge in their numerical experiments. They recommend V1 for accuracy, but also
comment that V2 can be faster than V1. Hence it would be worthwhile to analyze
the numerical properties of V2. If we can show by the roundoff error analysis that
V2 has sufficient accuracy under certain conditions, it can be the method of choice,
since it is both fast and accurate. This error analysis is the topic of the next section.
We will also compare the V1 and V2 methods experimentally in Section 4.

3 ERROR ANALYSIS

In this section, we perform roundoff error analysis of the Cholesky QR-based partial
SVD, focusing on Hari’s V2 variant. Our objective is to show that the V2 variant
has sufficient accuracy under certain conditions, thereby establishing the competi-
tiveness of the method not only in terms of speed but also in terms of accuracy. To
this end, we need to evaluate two kinds of errors. The first error is the orthogonality
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1: procedure V1(X)
2: C = X ′ ∗X
3: R = chol(C)
4: [Ux, Sx, V x] = jsvd(R)
5: return X ∗ V x

1: procedure V2(X)
2: C = X ′ ∗X
3: R = chol(C)
4: [Ux, Sx] = jsvd(R)
5: V x = R\Ux ∗ Sx
6: return X ∗ V x

1: procedure V3(X)
2: C = X ′ ∗X
3: R = chol(C)
4: [Ux, Sx] = jsvd(R)
5: V x = R′∗Ux∗(Sx.ˆ−1)
6: return X ∗ V x

Figure 3. Pseudocodes of Hari’s V1, V2 and V3 methods. We are using MATLAB-like
notations as in Figure 1. “.ˆ” denotes the element-wise power. “jsvd” is the same
as MATLAB’s “svd”, which computes the thin SVD of the input matrix, except that
it uses the Jacobi SVD algorithm. “jsvd” skips the computation of “Vx” if it is not
needed.

error. Let Ŷ ∈ Rn×l be the updated column block pair computed in finite precision
arithmetic and assume that Ŷ can be written as

Ŷ = (Ū + δU)Σ̂ (11)

where Ū ∈ Rn×l is an exactly orthogonal matrix and Σ̂ is a diagonal matrix. Then
we define δU as the orthogonalization error in the partial SVD. The second error is
the backward error. Assume that the same Ŷ can be written as

Ŷ = (X + δX)V̄X (12)

where V̄X is an exactly orthogonal matrix. This equation shows that Ŷ is an exact
(one-sided) orthogonal transformation of a perturbed matrix X + δX. Then we
define δX the backward error in the partial SVD. The orthogonalization error is
related to the stagnation of the convergence of OSBJ, because large δU means that
the columns of B(r) have not been orthogonalized properly after the partial SVD.
On the other hand, the backward error is related to the accuracy of the entire SVD,
because large δX means that OSBJ is computing the SVD of a largely perturbed
input matrix. The plan of this section is as follows. In Subsection 3.1, we derive
an upper bound on the orthogonality error. The bound on the backward error will
be provided in Subsection 3.2. Finally, we discuss the criterion for using the V2
method safely in Subsection 3.3.

Throughout this section, we use the following notations [16]. The symbol fl(·)
is used to denote the result of floating-point computation. For any matrix A, we
denote its computed counterpart by Â. The column scaled version of A is denoted
by A′. We denote the (i, j) element of A by Ai,j and the matrix whose (i, j) element
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is |Ai,j| by |A|. The jth column vector of A is denoted by aj. Inequalities like A ≤ B
mean element-wise inequality. The unit roundoff is denoted by u and γm ≡ mu

1−mu
.

In the following, we freely use the inequality like γm < 1.01mu = O(mu). We also
assume that n ≥ l = nIr + nJr and n2u� 1.

3.1 Orthogonality Error of V2

The V2 variant computes the partial SVD in the following four steps.

• Compute the QR decomposition X = QR by the Cholesky QR method.

• Apply the one-sided point Jacobi method to R and obtain URΣX .

• Compute VX by VX = R−1URΣX .

• Update the column block pair by matrix multiplication Y = XVX .

In the following, we will analyze the errors in these steps in this order.

