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Abstract. Twitter is a popular microblogging and social networking service. Twit-
ter posts are continuously generated and well suited for knowledge discovery us-
ing different data mining techniques. We present a novel near real-time approach
for processing tweets and detecting events. The proposed method, Multi Timing
Chained Windows (MTCW), is independent of the language of the tweets. The
MTCW defines several Timing Windows and links them to each other like a chain.
Indeed, in this chain, the input of the larger window will be the output of the
smaller previous one. Using MTCW, the events can be detected over a few min-
utes. To evaluate this idea, the required dataset has been collected using the Twit-
ter API. The results of evaluations show the accuracy and the effectiveness of our
approach compared with other state-of-the-art methods in the event detection in
Twitter.
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1 INTRODUCTION

Nowadays, social networks are much used in everyday lives, and the users of these
networks usually share a lot of information with others about their events and inci-
dents, their opinions on various issues, and so on. Meanwhile, Twitter has an essen-
tial role due to the number of users and its specific structure. This microblog had
336 million monthly active users in the first quarter of 2018 who sent 500 million
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tweets per day [1, 2]. The high number of posts on this social network and the
extent of its users have attracted the interest of researchers. In recent years, this
huge amount of data has provided a hotbed for data mining research to discover
facts, trends, events, and even predict specific incidents [3, 4, 5, 6, 7].

The data streaming process, including social networks, produces millions of doc-
uments (image, text, audio, etc.) per hour. Since these documents arrive at high
speed, there is not much time to process them, and they cannot be stored in memory,
either. Therefore, it is very difficult to compare the current and previous documents
and find any similarities or changes between them.

On social networks such as Twitter, data is produced in an unlimited and endless
stream. Therefore, the process for storing and analyzing this inexhaustible stream
of information should not be dependent on the hardware specification of the system,
such as memory capacity. In other words, if the event detection algorithm is applied
to tweets for two months or two days, its accuracy should not be reduced, as well
as the limitations of hardware such as memory to prevent it [5]. So, we need to
propose an approach to detect events employing the analysis of tweets while they
are received and require no further storage and processing.

The research conducted by Petrovic et al. [8] and Osborne and Dredze [9] confirm
the effectiveness of employing Twitter for an event detection system. However, there
are at least two severe challenges of doing so. Firstly, not all data from Twitter
are correct and may include spam and personal information without processing
capability. In studies such as [10], news agencies are the source of valid information,
but the posts of users in social networks are not limited to factual data and events.
Indeed, many posts are spam and trivial statements. The majority of tweets are not
true stories, some concern personal life, some conversation and friendly chats, and
some spam. The second challenge is the message length limit on Twitter. Twitter
does not allow users to post a text longer than 280 characters, which causes changes
in the syntax of the language. For example, short sentences are written instead of
full sentences, which makes it difficult to process the tweets.

Many event detection approaches take advantage of the keywords contained in
the users’ post.The Burst Keyword is a group of keywords that represents a trend
or the occurrence of a new event. Certainly, the period of the occurrence of these
Burst Keywords is also very important; for example, if a Burst Keyword is observed
over a few minutes, it represents an event, but if it occurs over several days, it
indicates a new trend. The main idea of this research is to use multiple Timing
Windows simultaneously and link them together. In this method, the smaller Timing
Windows removes the words in the next (larger) Timing Windows and sends the
remaining words to that Timing Windows. By applying this method, the history
of repetitive words will not affect the detection of a sudden increase in windows
at present. Moreover, processing of incoming tweets as well as other calculations
are performed only for the first window, and there will be no waste of time for
preliminary calculations in other Windows.

In the proposed method, Multi Timing Chained Windows (MTCW), sudden
events can be detected over a few minutes. The suggested method is also indepen-
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dent of the user language. It benefits from the constant time and space complexity
for any number of tweets, as explained in the next sections.

In the following, the research fundamentals of this study are described. The
related works in the field of event detection are discussed in Section 3. The proposed
approach is described in Section 4. Next, experimental results and evaluation of
MTCW are discussed employing the collected Twitter dataset. Then, our proposed
approach is compared with other state-of-the-art methods in event detection on
Twitter. Finally, we conclude the paper and provide future works.

2 FUNDAMENTALS OF RESEARCH

In this section, the foundations of this research, including concepts, objectives, and
quality of service parameters in event detection, are described.

2.1 Concepts in Event Detection

In recent years, the detection of an event has been a very trending topic. The
underlying assumption is that an increasing use of some related keywords shows
that an event is happening. Event is an occurrence of interest among users of
the social media to discuss a real-world event-associated topic, usually after the
incident or even sometimes prediction of it [11]. In the domain of Topic Detec-
tion and Tracking (TDT) [12], an event is defined as “Something that happens
at a specific time and place along with all necessary conditions and unavoidable
consequences”.

In fact, there is no distinct segregation between trending topic detection and
event detection in many papers. In some papers discussing the subject of trend-
ing topic detection, the term event detection is frequently mentioned, including [5,
13, 14, 15, 16, 17]. It is also pretty much the same in Twitter. In Twitter,
there is a proprietary algorithm to detect and display the trending topics, con-
sisting of terms and phrases that express the “trending” behavior. While Twit-
ter’s trending topics sometimes reflect current events (e.g., “iPhone X announce-
ment”), they often include keywords for popular conversation topics (e.g., cryp-
tocurrency).

As another example, suppose a celebrity who asks the fans in a tweet to com-
ment on purchasing an apartment or a villa. A large number of tweets are gen-
erated discussing the disadvantages and benefits of each option. In this case, the
“house” or “apartment” is raised as a trending topic, but has any event occurred in
fact?

