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Abstract. In recent years, the task of human pose estimation has become increas-
ingly important, due to the large scale of usage, including VR applications, as well
as higher-level tasks, such as human behavior understanding. In this paper, we
introduce a novel two-stage deep learning approach named Segmentation-Guided
Pose Estimation (SGPE). The pipeline is based on two neural networks working in
a sequential fashion, while both models effectively process unorganized point clouds
on the input. First, the segmentation network performs a pointwise classification
into the corresponding body regions. In the next step, the point cloud with the
per-point region assignment, forming the fourth input channel, is passed to the re-
gression network. This way, both local and global features of the point cloud are
preserved, helping the model fully maintain the body pose structure. Our strat-
egy achieves competitive results on all of the examined benchmark datasets, and
outperforms state-of-the-art methods.
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1 INTRODUCTION

One of many fields where the neural networks are applicable is the human motion
analysis. Some of the most frequent motion tasks include skeleton tracking, human
motion prediction and pose estimation. The motion tasks using either data-based or
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physics-based methods still remain a challenge these days. The data-driven methods
rely mostly on motion capture systems, while the physics-based methods depend
on optimization to predict motion. The task of human pose estimation attracts
a lot of attention among deep learning researchers, mainly because of its frequent
usage in virtual and augmented reality, ergonomic body posture analysis, action
recognition, surveillance, human-robot interaction, trajectory prediction or motion-
based human identification. Although a lot has been achieved in the 3D human
pose estimation task, there are still many challenges nowadays, which are not easy
to overcome.

Analyzing previous human pose estimation methods based on deep learning, the
pipeline is usually formed by passing a single 2D image to the network, which directly
regresses the 3D skeletal joint coordinates. Single-person pose estimation forms
a basis for a number of related tasks, such as multi-person pose estimation [3] [18, 28],
pose tracking [38, 40] or video pose estimation [24]. Most of the research is currently
focused on estimating the pose from RGB data [2, [I8, 25} 28, 33], mainly due to easily
obtainable data which can be captured using a conventional RGB camera, without
requiring a special hardware setup for recording. On the other hand, methods
processing depth data on the input proved to be beneficial in terms of accuracy, by
providing the additional spatial information.

Since most of the research is currently focused on estimating the pose from
RGB data [5, [I7, 018, 20, 23], 28], one of the most critical challenges of pose esti-
mation from 3D input is data availability. To successfully train a neural network
of reasonable size, a large and well labeled dataset is crucial. Currently, there is
a very limited set of publicly available 3D human pose estimation databases. More-
over, even among the available datasets, it is hard to find one that is both large
enough in its scale, and accurate enough to avoid overfitting of the neural model.
There are several large action recognition datasets with motion capture ground
truth, but since providing the exact skeleton joint locations is not their primal
purpose, the ground truth is often not accurate enough for the task of pose estima-
tion. Due to the lack of the accessible depth data, many researchers have recently
used their own recorded depth datasets to evaluate the results of their proposed
method. However, this leads to the fact, that it is difficult to objectively compare
the particular methods, because the recorded databases are often not published. It
is important to mention that recording of a quality depth dataset is not a trivial
task, mainly since the expensive motion capture system is usually required to ob-
tain accurate ground truth labels, which also limits us to indoor scenes. The usual
workaround is to use the Kinect camera for recording, which can also directly ex-
tract the 3D skeleton joint coordinates, even though still working well only in indoor
scenes.

Another issue concerning pose estimation from 3D data is the actual type of 3D
data that is passed as input to the neural network. The most frequent option is to
use depth maps [14} [15], 30}, 39], thus encoding the third dimension into the 2D image.
The depth maps are the very dense representation of a human pose, which results in
expensive computations and lowering the time efficiency, while also processing the
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seemingly redundant data. Furthermore, since depth maps are usually treated by
neural networks as 2D images, there arises the same problem as in estimating 3D pose
from RGB data, i.e. the need for highly non-linear operations. Additionally, because
of the projection of an object in 3D space onto a 2D image plane, the actual shape
of the human pose can be distorted in the depth map, which means the network
has to perform the perspective distortion-invariant estimation [21]. In an attempt
to overcome these drawbacks, voxelized grids have been used in several solutions [9,
13, 21] to provide sparser 3D data representation. Despite that, voxels have their
shortcomings, too. First of all, voxels require 3D convolution operations, which
are rather demanding in terms of memory, time, and computing power. Moreover,
the conversion of point clouds or depth maps into the voxelized grids can be time-
consuming itself.