3.1.1 Errors in the Cholesky QR Method

Let dj = ‖xj‖2 for 1 ≤ j ≤ l and D ≡ diag(d1, d2, . . . , dl). Then, X can be written
as X = X ′D, where X ′ is the column scaled version of X. In the Cholesky QR
method, we first form the Gram matrix C = X>X and then compute its Cholesky
decomposition, C = R>R. By denoting the computed version of C and R by Ĉ and
R̂, respectively, we have the following lemma.

Lemma 1. Let the forward error in the computation of Ĉ be E1 and the backward
error in the computation of R̂ from Ĉ be E2. That is,

Ĉ = C + E1 = X>X + E1, (13)

R̂>R̂ = Ĉ + E2 = C + E1 + E2. (14)

Then, the elements of |E1| and |E2| can be bounded as follows.

|E1|i,j ≤ γndidj = O(nu)didj, (15)

|E2|i,j ≤ γl+1

√
Ĉi,iĈj,j ≤ γl+1(1 + γn)didj = O(lu)didj. (16)

Proof. The normwise error bounds on E1 and E2 are given in [17]. Here, however,
we need component-wise error bounds. From the forward error bound of matrix
multiplication, we have |E1| ≤ γn|X|>|X|. Thus,

|E1|i,j ≤ γn

n∑
k=1

|X|k,i|X|k,j ≤ γn ‖|xi|‖2 ‖|xj|‖2 = γndidj. (17)
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The first inequality in (16) is due to Demmel [18, Lemma 2.1]. The second inequality
can be proved by noting Ĉi,i ≤ (1 + γn)d2i from (15) and using

γl+1(1 + γn) = O(lu)(1 +O(nu)) = O(lu). (18)

�

By letting R̂′ = R̂D−1, we have R̂′>R̂′ = X ′>X ′ + E3, where

E3 = D−1(E1 + E2)D
−1, (19)

|E3| ≤ O(nu)� 1. (20)

Noting that E3 is an l × l matrix, we also have

‖E3‖2 ≤ ‖ |E3| ‖F ≤ O(nlu)� 1. (21)

In the following, we make the following important assumption on κ2(X
′):

O(nlu)κ22(X
′)� 1. (22)

We can justify this assumption because in the OSBJ method with QR preprocessing,
the column-scaled condition number of B(r), and therefore of X, is usually small and
approaches to 1 as the iteration proceeds. See Subsection 3.3 for the treatment of
the case when (22) is not satisfied.

Let us denote the smallest and the largest eigenvalues of X ′>X ′ by λmin(X ′>X ′)
and λmax(X

′>X ′), respectively. Since all the column vectors of X ′ has the unit
length, λmax(X

′>X ′) ≥ 1. Thus, from (22), we have

λmin(X ′>X ′)� λmax(X
′>X ′)O(nlu) ≥ O(nlu). (23)

On the other hand, since R̂′>R̂′ = X ′>X ′ + E3, we have from (21) and Weyl’s
theorem,

λmin(R̂′>R̂′) ≥ λmin(X ′>X ′)− ‖E3‖2 ≥ λmin(X ′>X ′)−O(nlu) ≥ O(nlu). (24)

This can be rewritten as ∥∥∥R̂′−1∥∥∥2
2
O(nlu)� 1. (25)

Now, we evaluate how close the computed upper triangular factor R̂ is to the
true upper triangular factor R. In particular, we express R̂−1 in terms of R−1 for
later use. The following lemma holds.

Lemma 2. Under the assumption (22), there exist an orthogonal matrix W1 and
an error matrix E4 that satisfy

R̂−1 = R−1(W1 + E4), (26)

‖E4‖2 ≤
∥∥∥R̂′−1∥∥∥2

2
O(nlu). (27)
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Proof. First, consider the following product:(
RR̂−1

)> (
RR̂−1

)
= R̂−>CR̂−1

= R̂−>(R̂>R̂−DE3D)R̂−1

= I − R̂′−>E3R̂
′−1 ≡ I + E5. (28)

Since E5 is a symmetric matrix, we consider its EVD, E5 = W2Γ1W
>
2 . Then,

‖E5‖2 = ‖Γ1‖2 ≤
∥∥∥R̂′−1∥∥∥2

2
‖E3‖2 ≤

∥∥∥R̂′−1∥∥∥2
2
O(nlu)� 1 (29)

where we used (21) and (25) in the second and the third inequalities, respectively.
Using the same EVD, we rewrite the rightmost-hand side of (28) as