Indeed, the current systems usually are not intelligent enough to be able to
recognize the difference between an event or a widespread discussion about a topic;
therefore, most papers do not distinguish between an event and a trending topic.
However, in articles such as [4], it has been attempted to use temporal and local tags
to differentiate between urgent events with trends. It should be noted that Becker,
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Naaman, and Gravano [18] were the first researchers who considered this distinction
between a trending topic and event detection.

2.2 Objectives of Event Detection

Considering the concepts and requirements of an event detection system, four signif-
icant objectives can be specified for an ideal user event detection system, including
Generality, Scalability, Real-time processing, and No supervision. Apart from these
four objectives, there are other criteria for perfect event detection. For example, no
use of additional data and information or use of a dictionary could be good targets.

Generality: Many systems of event detection can only detect specific topics. In
fact, just a series of topics already given to the system are detected. For example,
an approach has been presented in [4] which detects whether the event is urgent
or not and then classifies the event from among the preset categories (flood,
earthquake, fire, etc.). In fact, this approach cannot detect such things as the
death of a famous person.

Scalability or independence from space and time: The event detection system
should not be dependent upon memory. This system should not slow down
over time and should process each data upon arrival. This target states the
consistency of the space required over time. Obviously, the system grows over
time, which should not increase the required memory. Also, in solving a problem
like event detection in Twitter, the growth rate is not fixed. In an approach like
EDCoW [5] which works with signal processing, elimination of several tweets
has been considered to reduce the space, while it cannot be a guarantee for
scalability.

Real-time processing: This objective means the detection of the event as soon as
it is observed. The real-time concept has been observed in a small number of ap-
proaches. Almost all of them conducted their assessment by collecting a dataset,
but there is no discussion about the processing time in a real environment. In
TwitterMonitor [19],the system works online, but even in this case, only a small
number of tweets are tested due to lack of access to all tweets.

No supervision: The final event detection system must be able to operate with-
out user monitoring, verification, and feedback. There should be no need for
a training phase in the system since training is reserved for some tweets in the
dataset whose behavior will change over time.

No use of a dictionary or additional data: Approaches such as [20] employed
a dictionary as well to improve the accuracy of their system. The use of such
things can result in a loss of generality of the approach because it is not possible
to find and use a comprehensive dictionary for all the languages. Even if one
finds and uses all the dictionaries, the system performance is reduced due to
their high volume. Besides, the common languages in the world are generally
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dynamic and produce new words, so the use of a dictionary can be considered
a weakness of the method.

2.3 Quality of Services in Event Detection

An effective event detection system is the one with a high recall to be able to retrieve
each related event, as well as high precision to reject all the unrelated events [21].

In an event detection system, precision represents the usefulness of the output
list (diagnostic events). The closer the events in the system output to real answers,
the better this criterion. The precision is introduced as follows:

Precision =
CDE

TDE
. (1)

In this equation, CDE (Correctly Detected Events) represents the number of
correctly detected events, and TDE (Total Detected Events) is the total number
of detected events. The recall represents the completeness of the output list. The
recall is equal to:

Recall =
CDE

TE
. (2)

In this equation, TE (Total Events) is equal to the total number of events that
occurred during the period in question. Recall shows how well the system works in
finding the events.

3 RELATED WORKS

Atefeh and Khreich generally classified event detection approaches in Twitter into
document-pivot and feature-pivot techniques depending on whether they rely on
a document or temporal features [22]. However, another classification has been
recently proposed by Hasan et al. on Twitter-centric event detection systems [11].

Hasan et al. classified the event detection approach based on their common fea-
tures into term-interestingness, topic-modeling, and incremental-clustering. The
term-interestingness methods rely on tracking the terms from the Twitter data
stream likely to be related to an event. The topic-modeling approaches associate
each tweet with a probability distribution over the different latent topics to discover
the hidden semantic structures from a stream of tweets to detect the related events.
The incremental-clustering methods employ an incremental clustering strategy in
order to avoid having a fixed number of clusters due to the high-volume, real-time
Twitter data where a wide variety of topics are discussed.

Considering the above categories and taking into account the proposed approach
in this article, we classify the research associated with Twitter event detection into
the following two categories: Burst/Hot Keywords Frequency and Statistical Ana-
lysis.
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A majority of event detection techniques use the frequency of keywords in users’
posts to detect the related events. Some other approaches like Benhardus employ
TF-IDF (Term Frequency–Inverse Document Frequency) factor, again related to
the frequency. The extraction of Burst Keywords using Timing Windows can be
used for event detection in many approaches, such as [19, 23, 24, 25]. The timing
Window is a time slice in which the words are collected, and their sudden increase
is studied. Also, looking for special keywords (“Hot Keywords”) is another method
to detect events. If the tweet or group of tweets include these hot keywords, then
the associated event will be discovered (Section 3.1).

Some other approaches employ various statistical techniques such as LDA or
Bayesian (Section 3.2). In these approaches, each tweet is associated with a probabil-
ity distribution over various latent topics to discover the hidden semantic structures
from a collection of tweets, such as [33, 34, 35].

3.1 Burst/Hot Keywords Frequency

As defined in articles, an event is expressed as a group of keywords, and the event
detetcion system goal is to find this group that appears simultaneously in a stream
of data.

A method for event detection using text mining techniques has been presented
by Benhardus in [20]. This approach takes advantage of the frequency with TF-IDF
factor as well as Entropy test. In this approach, the tweets are grouped in packages.
Depending on when the tweets are sent, groups are normalized., which means that
each document is linked to a fixed time interval.