Sparser 3D representations of the human pose, like voxels or point clouds, are
usually employed to perform the classification, segmentation, or related tasks. They
are rarely used in pose estimation, mainly because the common 2D convolutions
cannot be used on this type of data in the same way as on RGB or depth im-
ages. Treating point clouds as unorganized sets of points, this type of data can
be processed inside the network either by extracting features for each point sepa-
rately, which yields exclusively local information, or by aggregating the features of
all points, which gives us global information about the whole point cloud. Alterna-
tively, the data can be clustered in particular point sets, which are treated as local
regions [37]. While in the classification tasks, the global features are those needed
to predict the correct class scores, both local and global information is essential in
pose estimation task. Hence, the main issue with performing local context-driven
tasks on point clouds is often related to poor propagation of local features inside
the network.

Our work solves the task of single-person human pose estimation from depth
data using a novel two-stage deep learning method called Segmentation-Guided
Pose Estimation (SGPE). To avoid the projection of 3D human pose to 2D image
space, we employ unorganized and unordered point clouds on the input to compute
3D skeletal joint coordinates as a result. We enhance the local and global feature
propagation by performing an auxiliary semantic segmentation into the body re-
gions. First, a corresponding body region is assigned to each point of the point
cloud in a segmentation stage. To enable the network to fully perceive the data in
its local as well as global context, we also make use of the intermediate concatena-
tion of pointwise and aggregated features inside the model. Second, the input point
cloud containing the point coordinates is concatenated with the per-point body re-
gion labels, adding the fourth channel to the data. Afterwards, the four-channel
point clouds are fed into the regression model, which is where the resulting joint
coordinates are estimated as an output. The main contributions of this work can
be summarized as follows.

e We cope with the excessive number of network parameters and computational
cost by processing depth data in a form of sparse unordered point clouds, instead
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of the commonly used depth maps. This way, we also avoid the need for the
model to perform a distortion-invariant estimation.

e Our two-stage pipeline deals with the issues related to poor propagation of
local context through the networks, by concatenation of features extracted in
intermediate layers before and after pooling aggregation, and by incorporating
residual connections in-between the layers. Thus, we improve the gradient flow
inside the models. Furthermore, to increase the accuracy of estimated joint
coordinates, we augment the initial 3D point clouds with a per-point body region
segmentation predicted in the first stage of the pipeline.

e To evaluate our approach, we conduct experiments on a number of depth-based
human pose benchmark datasets, including both synthetic and real data. Our
strategy achieves competitive results on all of the examined datasets, and out-
performs state-of-the-art methods.

2 RELATED WORK

Nowadays, neural networks are widely used in the field of image processing, pat-
tern recognition, human movement analysis and many more. There are numerous
types of tasks concerning human movement analysis, where the neural networks
proved to be beneficial, e.g. action recognition [36], action classification, body-
movement-based human identification, pose estimation etc. Focusing on the pose
estimation task, there have been many different methods and approaches presented
in recent years. Based on the type of the input data, the studies can be divided
into approaches inferring from two-dimensional data (RGB images) [Bl 17, 18] 20,
23, 28, 33, 42], and three-dimensional data (depth maps, point clouds, voxelized
grids etc.) [II, B, [7, 8, 1T, 15, 21, BT, B2, B9, 41]. The two-dimensional approaches
are far more usable and easily accessible in real-time applications, being able to
run without any special devices, using only the RGB camera. On the other hand,
the regression of 3D joint positions from 2D input data requires highly non-linear
operations, which can lead to many difficulties in the learning procedure. The
three-dimensional approaches provide the additional depth information, which can
significantly simplify the task for the network, and thus improve the estimation
accuracy.