I + E5 = W2(I + Γ1)W
>
2 =

(
(I + Γ1)

1
2 W>

2

)> (
(I + Γ1)

1
2 W>

2

)
. (30)

Then, since[(
RR̂−1

)(
(I + Γ1)

1
2 W>

2

)−1]> [(
RR̂−1

)(
(I + Γ1)

1
2 W>

2

)−1]
= I (31)

from (28), there exists an orthogonal matrix W3 such that

RR̂−1 = W3 (I + Γ1)
1
2 W>

2 . (32)

Hence,

R̂−1 = R−1
(
W3W

>
2 +W3

(
(I + Γ1)

1
2 − I

)
W>

2

)
= R−1(W1 + E4) (33)

where
W1 = W3W

>
2 , E4 = W3

(
(I + Γ1)

1
2 − I

)
W>

2 . (34)

Since Γ1 is a diagonal matrix, E4 can be bounded using the inequality (1 + x)
1
2 ≤

1 + x
2
, which holds when |x| ≤ 1, as

‖E4‖2 = ‖ (I + Γ1)
1
2 − I‖2 ≤

1

2
‖Γ1‖2 ≤

1

2

∥∥∥R̂′−1∥∥∥2
2
O(nlu) (35)

where we used (29) in the last inequality. �

Now we evaluate the condition number of R̂′. From R̂′>R̂′ = R′>R′ + E3, we
have∥∥∥R̂′∥∥∥2

2
≤ ‖R′‖22 + ‖E3‖2 ≤ (1 + ‖E3‖2) ‖R

′‖22 = O(1) ‖R′‖22 = O(1) ‖X ′‖2 (36)
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where we used ‖R′‖22 = λmax(X
′>X ′) ≥ 1 in the second inequality. On the other

hand, we have from R̂′>R̂′ = X ′>X ′ + E3, (23) and (21),∥∥∥R̂′−1∥∥∥
2
≤ O(1)

∥∥X ′−1∥∥
2
. (37)

Combining these leads to the following lemma.

Lemma 3. Under the assumption of (22),

κ2(R̂
′) = O(1)κ2(R

′) = O(1)κ2(X
′). (38)

3.1.2 Errors in the One-Sided Point Jacobi Method

Assume that the one-sided point Jacobi method on R ended successfully and the
matrix T̂ = [t1, t2, . . . , tl] is obtained. T̂ is an approximation to URΣX , where UR
is the left singular vector matrix of R and ΣX is a diagonal matrix whose diagonal
elements are the singular values of R (and therefore of X). We write T̂ as T̂ = ÛΣ̂,
where

Û = [û1, û2, . . . , ûl] =

[
t̂1

‖t̂1‖
,

t̂2

‖t̂2‖
, . . . ,

t̂l

‖t̂l‖

]
, (39)

Σ̂ = diag(σ̂1, σ̂2, . . . , σ̂l) = diag(‖t̂1‖, ‖t̂2‖, . . . , ‖t̂l‖). (40)

From (8), the stopping criterion in floating point arithmetic can be written as follows.

∣∣fl(t̂>i t̂j)∣∣ ≤ fl

(
tol

√
t̂>i t̂i

√
t̂>j t̂j

)
for 1 ≤ i < j ≤ l, (41)

where we use tol =
√
lu as noted in Subsection 2.1.

Lemma 4. When the stopping criterion (41) is satisfied, the following inequality
holds for 1 ≤ i < j ≤ l. ∣∣û>i ûj∣∣ ≤ O(lu). (42)

Proof. We first bound the right-hand side of (41) from above as follows.

fl

(
tol

√
t̂>i t̂i

√
t̂>j t̂j

)
≤ (1 + u)4 tol

√
fl(t̂>i t̂i)

√
fl(t̂>j t̂j)

≤ (1 + u)4 (1 + γl)
2 tol

∥∥t̂i∥∥2 ∥∥t̂j∥∥2
≤ O(1)tol

∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (43)

Here, the factor (1 + u)4 comes from the errors arising in the two square roots,
their product, and the product by tol. In the second inequality, we used fl(t̂>i t̂i) ≤
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error analysis of an inner product [16], we have

fl(t̂>i t̂j) = t̂>i t̂j + e, (44)

|e| ≤ γl
∣∣t̂i∣∣> ∣∣t̂j∣∣ ≤ γl

∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (45)