Massive Online Analysis (MOA) TweetReader detects a trend in three steps [26].
In the first step, upon the arrival of each tweet from Twitter API, pre-processing is
done, and then the feature vector is formed using TF-IDF parameter. In the second
step, the tweets are tagged using a trained component, and finally, if a change is
observed, the trend is discovered.

The SABESS (Social Awareness Based Emergency Situation Solver) approach
employs the frequency method with some modifications [4]. Upon the arrival of each
tweet, SABESS determines whether it is an urgent event or not, what category it is
(flood, earthquake, fire, etc.), and where is the location of the event.

Recently, Frequent Pattern Mining (FPM) has been employed for event de-
tection in Twitter. The FPM helps to find patterns of words that frequently oc-
cur in the Twitter data stream. The method called SFPM (Soft FPM) is also
applied for this purpose by mitigating the requirement that all items must be
frequent in the pattern [27]. Gaglio et al. extended the SFPM method to deal
with dynamic environments of Twitter by splitting the streams into dynamic win-
dows whose size depends both on the volume of tweets and time [28]. Huang
et al. proposed an event detection based on the High Utility Pattern Clustering
(HUPC) framework by clustering all patterns generated by the FP-Growth algo-
rithm [29].
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In the approach presented by Choi and Park, emerging topics on Twitter have
been detected based on High Utility Pattern Mining (HUPM). The goal of HUPM
is to find itemsets that have high frequency and high utility at the same time [30].

In [31], six different methods for topic detection have been evaluated (i.e., LDA,
Doc-p, Gfeat-p, FPM, SFPM, and Bngram) on three datasets. Finally, a comparison
of these methods concluded that the combination of DF-IDF and nGram in Bngram
method showed the best results.

TwitterMonitor attempts to find the trend of users using the frequency me-
thod [19]. It first detects the Burst Keywords (keywords that suddenly appear in
an unusually large number of tweets), and these words are then placed in their
related groups. In other words, a trend is detected as a set of Burst Keywords
that have frequently appeared together in tweets. Once a trend is detected, Twit-
terMonitor extracts additional information from the tweets related to the detected
trend.

Guzman et al. have introduced an approach in [23] to detect sudden keywords. In
this approach, suddenly rising words are detected using a five-stage algorithm. Each
stage is written with a standalone module. Three modules are used for preprocessing,
and the remaining two modules detect sudden words.

In EDCoW method, an event is indicated by keywords that are suddenly in-
creased [5]. This approach attempts to detect new and important events using
a signal processing technique. In EDCoW approach, a signal is generated only when
a word shows a sudden behavior. The signal is then quickly processed without the
need for considerable memory by Wavelet analysis. In fact, after receiving a sig-
nal, trivial words are discarded, and only the signal and its affiliates are considered.
Then, the cross-correlation between signals is calculated, followed by event detection
through signal clustering via graph partitioning.

TopicSketch is a framework for real-time detection of bursty topics on Twit-
ter [32]. This approach utilizes two main techniques; a sketch-based topic model
and a hashing-based dimension reduction technique. TopicSketch is not suitable for
topic detection in a stream of documents with multiple topics.

Burnap et al. attempted to categorize public posts on Twitter according to their
tension [3]. In this paper, tension is defined as follows: “any event that seriously
disrupts a normal relationship between individuals or groups, which also spreads to
groups or individuals not involved in the relationship”. In their paper, first, the
incoming tweet is tagged, and then the Burst keyword (if present) is detected in
tension level. Their method determines the level of tension using simple rules. For
example, if the tweet includes one or more words from vulgar and profane words,
the tension level is detected as high.

Zhang et al. proposed a Pattern-based Topic Detection and Analysis System
(PTDAS) on Weibo, a Chinese Twitter-like platform [33]. For this purpose, they
have developed three different modules: Topic detection, Evolutionary analysis, and
Sentimental analysis. A key component of their method is to employ an FP-growth-
like algorithm to mine cosine interesting patterns from a set of tweets.
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3.2 Statistical Analysis

Given a set of keywords, various statistical models such as pLSI (probabilistic Latent
Semantic Indexing) [34] and LDA (Latent Dirichlet Allocation) [35] can be used for
topic detection in Twitter data streams. However, pLSI was based on the likelihood
principle, and it can not assign probabilities to new documents. This was resolved by
LDA, which models each document as a mixture of topics and topics as a mixture
of words. Indeed, LDA is a Bayesian network that generates a document using
a mixture of topics and words.

In [13], the authors used the Online LDA approach, which has been developed
for modeling several latent variables (titles) in a series of texts, including words.
In this approach, new events make sense with new words (for example, names of
people, parties, etc.), so that the collection of words is updated each time a document
arrives. The words with a lower threshold are removed from the end.

Ahuja et al. have proposed Spatio-Temporal Event Detection (STED), a proba-
bilistic model that detects events using information from news and Twitter [36]. For
this purpose, they employed timestamps and geolocation information from tweets
to estimate the temporal and regional distributions of events.

Huang et al. applied LDA to identify potential topics in a Twitter data
stream [37]. They first employed ST-DBSCAN (an unsupervised data clustering
algorithm) to cluster the tweets of every day. Moreover, spatial, temporal, and tex-
tual patterns for every cluster have been generated. Then, they applied LDA to
identify potential topics in the cluster and analyze the structure of every tweet.

Gupta et al. collected the tweets and then, for unprocessed tweets run the LDA
streaming and retrieved the tweet based on the domain to which it belongs [38]. If
the tweet belongs to a certain event category, then it extracts tweets using domain-
based classification. Moreover, the scoring function is used to correctly identify
whether the tweet is belonging to that domain or not.