2.1 Human Pose Estimation from RGB Data

We can divide studies working with the RGB input data in two main groups based
on whether they directly regress the 3D pose coordinates [I6, 34] or use the 2D pose
to infer the 3D pose [ [I'7, 19, 20, 28]. Among those employing the 2D pose, many
approaches make use of lifting the estimated 2D pose to 3D [4, [I0, 16, 22] by direct
regression, database matching etc.

One of the first real-time approaches was proposed by Mehta et al. [20]. They
introduced a system to obtain real-time full global 3D skeletal pose, combining
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a pose regressor based on convolutional neural network with kinematic skeleton
fitting. They parametrized each 3D skeletal joint by a confidence heatmap and
three location maps, one for each axis. However, the stated model was unable to
handle occlusions. Thus, they removed the restrictions in the follow-up work [I8],
where the model is also extended to capture multiple people in the scene by a single
RGB camera. Unlike the previous work, the model outputs full skeletal pose in joint
angles and global body positions of a coherent skeleton in real-time.

2.2 Depth-Based Human Pose Estimation

The depth data used as the input to the neural networks comes in various forms.
Most frequently, the 3D input data is in a form of a depth map (RGB-D image).
Depth maps are actually encoding 3D space into 2D image, where the value at
each pixel position represents the corresponding depth value (third axis coordinate).
Marin-Jimenez et al. [I5] proposed a technique where the final estimated pose is
computed as the weighted sum of the predefined set of prototype poses. The weights
corresponding to the prototypes are directly regressed from input depth maps by
a convolutional neural network. The stated approach is an example of a single-stage
method.

The two-stage methods generally consists of the segmentation stage and the
regression stage. First, the input data is segmented to the corresponding body-parts.
Then, the segmented input data is used to infer 3D joint coordinates. An example
of a two-stage method was proposed by Shafaei and Little [31]. They treat the
problem of 3D pose estimation from depth data through a two-stage pipeline, where
in the first stage the body parts are identified in the input depth maps by a dense
classifier. In the second stage, all camera views are merged, and a set of statistics
concerning a created unified 3D point cloud is collected and passed as features to
a linear regressor to compute 3D body joint locations.

Aside from depth maps, some of the methods make use of the voxelized grids,
made by discretizing a given point cloud in a predefined set of values. However,
voxels require use of three-dimensional convolutions, which makes operations with
them very time-consuming and computationally expensive. V2V PoseNet [21] oper-
ates with this kind of data and regresses joint locations with 3D CNN-autoencoders.
They first use 3D CNN encoder and decoder to estimate per-voxel likelihood of each
skeleton joint from voxelized input. Afterwards, they refine the target object lo-
calization with a 2D CNN which takes a cropped depth map and output an offset
from its reference point to the center of ground truth joint positions. This way, they
obtain an accurate reference point.

2.3 Point Cloud Input Data

As an alternative to depth images or voxels, there are several networks proposed
which work directly with unordered point clouds as input data, yet implement the
convolution operations on the point clouds without using computationally expensive
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3D convolutions. Some of the methods decided to use shared multi-layer percep-
trons and max-pooling layers to obtain the features of a point cloud. Although
they manage to extract global features, since the max-pooling layers are applied
on the whole set of points, it is hard to capture the local context. Qi et al. [26]
proposed a classification and segmentation model called PointNet, where they in-
tend to incorporate the local features by an aggregation of the intermediate out-
puts from the classification network, before and after max-pooling. Afterwards,
they fed the aggregated local and global features into the segmentation network.
Later, Qi et al. [27] introduced PointNet++ model, which has similar key struc-
ture as the previous PointNet, but it improves the model by utilizing a hierar-
chical structure, similar to the one used in image processing convolutional neural
networks. It recursively applies PointNet on a nested partitioning of the input
point cloud, starting from small local patches and gradually extending to bigger
regions.

In another study, Wu et al. [37] presented a new convolution operation called
PointConv, which can be applied on unordered and irregular point clouds. They
treat convolution kernels as nonlinear weight and density functions of the local coor-
dinates of 3D points. The weight functions are learned with multi-layer perceptron
networks and density functions through kernel density estimation. Such learned ker-
nels can be used for translation-invariant and permutation-invariant convolutions on
any 3D point set.