Hence, ∣∣fl(t̂>i t̂j)∣∣ ≥ ∣∣t̂>i t̂j∣∣− γl ∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (46)

Combining (41), (43) and (43) gives∣∣t̂>i t̂j∣∣ ≤ (O(1)tol + γl)
∥∥t̂i∥∥2 ∥∥t̂j∥∥2 = O(lu)

∥∥t̂i∥∥2 ∥∥t̂j∥∥2 . (47)

Dividing both sides by
∥∥t̂i∥∥2 ∥∥t̂j∥∥2, we obtain (42). �

As for the orthogonality of the computed matrix Û , we have the following lemma.

Lemma 5. The matrix Û can be written as

Û = Ū + δÛ (48)

where Ū is an exactly orthogonal matrix and δÛ is an error matrix satisfying∥∥∥δÛ∥∥∥
2
≤ O(l2u)� 1. (49)

Proof. Since
∣∣∣Û>Û − I∣∣∣ ≤ O(lu) from Lemma 4, we have

∥∥∥Û>Û − I∥∥∥
2
≤
∥∥∥∣∣∣Û>Û − I∣∣∣∥∥∥

F
≤ O(l2u). (50)

Thus, by writing the EVD of Û>Û as Û>Û = Z(I + Γ3)Z
>, we have ‖Γ3‖ ≤

O(l2u) � 1. Now, let (I + Γ3)
1
2 = I + Γ4, where Γ4 is a diagonal matrix. Then,

‖Γ4‖2 ≤ ‖ (I + Γ3)
1
2 ‖ − 1 ≤ 1

2
‖Γ3‖2 = O(l2u). Moreover, since(

Û
(
(I + Γ4)Z

>)−1)> (Û ((I + Γ4)Z
>)−1) = I, (51)

there exists an orthogonal matrix W4 such that

Û = W4(I + Γ4)Z
>. (52)

By letting Ū = W4Z
> and δÛ = W4Γ4Z

>, we have (48). The norm of δÛ can be
bounded as ‖δÛ‖2 = ‖Γ4‖2 = O(l2u). �
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3.1.3 Errors in the Computation of VX

In the next step, we compute VX by VX = R−1UΣ. In floating point arithmetic, we
compute V̂X = fl(R̂−1T̂ ) from the result T̂ of the one-sided point Jacobi method
by solving the triangular system with multiple right-hand sides. Now, let us denote
the ith column vector of V̂X by v̂i and the backward error in the solution of the ith

triangular system by δR̂i. Then,

v̂i = fl(R̂−1t̂i) = (R̂ + δR̂i)
−1t̂i

=
((
I + δR̂iR̂

−1
)
R̂
)−1

t̂i

= R̂−1
(
I + δR̂iR̂

−1
)−1

t̂i. (53)

We further define R̂′ and δR̂′i as R̂′ = R̂D−1 and δR̂′i = δR̂iD
−1 using the diagonal

matrix D defined in 3.1.1. Then, the following lemma holds.

Lemma 6. Assume that (22) holds and define an error matrix Fi by

I + Fi =
(
I + δR̂iR̂

−1
)−1

. (54)

Then,

‖Fi‖2 ≤ O(l
3
2uκ2(R̂

′)). (55)

Proof. The backward error δR̂i in the solution of the triangular system satisfies∣∣∣δR̂i

∣∣∣ ≤ γl

∣∣∣R̂∣∣∣ [16]. Multiplying both sides by a nonnegative diagonal matrix D−1

gives ∣∣∣δR̂′i∣∣∣ ≤ γl

∣∣∣R̂′∣∣∣ . (56)

Hence, ∥∥∥δR̂′i∥∥∥
2
≤
∥∥∥∣∣∣δR̂′i∣∣∣∥∥∥

F
≤ γl

∥∥∥∣∣∣R̂′∣∣∣∥∥∥
F
≤ O

(
l
3
2u
)∥∥∥R̂′∥∥∥

2
. (57)