Another statistical model, namely Bursty Biterm Topic Model (BBTM), has
been proposed by Yan et al. to solve the data sparsity problem in topic modeling
over the short texts [39]. Their work is devoted to Biterm Topic Model (BTM), which
models biterms (i.e., word pairs) rather than words for effective topic modeling in
short texts.

Mehrotra et al. proposed an approach for aggregating tweets in order to improve
the quality of LDA-based topic modeling in microblogs [40]. They achieved this
through various pooling schemes that aggregate tweets in a data preprocessing step
for LDA. Their pooling schemes included Author-wise, Burst-score-wise, Temporal,
and Hashtag-based Pooling.

4 THE PROPOSED METHOD: MTCW

As discussed in the previous section, the use of Timing Windows is a convenient
method for event detection. The Timing Window is a slice of time that could be
a quarter of an hour, an hour, or even a day. If time slices are represented with kt
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then k0 is the first slice of time. In Table 1, different time slices from ten minutes
to one day have been shown.

Time slices 10 minutes 100 minutes One day
k0 From 1:00 AM to 1:10 AM From 1:00 AM to 2:40 AM From 2016-02-01 to 2016-02-02
k1 From 1:10 AM to 1:20 AM From 2:40 AM to 4:00 AM From 2016-02-02 to 2016-02-03
k2 From 1:20 AM to 1:30 AM From 4:00 AM to 5:40 AM From 2016-02-03 to 2016-02-04

Table 1. Examples of time slices

L is a Timing Window that keeps the words in a fixed number of time slices.
When a new word arrives, the earlier word is removed from the beginning of the
Timing Window. Therefore, the size of L will always be constant. Upon the arrival
of a new word, the model is rebuilt. Table 2 presents an example of a Timing
Window in size of 5, indicating that L can only contain five words; if a new word
arrives, the earlier word is removed.

L in kt Content of L in size of 5 words

L in k0
Word Iran Rouhani ART 100$ Planes
Frequency 735 352 439 259 199

L in k1
Word Unfrozen Claims Iran Rouhani ART
Frequency 689 598 497 356 241

L in k2
Word Unfrozen Iran Claims Rouhani ART
Frequency 741 656 568 522 345

L in k3
Word Planes Iran Rouhani Unfrozen Claims
Frequency 659 612 563 456 450

Table 2. Examples of timing window

The words in tweets of each time slice together with their frequency make
up the content of a Timing Window. When a short slice of time is selected,
a sharp increase in the number of certain words in this time slice indicates a sudden
event.

We define several Timing Windows and link them to each other like chains in
a way that the input of the larger window will be the output of the previous smaller
window. This new concept has been introduced as Multi Timing Chained Windows
(Figure 1).

A stop word is defined as a word that contains no meaning or relevance by
itself [20]. In other approaches, a fixed list of Stop Words is usually used. Our
approach, namely MTCW, is capable of simultaneously detecting sudden events
and user events as well as making a dynamic list of Stop Words in the language of
a query. The idea of dynamic generation of Stop Words helps the algorithm to be
compatible with the environment under any conditions. More precisely, if a new
word is spread among users, new words are added to the collection of Stop Words
over time.

The developed approach for event detection comprises six modules (Figure 2).
Each module has its specific task, and instead of saving its output, it directly delivers
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Figure 1. Different signal levels in MTCW approach

it to the next module to increase the speed and reduce the use of memory. In the
following, each module is briefly explained.

Figure 2. The layered architecture of proposed trend detection

4.1 The First Module: Receive Tweets

This module receives tweets from the Twitter Streaming API. The Twitter Stream-
ing API continuously delivers the details of tweets requested by users in JSON
format. Based on the track and location filters, this API only delivers a portion of
tweets to the user.

Although MTCW, in the first step, collects tweets using Twitter Streaming API,
the methodology of the proposed approach is not user-centric. In fact, user’s tweets
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affect the functionality and the correctness of MTCW (same as all social-aware event
detection systems), but the user/operator could not impose any preferences directly
on the system’s performances.

4.2 The Second Module: Preprocess Tweets

This module processes the text of a tweet in a straightforward way. In fact, every
effort is made to spend the minimum possible time for initial processing. This
module receives the text of a tweet and finally produces a sorted array of tweets along
with the frequency. This module performs six operations on the text of a tweet, as
shown in Pseudocode 1.

TweetPreprocess(string s){ 
 String r; 
 Array result[][]; 
 r = ConvertLowCase(s); 
 r = ConvertSpace(r); 
 r = SplitBasedonSpace(r); 

 r = RemoveWordsLessthan3char(r); 
 for (i=0; i< length(r); i++) 
  if (r[i] isInArray result) 
   result[r[i]]++; 
  else 
   add r[i], 1 to result; 
 AsortArray(result); 
 return result; 
}  
 

Pseudocode 1: Preprocess tweets module

4.3 The Third Module: Create Signal

The assorted array of words from tweets and the frequency of each word is called
signal. The signal is assorted in a descending order based on the frequency. In
this study, each signal is constructed in four levels. In fact, four different Timing
Windows are considered to construct a signal.

The first level signal: It should be noted that the first signal is received directly
from the words of the first Timing Window tweets, while in the next levels, words
from a previous level are used as the input. In this level, tweets are received
in a ten-minute interval, and their text is delivered to the second module for
processing. The arrays received from the second module are combined with
each other to produce the signal.
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The process is as follows: words in the fourth level of Timing Windows (Dynamic
Stop Words) are deleted from arrays. Then, the words in the next level time
series (second level) are also deleted from the array. In fact, the words that
have reached the next level are those with a high frequency in the recent past,
which cannot thus represent an urgent event. Frequencies of similar words are
added together. Afterwards, the remaining words of the signal are arranged in
descending order based on the sum of frequencies. Finally, the signal is sliced
according to first level limitation parameter of the signal word. In MTCW, this
parameter is set to 100 for the first level signal, i.e., 100 frequently repeated
words are maintained. In this way, space limitation is observed, and there is no
need for further space with an increasing number of incoming tweets.