It is worth mentioning, that all of the stated methods processing unordered
point clouds perform object classification or segmentation task, which is not an aim
of this work. Concerning pose estimation task, Ali [I] introduced a novel one-
stage approach in his thesis, called Point-Based Pose Estimation (PBPE), using
point clouds directly as input data to the model which outputs 3D skeleton joint
coordinates. He concludes, that since point clouds are able to provide sparser rep-
resentation of the human body, compared to depth maps, the operations on them
would be much easier, and thus, the computational complexity would be reduced.
The inspiration for the model was in the PointNet architecture. Besides the pro-
posed PBPE model, the contribution of his work also consists of the refinement of
several two-stage methods by using an automatic annotation mechanism for labeling
body regions in real data. Next, the study presents the benefits of fusion of the real
training data and more complex synthetic training data. The poses in the synthetic
dataset are much more varied, so by adding certain amount of the synthetic data to
the real dataset during the training phase, they extend the diversity of the training
set. As a result, the model is able to generalize better. On the other hand, the
synthetic data is also useful for pre-training a model, reducing the computational
cost and time of the real data annotation. Thus, such pre-trained model can be
fine-tuned on a relatively small part of the real dataset, yet achieving reasonable
results.

As a part of our previous research, we re-implemented the method from [IJ,
while slightly modifying the model architecture to improve the final estimations.
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We enhanced the part of the network which extracts local features of the input
point cloud, and reduced the amount of batch normalization in the model.

In this paper, we solve the problem of depth-based human pose estimation
using unordered point clouds as the input data type. However, unlike the pre-
vious approaches processing point clouds, our pipeline works in two subsequent
stages, instead of a direct regression, to effectively merge both local and global
features of the data without losing any contextual information. Thus, the re-
sulting pose coordinates can be regressed from a point cloud enhanced by addi-
tional regional information, helping the network fully maintain the body pose struc-
ture.

3 OVERVIEW

We introduce the Segmentation-Guided Pose Estimation (SGPE) — a two-stage
pipeline which takes a point cloud as an input, and outputs the 3D coordinates
of the estimated skeletal joint positions. Incorporating the idea of handling unor-
ganized and permutation-invariant point clouds, both stages of the pipeline are
based on pseudo-convolutions, which operate in the filter dimension. The first
stage of our pipeline involves a segmentation network, which classifies the points
representing a human pose into the corresponding body regions. In the second
stage, the original input point cloud containing the point coordinates is concate-
nated with the output regions from the segmentation network, thus forming a four-
channel point cloud input. Such produced data, conserving together the local as
well as the global information, is then fed into the second model — the regres-
sion network, where the joint coordinates are finally regressed. The architecture of
both networks, as depicted in Figure [[, makes use of residual connections added
to the shared multi-layer perceptron blocks, to strengthen the feature propaga-
tion.

4 SEGMENTATION-GUIDED POSE ESTIMATION

This section describes our proposed method in detail, providing further information
on the training procedures. Our pipeline takes a point cloud on the input, passes
it through two subsequent neural networks, and outputs the 3D coordinates of the
skeletal joints, defining the estimated human pose. Prior to sending the input point
cloud to the first neural network, the background scene is segmented out — the
ground floor and the surrounding walls are removed using RANSAC plane fitting
algorithm, and the biggest cluster of the point cloud is extracted, being considered
the captured human subject. To unify the dimension of the model input, the point
cloud is subsampled to a fixed number of points using the farthest point sampling.
We set the hyperparameter determining the number of points in each point cloud
to p = 2048, yielding a fair density of the input data. Both the ground truth
skeleton coordinates, as well as the input point clouds, are normalized to the range
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Figure 1. The overview of the proposed Segmentation-Guided Pose Estimation pipeline:
First, the point clouds are segmented into body regions in the segmentation network (top),
then the input point clouds are concatenated with the predicted per-point body region
assignment as a fourth channel, and fed into the regression network (bottom)

[—1,1] along each axis, using minimum and maximum values of the whole training
set.

4.1 Shared Multi-Layer Perceptron Module

The shared multi-layer perceptron (MLP), introduced in [26], is a stack of con-
volutional layers with kernel size 1 x 1. Unlike the standard convolutional lay-
ers, they do not affect the dimension of the input, but instead expand (or shrink)
the dimension of the filters. By operating in the filter space, the 1 x 1 convolu-
tions allow us to process unorganized and permutation-invariant sets of points. The
points passed to the shared MLP module are treated as 2D input with dimensions
1x3.