Thus, we have∥∥∥δR̂iR̂
−1
∥∥∥
2

=
∥∥∥δR̂′iR̂′−1∥∥∥

2

≤
∥∥∥δR̂′i∥∥∥

2

∥∥∥R̂′−1∥∥∥
2

≤ O
(
l
3
2u
)∥∥∥R̂′∥∥∥

2

∥∥∥R̂′−1∥∥∥
2

= O
(
l
3
2u
)
κ2(R̂

′)� 1 (58)

where we used O
(
l
3
2u
)
κ2(R̂

′) ≤ O (nlu)κ2(R̂
′) = O (nlu)κ2(X

′) � 1, which is

a consequence of (22) and Lemma 3. As a result, the Neumann series expansion of
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I + Fi =
(
I + δR̂iR̂

−1
)−1

converges and we have

I + Fi =
∞∑
k=0

(
−δR̂iR̂

−1
)k
, (59)

from which

‖Fi‖2 =

∥∥∥δR̂iR̂
−1
∥∥∥
2

1−
∥∥∥δR̂iR̂−1

∥∥∥
2

≤ O
(
l
3
2u
)
κ2(R̂

′) (60)

follows immediately. �

Now we rewrite v̂i using t̂i = σ̂iûi as

v̂i = R̂−1(I + Fi)t̂i = R̂−1(ûi + Fiûi)σ̂i = R̂−1(ûi + δûi)σ̂i (61)

where we defined δûi = Fiûi. Letting δÛ = [δû1δû2 . . . δûl], we have

V̂X = R̂−1(Û + δÛ)Σ̂ = R̂−1(I + δÛÛ−1)ÛΣ̂

= R̂−1(I + E6)ÛΣ̂ (62)

where E6 = δÛÛ−1. The following lemma gives a bound on ‖E6‖2.

Lemma 7. Under the assumption (22), the following inequality holds.

‖E6‖2 ≤
∥∥∥δÛ∥∥∥

2

∥∥∥Û−1∥∥∥
2
≤ O(l2u)κ2(R̂

′). (63)

Proof. From (52), the singular values of Û are equal to those of I + Γ4 and are
therefore larger than or equal to 1− ‖Γ4‖ = 1−O(l2u). Thus,∥∥∥Û−1∥∥∥

2
≤ 1 +O(l2u). (64)

On the other hand, since ‖δûi‖2 ≤ ‖Fi‖2 ‖ûi‖2 ≤ O(l
3
2u)κ2(R̂

′) ·O(1),

∥∥∥δÛ∥∥∥
2
≤
∥∥∥δÛ∥∥∥

F
≤

√√√√ l∑
i=1

‖δûi‖22 ≤ O(l2u)κ2(R̂
′). (65)

Multiplying these two bounds gives ‖E6‖2 ≤ O(l2u)κ2(R̂
′). �
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3.1.4 Errors in the Product Y = XVX

Finally, we evaluate the errors in Ŷ = fl(XV̂X). From the error analysis of matrix
multiplication [16], we can write Ŷ as

Ŷ = XV̂X + EMM , (66)

|EMM | ≤ γl |X|
∣∣∣V̂X∣∣∣ . (67)

We first evaluate the error contained in XV̂X itself and then the matrix multiplica-
tion error EMM . From (62) and (26), V̂X can be written as

XV̂X = XR̂−1(I + E6)ÛΣ̂

= XR−1(W1 + E4)(I + E6)ÛΣ̂. (68)

By inserting X = QR and (48) into the last expression leads to

XV̂X = Q(W1 + E4)(I + E6)ÛΣ̂

= Q(W1 + E4 +W1E6 + E4E6)(Ū + δÛ)Σ̂ (69)

=
(
QW1Ū + E7

)
Σ̂. (70)

Here, E7 = Q(E4 +W1E6 + E4E6)(Ū + δÛ) +QW1δÛ and its norm is bounded as

‖E7‖2 ≤ ‖E4 +W1E6 + E4E6‖2
∥∥∥Ū + δÛ

∥∥∥
2

+
∥∥∥δÛ∥∥∥

2

≤ O(l2u)κ2(R̂
′) +O(nlu)

∥∥∥R̂′−1∥∥∥2
2

+O(l2u)

≤ O(nlu)κ22

(
R̂′
)

(71)

where we used
∥∥∥R̂′−1∥∥∥2

2
≤
∥∥∥R̂′∥∥∥2

2

∥∥∥R̂′−1∥∥∥2
2

= κ22

(
R̂′
)

, by noting that the column

vectors of R′ have the unit length.