The pseudocode of the above process has been listed in Pseudocode 2.

CreateSignals(inputArray, lastLevelWords, nextLevelWords, limitationSignalLevel){ 

 

 inputArray = LastLevelRemoveWords (inputArray, lastLevelWords); 

 inputArray = nextLevelRemoveWords (inputArray, nextLevelWords); 

 outArray = AsortArray (outArray); 

 signal = CutArray (outArray , limitationSignalLevel); 

 

 return result; 

} 
 

Pseudocode 2: Create signal module

Making the second, third, and fourth level signal: After few iterations of
the first level signal, the second level signal is constructed. After generating ten
signals in the first level, a new signal for the second level is constructed (every
100 minutes). This process is repeated to create next level signals. Indeed, after
ten iterations of the second level signal, the third level signal is constructed
(every 1 000 minutes), and after five iterations of third level signal, the fourth
level signal is constructed.

The procedure for signal generation is as follows:

• Considering the current signal level, five to ten signals of the previous level
are combined to create the signal of the next level.

• The signal integration is performed by summing up the total number of
similar words (frequency).

• For the second level signals, the words that exist in the next time series
(third) is deleted. The same happens for the third level signal.

• The result is assorted in a descending order based on the frequency.

• Finally, the assorted result is sliced based on the words limitations.
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4.4 The Fourth Module: Create Time Series

A number of signals generated at successive time intervals is called time series. There
is a distinct time series for each level. The series is updated upon the creation of
each signal. The update is done as follows:

If a word is absent in a time series, it is added to the time series, and iteration
is set to zero in previous signals for that word. If the word exists in the time series,
a new iteration is added as the last word signal, and the oldest signal of that word
is deleted. If both previous conditions are false, then a zero repeat is added to the
word, and the earliest signal of that word is deleted.

The pseudocode for creating time series is listed in Pseudocode 3.

CreateTimeSeries(signals){ 

 array timeSeries[][]; 

 foreach (signals as signal){ 

  CreateNewSignalTimeSeries (timeSeries); 

  foreeach (signal as word => frequency) 

   if (word is not in timeSeries){ 

    AddToTimeSeries(timeSeries, word, frequency); 

    AddZeroToLastSignalTimeSeries (timeSeries, word); 

   } else{ 

    AddNewFrequencyWordToOld (timeSeries, word , newFrequency); 

   } 

  AddZeroOtherWordsNewSignal(timeSeries); 

 } 

} 

Pseudocode 3: Create time series module

No time series is constructed for the fourth level, but its signal is updated.
The reason for this is that Stop Words are kept at this level and that the highest
iterations should always remain at this level. Therefore, upon the arrival of a new
signal at the fourth level, the number of iterations is compared with the previous
signal, and if there is a higher value in the new signal, the previous signal is updated.
Finally, based on the limitation of signal words, only the most frequently repeated
ones remain.

In other words, in the previous levels, the words are horizontally and vertically
removed from Timing Windows, but in the fourth level, the words are removed
vertically.

Vertical and horizontal update: The following time series in Table 3 includes
four words and four-signal limitations. If the new signal arrives with a “How” word
and iteration of 12, the word “Hi” is excluded due to the limitation of words. In
this case, we say the word was out vertically (Figure 3).

Now, suppose the arrival of a new signal, including the word “Hello” with five
iterations. In this case, all iterations of the word “Salam” are set to zero and are
deleted from the set of time series words. Now, we say the word was out horizontally
(Figure 4).
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Hello 0 3 9 6

Word 2 5 3 2

Salam 0 11 0 0

Hi 1 0 0 5

Table 3. Time series in the last level

Figure 3. Vertical update of the last level time series

4.5 The Fifth Module: Detect Burst Keywords

After updating the time series, the fifth module investigates a sudden increase in
the iteration of words. The output of this module is the candidate of Burst Key-
words.

The following criterion is used to find candidate Burst keywords:∣∣∣∣Fw −Mw

Mw

∣∣∣∣ > BP. (3)

In this formula,Fw represents the frequency of the word W in the new signal.
Mw is the average frequency of the word W in previous signals. In addition, BP
(burst parameter) is a measure of Burst Keyword that can be different for each
level. In our experiments, the BP value has been experimentally considered 0.3 for
the first level and 0.7 for the second and third levels, respectively.

For example, if the frequency of the word “planes” in the first level of the new
signal is 1 200 (Fw = 1 200) and the average frequency value of this word in previous
signals is 1 000 (Mw = 1 000), then this word is a candidate as a Burst Keyword in
the first level of the signal (BP = 0.3 > 0.2). The candidate Burst Keywords are

Figure 4. Horizontal update of the last level time series
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returned together with their entire signal to calculate the similarity of their keywords
in the next module.

4.6 The Sixth Module: Detect Event

We detect events by grouping a set of candidate Burst Keywords with similar burst
patterns. This set includes a few candidate Burst Keywords with a sudden increase
in their iteration with a similar pattern of burst in recent signals.

The similarity in the time series of candidate Burst Keywords is checked for
each signal. Finding the level of similarity in the time series of two candidate Burst
Keywords can indicate the similarity of their iteration pattern. If the two candidate
Burst Keywords have the same iteration pattern, it can be stated that they are at
the same set.