To evaluate the matrix multiplication error EMM , we use the relation:

|X|
∣∣∣V̂X∣∣∣ = |X ′|DD−1

∣∣∣R′−1(W1 + E4)(I + E6)Û
∣∣∣ Σ̂. (72)

By inserting this into (67), we have∥∥∥EMM Σ̂−1
∥∥∥
2
≤ O(l2u) ‖X ′‖2

∥∥R′−1∥∥
2
‖W1 + E4‖2 ‖I + E6‖2

∥∥∥Û∥∥∥
2

≤ O(l2u)κ2(X
′). (73)
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Finally, we put (71) and (73) into (66) and replace κ2(R
′) with κ2(X

′) using
Lemma 3. Then we arrive at the following theorem that bounds the deviation from
orthogonality of the matrix Ŷ obtained by the partial SVD.

Theorem 1. Assume that X ∈ Rn×l is a full rank matrix with n ≥ l and the con-
dition number of its column-scaled version X ′ satisfies O(nlu)κ22(X

′)� 1. Assume
further that Hari’s V2 variant for the partial SVD has been applied to X success-
fully and the matrix Ŷ is obtained. Then, there exist a matrix Ū with orthogonal
columns, a diagonal matrix Σ̂ and an error matrix δU such that

Ŷ = (Ū + δU)Σ̂, (74)

‖δU‖2 ≤ O(nlu)κ22(X
′). (75)

Since the column-scaled condition number of X approaches to 1 quickly in OSBJ
with QR preprocessing, this result is highly satisfactory.

3.2 Backward Error of V2

We also need to evaluate how close to orthogonal the transformation matrix VX is,
because non-orthogonality of VX causes deviation of the singular values of Y = XVX
from those of X. To this end, the next theorem by Drmač can be used directly.

Theorem 2 (Drmač [10], Equations (5.3), (5.7), (5.8)). Assume that the one-sided
point Jacobi method is applied to an upper triangular matrix R̂ and the matrix T̂ ,
which is an approximation to the product of the left singular vector matrix of R̂
and the diagonal matrix containing the singular values of R̂, is obtained. Assume
further that V̂X is computed as V̂X = fl(R̂−1T̂ ). Then, there exist an orthogonal
matrix V̄X and an error matrix δV̂X such that

V̄X = V̂X + δV̂X , (76)∥∥∥δV̂X∥∥∥
2
≤ κR(R̂) ·O(sl2u) (77)

where s is the number of iteration of the one-sided point Jacobi method until con-
vergence and κR(R̂) is the row-scaled condition number of R̂.

Using this result, we can evaluate the row-wise backward error of V2. Let the
jth row vectors of X, Ŷ and EMM be x̃j, ỹj and ẽj, respectively. Note that

|ẽj| ≤ γl |x̃j|
∣∣∣V̂X∣∣∣ (78)
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from (67). Then, we have from (66) and (76),

ỹj = x̃jVX + ẽj

=
(
x̃j +

(
−x̃jδV̂X + ẽj

)
V̄ >X

)
V̄X

= (x̃j + δx̃j)V̄X (79)

where δx̃j =
(
−x̃jδV̂X + ẽj

)
V̄ >X and

‖δx̃j‖2 ≤ ‖x̃j‖2
∥∥∥δV̂X∥∥∥

2
+ γl ‖x̃j‖2

∥∥∥V̂X∥∥∥
F

≤ ‖x̃j‖2
(
κR(R̂) ·O(sl2u) +O(l

3
2u)

∥∥∥V̂X∥∥∥
2

)
= ‖x̃j‖2 κR(R̂) ·O(sl2u). (80)

Thus, we can conclude that the upper bound on the row-wise backward error δx̃j is

proportional to κR(R̂).

3.3 Criterion for Using the Variant V2

Drmač shows that when κ2(R̂
′) = κC(R̂) is very close to 1, κR(R̂) also becomes

small as well [10, Proposition 3.1]. Thus, we can expect that as the iteration of
OSBJ proceeds, κR(R̂) will get smaller. In fact, in the numerical experiments to be
presented in the next section, we observed that κR(R̂) does not become much larger
than κC(R̂), but frequently becomes smaller than the latter.