The cross-correlation measure is used to examine the behavioral similarity of
two candidate Burst Keywords. The cross-correlation is a criterion to detect the
similarity of two time series in signal processing. In the discrete domain, the follow-
ing equation is used to calculate the cross-correlation for two time series of x and y
with the length of n [41]:

r =

∑n
i [(x(i) −mx) × (y(i− d) −my)]√∑n
i (x(i) −mx)2

√∑n
i y(i− d) −my)2

(4)

where x and y are actually two time series supposed to be measured in terms of
similarity, with mx and my presenting the mean of two time series. d is the lag
parameter for which the value of 1 has been chosen in this algorithm.

5 EXPERIMENTAL RESULTS

A dataset has been collected using Twitter streaming API to analyze and evalu-
ate this idea. The tweets were collected from 28. 1. 2016 to 27. 2. 2016 based on
track = “iran”, “tehran”, “thr”. Over one and a half million tweets (1 524 493) were
collected. Tweets from the same day were classified together, and every day was
divided into ten-minute intervals. For each interval, the tweets were stored as a text
file. The information collected from every tweet included ID, date, text, origin, User
ID, username, and location of the user posting the tweet.

It should be mentioned that most proposed approaches in event detection use
their proprietary datasets for evaluation purposes. To this end, Twitter streaming
API has been employed to collect and create our proprietary dataset. In fact, to
evaluate MTCW, we compared the News items related to Iran, which were detected
by our proposed approach with the Google News search service. The search was
done by examining Google News, searching for the word Iran, and setting the time
interval from day to day. However, several methods benefit from publicly avail-
able datasets. In order to precisely evaluate MTCW and eliminate any possible
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inconsistency or bias in the dataset, MTCW has also been evaluated using a pub-
licly available dataset, which has been employed by many articles. The results are
reported in Section 6.2.

Figure 5. Google News service

As mentioned above, for the first phase of evaluation, Google New search service
returns ten events related to Iran on a respective day. An event may include 1–7 news
items from different News agencies. The collection of a number of news from an event
contributes to a better analysis of the results. We may have detected an event but
with different words and syntax. Different headlines from various news agencies
concerning a single event are an idea for a better comparison of results. We combine
these headlines, and if the detected event is close to this combination, then we
declare the detection of that event.

The results of the evaluation related to the first level series and Google News
headlines are shown in Figure 5. As it can be seen in Figure 6 b, for some days,
all ten events have been detected. Also, the results have been improved over
time.
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a) Precission and recall for detected events

b) Detected events day by day

Figure 6. Experimental results

6 EVALUATION AND COMPARISON

In Section 5, we provided the precision and recall of our event detection approach
compared to the Google News service. For further evaluation of the proposed
method, quantitative and qualitative comparisons have been performed with other
state-of-the-art methods in event detection in Twitter, as discussed in the next sub-
sections.

6.1 Qualitative Comparison

In the following Table, the approaches assessed in the Related Work section have
been compared based on the five objectives described in Section 2.2.

MTCW approach has the Generality feature. Since the algorithm is not sensitive
to a specific subject and no word or phrase has already been tagged, it recognizes
an event based on frequency patterns of words (which can be related to each topic).

Our solution does not depend on time and space (Scalability feature). In the
proposed algorithm, the signal length is constant at all levels, so the algorithm only
needs a constant space for storing information and the relevant history, and this
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space will not increase over time. The processing done in the algorithm does not
change over time due to the constancy of the input, so the complexity of the time
is constant.

The proposed solution requires limited preprocessing, and little time is needed
to process the tweets and generate the result (Real-time processing feature). In
fact, the algorithm produces the result of an event within the specified time interval
without any delay at each signal level.

The use of the idea of dynamic Stop Words forms an unsupervised system (No
Supervision feature). In this system, based on user behavior, meaningless words are
removed over time, and meaningful words are added to the system. MTCW does
not use any dictionary or additional words and data, either.

No. Approach Generality Scalability Real-time
processing

No super-
vision

Non-use
Additional
Data

1 Benhardus [20] X X 7 X 7

2 TwitterMonitor [19] X X X X X
3 EDCoW [5] X X X X X
4 SasaPetrovic [42] 7 X X X X
5 Bifet [26] 7 7 7 X X
6 Pete Burnap [3] 7 X 7 7 7

7 Takeshi Sakaki [43] 7 7 X X 7

8 Aielloi [31] X 7 X 7 7

9 Hyeok Jun Choi [30] X X X X X
10 MTCW X X X X X

Table 4. Qualitative comparison of different approaches

6.2 Quantitative Comparison

To evaluate MTCW, we utilized the same evaluation framework proposed by Aiello
et al. [31]. They have extracted tweets about three major real-world events that
occurred in 2012, which includes the FA Cup Final (FA), Super Tuesday (ST), and
US Elections (US). Since they are not allowed to publicly distribute the original
tweets, the distributions only contain the tweet IDs and the ground truth topics
which have been organized in timeslots as explained in [1]. Indeed, Aiello et al.
generated a ground truth for the dataset consisting of a manual review of published
media reports about the event. This ground truth includes 13 topics for FA, 22 topics
for ST, and 64 topics for US datasets [31].

The “FA Cup” dataset contains tweets posted during the final match of the
Football Association Challenge Cup held on May 5, 2012. The ground truth for
the FA Cup dataset comprises 13 topics, including kick off, goals, half-time, fouls,
bookings, and the end of the match.