However, at intermediate steps, there is no theoretical guarantee that κR(R̂) is
sufficiently small. Hence, in our implementation, we chose to switch from V2 to V1
when κR(R̂) is large, because V̂X computed by V1 is guaranteed to be always nearly
orthogonal. To estimate κR(R̂), we use LAPACK’s xTRCON, which is an efficient
condition number estimator in 1-norm or infinity norm. Specifically, we compute
the row-scaled version R̂′′ of R̂ and use the relation:

κR(R̂) = κ2(R̂
′′) ≈ κ1(R̂

′′), (81)

which holds approximately when l is not too large. The criterion for using V2 is

κ1(R̂
′′) ≤

√
l (82)

and V1 is used instead if this is not satisfied. In the numerical experiments to be
given in the next section, this switching did not occur frequently. Thus we can say
that the V2 variant, which is superior in terms of speed, can be used safely in place
of the V1 variant most of the time.
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4 NUMERICAL RESULTS

In this section, we experimentally evaluate the error of Hari’s V2 method to support
our theoretical analysis and compare them with those of Hari’s V1 method. We
used variety of test matrices which differ in the matrix size m = n, the number of
blocks q, the 2-norm condition number κ2(A), and the distribution of the singular
values. We generated five different matrices for each combination of the parameters
listed below using LAPACK’s DLATMS:

• m = n = 200, 400, 800, 1 600

• q = 10, 20, 40

• κ = 105, 1010, 1015

• the distribution of singular values from DLATMS described in [19]

– mode = 1: σ1 = 1, σ2 = σ3 = · · · = σn = 1/κ

– mode = 2: σ1 = σ2 = · · · = σn−1 = 1, σn = 1/κ

– mode = 3: σi = κ−(i−1)/(n−1)

– mode = 4: σi = 1− (i−1)(1−1/κ)
n−1

– mode = 5: the singular values are random numbers in the range (1/κ, 1)
such that their logarithms are uniformly distributed.

These matrices have singular value distributions that are often seen in real-world
problems, such as singular values with high multiplicity and highly clustered singular
values at the lower end of the spectrum. To organize the results in small spaces, we
indexed the matrices using the formula:

index = 9 log2(n/200) + 3 log2(q/10) + log10(κ)/5− 1. (83)

We used double-precision floating-point numbers throughout the experiments, thus,
the unit of round-off u ≈ 1.01× 10−16.

4.1 Condition Numbers Observed During the Computation

Table 1 shows the maximum values of the estimated condition numbers, κ1(R̂
′) and

κ1(DrR̂), which are observed in the tests. We used the LAPACK’s DTRCON to
estimate the 1-norm condition numbers, thus, they are not exactly same as those
used in the analysis, κ(R̂′) and κR(R̂), but they provide a good estimate of the true
values with small computation cost.

The condition numbers in the tables are drastically small (< 100) compared with
those of the input matrices, which can be as large as 1015, even in the first sweep,
thanks to the QR preprocessing. It is also notable that the row-scaled condition
numbers in the table are smaller than the column-scaled ones. These small figures
make our theoretical error bounds (see (75) and (80)) of the order of u. Moreover,
because they are small, the switching from V2 to V1 described in Subsection 3.3
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Sweep # mode = 1 mode = 2 mode = 3 mode = 4 mode = 5

κ1(R̂
′) 1 10.707 1.001 33.112 33.304 33.220

2 1.233 1.000 1.756 3.763 1.743
3 1.010 N/A 1.014 1.287 1.024
4 1.002 N/A 1.000 1.021 1.000

κ1(DrR̂) 1 10.213 1.000 24.093 21.942 18.454
2 1.152 1.000 1.664 3.435 1.653
3 1.010 N/A 1.014 1.269 1.024
4 1.002 N/A 1.000 1.021 1.000

Table 1. The estimated condition numbers with LAPACK’s DTRCON. We only listed the
maximum values for each mode. N/A means the iteration has already converged.

did not occur for most of the matrices and even when it occurred, it was only a few
times. In our tests, no switching occurred for 861 matrices out of 900, only once
for 26, and up to five times for the rest. All the swithing, if any, occurred in the
first sweep.