The “Super Tuesday” dataset consists of tweets posted during the US primary
elections, which were held on the first Tuesday of March 2012 in ten US states. The
ground truth comprises 22 topics, which represent the key moments of the elections
and projections of the voting results in different states.
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The “US Election” dataset contains tweets posted during the United States
presidential election of 2012, which was held on November 6, 2012. The ground truth
consists of 64 topics. The topics were related to the outcomes of the presidential
election, derived from mainstream media.

Totally, we extracted about 200k tweets for FA, 500 k tweets for ST, and 1 100 k
tweets for the US. It should be mentioned that some tweets were not downloaded
as they are not available anymore. Sequiera and Lin [44] performed experiments
on the long term effect of tweet removal from Tweets2013 corpus. They observed
that the deletions would less likely have an impact on the ranking of systems. The
details of the three datasets are given in Table 5.

Dataset Temporal Coverage No. of Tweets Total Topics

FA Cup 6 HOURS 124 524 13

Super Tuesday 24 HOURS 540 241 22

US Election 36 HOURS 2 335 105 64

Table 5. Datasets details

We have compared the precision and recall of MTCW with some well-known
methods based on the above datasets in Table 6. The baselines selected for eval-
uation include the state-of-the-art event detection systems and cover a wide range of
techniques in this domain, such as BNgram [31], Frequent Pattern Mining
(FPM) [31], Soft Frequent Pattern Mining (SFPM) [27], Graph-based feature-pivot
(GFeat-p) [31], and a probabilistic topic model-based LDA [45]. Moreover, we have
compared the performance of MTCW with a recently published method, HUPM [30].
As shown in Table 6, our approach proposes competitive or even better results with
state-of-the-art event detection approaches.

The experimental results for the FA dataset show that both precision and recall
are the highest for MTCW. Similarly, for the ST dataset, MTCW precision is the
best one after FPM, and MTCW recall is very close to SFPM, which offers the
best recall among others. The evaluation results from the US dataset indicates
that MTCW precision is the highest, and its recall is very competitive among the
compared methods.

Method
FA Cup Super Tuesday US Elections

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score
BNgram 0.2989 0.5778 0.394 0.6286 0.6471 0.6377 0.4050 0.5632 0.4712
FPM 0.7500 0.4286 05455 1.0000 0.4091 05807 0.0000 0.0000 0
SFPM 0.2336 0.6579 0.3448 0.4717 0.8929 0.6173 0.2412 0.6953 0.3582
GFeat-p 0.0000 0.0000 0 0.3750 0.6000 0.4615 0.3750 0.4839 0.4225
LDA 0.1637 0.6829 0.2641 0.0000 0.0000 0 0.1654 0.6286 0.2619
HUPM 0.3200 0.6000 0.4174 0.4860 0.7080 0.5764 0.3520 0.5650 0.4338
MTCW 0.8500 0.7250 0.7825 0.7750 0.8234 0.7985 0.4650 0.6125 0.5287

Table 6. Quantitative comparison of different approaches
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7 CONCLUSIONS

In this paper, we proposed a new approach for event detection in Twitter using Multi
Timing Chained Windows (MTCW). In our method, the time and space complexity
are constant for any number of tweets, and the approach is also independent of user
language. We examined MTCW on Iran-related tweets over a period of 27 days.
More than 1.5 million tweets related to Iran were collected in this period. Using the
Google News service, news about Iran were categorized within the period of tweets
collection, which were used to evaluate the results. The results indicate the high
precision of the proposed method. Moreover, common datasets such as FA Cup
Final, Super Tuesday, and US Elections have been employed to compare MTCW
with baselines and recent approaches.

As future works, it is suggested to collect the tweets based on their location
instead of their subject to improve the effectiveness of the results, but we should
be aware of the complexity of this dataset. In addition, the TF-IDF approach can
be used instead of frequency to create signals. Also, by increasing the number of
windows, a closer examination of the precision of this method will become possible.
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[8] Petrović, S.—Osborne, M.—McCreadie, R.—Macdonald, C.—Ounis, I.—
Shrimpton, L.: Can Twitter Replace Newswire for Breaking News? Proceedings of

https://www.omnicoreagency.com/twitter-statistics
https://www.omnicoreagency.com/twitter-statistics
https://about.twitter.com/company
https://about.twitter.com/company
https://doi.org/10.1016/j.techfore.2013.04.013
https://doi.org/10.1007/978-3-319-03176-7_31
https://doi.org/10.1016/j.dss.2014.02.003
https://doi.org/10.1016/j.compeleceng.2016.06.012


1356 M.M. Mojiri, R. Ravanmehr

the Seventh International AAAI Conference on Weblogs and Social Media (ICWSM-
13), Boston, MA, USA, 2013.

[9] Osborne, M.—Dredze, M.: Facebook, Twitter and Google Plus for Breaking
News: Is There a Winner? Proceedings of 8th International Conference on Weblogs
and Social Media (ICWSM 2014), 2014, pp. 611–614.

[10] Allan, J.—Lavrenko, A. V.—Jin, H.: First Story Detection in TDT Is Hard.
Proceedings of the Ninth International Conference on Information and Knowledge
Management (CIKM 2000), 2000, pp. 374–381, doi: 10.1145/354756.354843.

[11] Hasan, M.—Orgun, M. A.—Schwitter, R.: A Survey on Real-Time Event De-
tection from the Twitter Data Stream. Journal of Information Science, Vol. 44, 2018,
No. 4, pp. 443–463, doi: 10.1177/0165551517698564.

[12] Allan, J.: Topic Detection and Tracking: Event-Based Information Organization.
Kluwer Academic Publishers, 2002, doi: 10.1007/978-1-4615-0933-2.