4.2 Orthogonality Error of Ŷ
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Figure 4. The maximum orthogonality error of Ŷ for each parameter combination

Figure 4 shows the orthogonality error of Ŷ defined as∥∥∥(Ŷ Σ̂−1)>Ŷ Σ̂−1 − I
∥∥∥
max

. (84)

This error must be small for the convergence of the overall process. We only plotted
the maximum values over all sweeps for each combination of the parameters. For
both V1 and V2 methods, the errors are small or close to the

√
nu (the black lines

in the figures). Generally, V2 has smaller errors than V1 in this test.
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4.3 Residual and Orthogonality of the Factors

V1 V2

0 10 20 30 0 10 20 30

10-15

10-14

10-13

index

re
si
du
al

mode

1

2

3

4

5

Figure 5. The maximum value of the residual for each parameter combination
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Figure 6. The maximum orthogonality error of V̂ for each parameter combination

Figures 5, 6 show the residual of the decomposition,
∥∥∥A− ÛΣ̂V̂

∥∥∥
max

/ ‖A‖max,

and the orthogonality of the computed V̂ ,
∥∥∥V̂ >V − I∥∥∥

max
, respectively. The resid-

uals are small for both V1 and V2, therefore, the Jacobi method can compute the
SVD of the test matrices accurately even with the V2 method. The residuals of V2
are a bit larger than those of V1, but we think they are still acceptable because they
are around nu (the red lines in the figures), the unit roundoff times a low degree
polynomial of n. The situation is similar for the orthogonality of V̂ . The errors are
small for both V1 and V2. The errors of V2 are a bit larger than those of V1, but
they are still acceptable because they are smaller than nu.
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Figure 7. Normalized computation time of the three methods

4.4 Computation Time

Lastly, we compare the computation time of three methods, namely, V1, V2 and
LAPACK DGESVJ, which is an implementation of the one-sided point Jacobi SVD
method. We generated matrices with parameters n = 400 to 4 000, κ = 1010, mode =
3, and q = 10, 20, 40 (only for V1 and V2). The computation time was measured five
times for each combination of the parameters, their average was calculated, and the
value of q which attains the shortest average time was selected for each combination.
The experiments were done on a 4-core desktop PC with Intel Core i7-7490 (3.6 GHz,
8 MiB cache) and dual-channel DDR3-1600 memories. Our program was compiled
with gcc and gfortran version 7.5.0 and linked with OpenBLAS v3.9.0, with flags
-O3 -mtune=ntive -march=native.

Figure 7 shows the normalized computation time, where the time of DGESVJ is
set to 1. For large matrices, the OBSJ methods, V1 and V2, outperforms DGESVJ,
and they achieve more than 2.5 times speedup over DGESVJ. V2 is always faster
than V1 in the plot. The difference is larger for small matrices, but it is still more
than 10 % when n = 4 000.

5 CONCLUSION

In this paper, we presented a roundoff error analysis of the block orthogonalization
process used in the one-sided block Jacobi SVD method. In particular, we focused
on the so-called V2 method proposed by Hari and showed that the orthogonality
error and the backward error are essentially bounded by the product of the unit
roundoff and the column-scaled and row-scaled condition numbers, respectively, of
the block to be orthogonalized. Since these condition numbers are usually small and
approach one as the iteration proceeds, our results suggest that the V2 method is
accurate in terms of both orthogonality and backward error. Numerical experiments
confirm this theoretical prediction.



1226 S. Kudo, Y. Yamamoto, T. Imamura

Our future work includes error analysis of the V1 method, which is another
block orthogonalization method proposed by Hari, and a study on the impact of our
present results on the convergence and accuracy of the one-sided block Jacobi SVD
method.
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[4] Willems, P. R.—Lang, B.—Vömel, C.: Computing the Bidiagonal SVD Using
Multiple Relatively Robust Representations. SIAM Journal on Matrix Analysis and
Applications, Vol. 28, 2006, No. 4, pp. 907–926, doi: 10.1137/050628301.

[5] Willems, P. R.—Lang, B.: Twisted Factorizations and qd-Type Transformations
for the MR3 Algorithm – New Representations and Analysis. SIAM Journal on Matrix
Analysis and Applications, Vol. 33, 2012, No. 2, pp. 523–553, doi: 10.1137/110834044.
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