[13] Lau, J. H.—Collier, N.—Baldwin, T.: On-Line Trend Analysis with Topic Mod-
els: #twitter Trends Detection Topic Model Online. International Conference on
Computational Linguistics (COLING 2012), Vol. 2, 2012, pp. 1519–1534.

[14] Rafea, A.—GabAllah, N. A.: Topic Detection Approaches in Identifying Top-
ics and Events from Arabic Corpora. Procedia Computer Science, Vol. 142, 2018,
pp. 270–277, doi: 10.1016/j.procs.2018.10.492.

[15] Madani, A.—Boussaid, O.—Zegour, D. E.: Real-Time Trending Topics Detec-
tion and Description from Twitter Content. Social Network Analysis and Mining,
Vol. 5, 2015, Art. No. 59, doi: 10.1007/s13278-015-0298-5.

[16] Gaglio, S.—Lo Re, G.—Morana, M.: A Framework for Real-Time Twitter
Data Analysis. Computer Communications, Vol. 73, 2016, Part B, pp. 236–242, doi:
10.1016/j.comcom.2015.09.021.

[17] Comito, C.—Forestiero, A.—Pizzuti, C.: Bursty Event Detection in Twitter
Streams. ACM Transactions on Knowledge Discovery from Data, Vol. 13, 2019, No. 4,
Art. No. 44, 28 pp., doi: 10.1145/3332185.

[18] Becker, H.—Naaman, M.—Gravano, L.: Beyond Trending Topics: Real-World
Event Identification on Twitter. Proceedings of the Fifth International AAAI Con-
ference on Weblogs and Social Media (ICWSM), 2011.

[19] Mathioudakis, M.—Koudas, N.: TwitterMonitor: Trend Detection over the
Twitter Stream. Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’10), 2010, pp. 1155–1158, doi:
10.1145/1807167.1807306.

[20] Benhardus, J.—Kalita, J.: Streaming Trend Detection in Twitter. International
Journal of Web Based Communities (IJWBC), Vol. 9, 2013, No. 1, pp. 122–139, doi:
10.1504/ijwbc.2013.051298.

[21] Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters,
Vol. 27, 2006, No. 8, pp. 861–874, doi: 10.1016/j.patrec.2005.10.010.

[22] Atefeh, F.—Khreich, W.: A Survey of Techniques for Event Detection in
Twitter. Computational Intelligence, Vol. 31, 2015, No. 1, pp. 132–164, doi:
10.1111/coin.12017.

https://doi.org/10.1145/354756.354843
https://doi.org/10.1177/0165551517698564
https://doi.org/10.1007/978-1-4615-0933-2
https://doi.org/10.1016/j.procs.2018.10.492
https://doi.org/10.1007/s13278-015-0298-5
https://doi.org/10.1016/j.comcom.2015.09.021
https://doi.org/10.1145/3332185
https://doi.org/10.1145/1807167.1807306
https://doi.org/10.1504/ijwbc.2013.051298
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1111/coin.12017


Event Detection in Twitter Using Multi Timing Chained Windows 1357

[23] Guzman, J.—Poblete, B.: On-Line Relevant Anomaly Detection in the Twitter
Stream: An Efficient Bursty Keyword Detection Model. Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description (ODD ’13), 2013, pp. 31–
39, doi: 10.1145/2500853.2500860.

[24] Zhang, C.—Lei, D.—Yuan, Q.—Zhuang, H.—Kaplan, L.—Wang, S.—
Han, J.: GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged
Tweet Streams. ACM Transactions on Intelligent Systems and Technology, Vol. 9,
2018, No. 3, Art. No. 34, 24 pp., doi: 10.1145/3066166.

[25] Zhang, C.—Zhou, G.—Yuan, Q.—Zhuang, H.—Zheng, Y.—Kaplan, L.—
Wang, S.—Han, J.: GeoBurst: Real-Time Local Event Detection in Geo-Tagged
Tweet Streams. Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’16), 2016, pp. 513–522,
doi: 10.1145/2911451.2911519.

[26] Bifet, A.—Holmes, G.—Pfahringer, B.: MOA-TweetReader: Real-Time Anal-
ysis in Twitter Streaming Data. In: Elomaa, T., Hollmén, J., Mannila, H. (Eds.): Dis-
covery Science (DS 2011). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 6926, 2011, pp. 46–60, doi: 10.1007/978-3-642-24477-3 7.

[27] Petkos, G.—Papadopoulos, S.—Aiello, L.—Skraba, R.—Kompatsia-
ris, Y.: A Soft Frequent Pattern Mining Approach for Textual Topic Detection.
Proceedings of the 4th International Conference on Web Intelligence, Mining and
Semantics (WIMS ’14), 2014, Art. No. 25, 10 pp., doi: 10.1145/2611040.2611068.

[28] Gaglio, S.—Lo Re, G.—Morana, M.: Real-Time Detection of Twitter Social
Events from the User’s Perspective. 2015 IEEE International Conference on Commu-
nications (ICC), 2015, pp. 1–6, doi: 10.1109/icc.2015.7248487.

[29] Huang, J.—Peng, M.—Wang, H.: Topic Detection from Large Scale of Microblog
Stream with High Utility Pattern Clustering. Proceedings of the 8th Workshop on
Ph.D. Workshop in Information and Knowledge Management, 2015, pp. 3–10, doi:
10.1145/2809890.2809894.

[30] Choi, H.-J.—Park, C. H.: Emerging Topic Detection in Twitter Stream Based
on High Utility Pattern Mining. Expert Systems with Applications, Vol. 115, 2019,
pp. 27–36, doi: 10.1016/j.eswa.2018.07.051.

[31] Aiello, L. M.—Petkos, G.—Martin, C.—Corney, D.—Papadopoulos, S.—
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