4.2 Body Region Segmentation Network

As a part of our pipeline, we propose a segmentation network with an architecture
similar to the one of the regression model, instead of making use of one of the existing
segmentation methods (e.g. U-net [29] or PointNet [26]). Instead of using an ex-
hausting segmentation architecture, which has high memory and time requirements,
we decided to utilize the same main modules in the segmentation and regression
model. This is partly because segmentation is not the main task of this work, and is
strictly in role of an auxiliary subtask, therefore the absolute segmentation accuracy
is not crucial in our study. Also, we believe preserving a similar network-specific rep-
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resentation of the body pose in both models works for the benefit of more accurate
pose estimation.

In the first stage, the pre-processed point clouds are fed into the segmenta-
tion network, which performs a pointwise classification into the corresponding body
regions. The architecture of the model, as shown in Figure [I| (top), is based on
the shared multi-layer perceptron modules. To obtain global features, the output
vector of the first shared MLP is aggregated in a pooling layer across all points
of the point cloud. Since the local information is essential in the task of seman-
tic segmentation as well, we want to avoid losing the local context after the max
pooling aggregation. Therefore, the local features extracted from the intermedi-
ate layers of the shared MLP are concatenated with the aggregated global features
and sent off to the second shared MLP module. After the second shared MLP,
the model outputs the predicted per-point classification probabilities for each body
region.

In order to help the gradient flow, and enhance the feature propagation, we
improved the shared MLP modules in our approach by adding residual connections
in-between the convolutional layers. Referring to the figure, the numbers in the
brackets near the shared MLP blocks describe the number of filters in the respective
1 x 1 convolutional layers.

Since the real data does not come with body-parts segmentation, we perform
an automatic annotation of the point clouds to acquire ground truth body region
classification of the data. The number of regions matches the number of joints in
skeleton, each region being associated with the particular joint. Every single point of
the point cloud is then assigned to the region corresponding to the nearest skeleton
node in terms of Euclidean distance.

4.3 Regression Network

The second stage of our pipeline is based on the regression network. To incorporate
the idea of retaining both local and global context of the input point clouds, the
initial 3D point cloud is concatenated with the predicted pointwise region assign-
ment after the body region segmentation, forming a four-channel input point cloud,
which is passed to the regression model (as indicated in Figure , bottom). Again,
the network incorporates two shared MLP blocks. The first one contains three con-
volutional layers with 1 x 1 kernels, followed by one residual connection adding up
the outputs of the three preceding layers. To control the number of parameters
of the network, the second shared MLP includes two layers and no additional skip
connections. To avoid having majority of the model parameters concentrated in the
first fully-connected layer, the global average pooling is utilized instead of a simple
flattening layer to spatially average across all points right before the fully-connected
layers. Finally, the model estimates the 3D skeletal joint coordinates of the captured
human subject as the output.
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5 RESULTS
5.1 Benchmark Datasets

ITOP. The ITOP dataset [§] contains 40 K training and 10K testing depth frames
recorded from two viewpoints (front-view and top-view). The dataset captures
20 different subjects, each performing 15 sequences. The ground truth skeleton
is defined by 3D coordinates of 15 skeletal joints.

UBC3V. The UBC3V [31] is a synthetically made human pose dataset. It contains
around 6 M synthetic depth frames structured in three parts according to the
complexity of the human postures — easy, medium and hard pose, each with its
train, validation and test split. The pose in each frame is represented by the
position of 18 skeletal joints. It captures a total of 16 characters and each frame
is observed from three different viewpoints.

MHAD. The MHAD dataset [35] consists of 11 actions performed by 7 male and
5 female subjects. Each subject performed each of the actions 5 times, which
yields about 660 action sequences corresponding to about 82 minutes of total
recording time. The total number of depth frames is over 250 K. The skeleton
structure in this dataset contains 35 joints.

CMU Panoptic dataset. The CMU Panoptic [12] is a large scale multi-modal
human pose dataset containing video recordings from 480 VGA cameras and
more than 30 HD cameras, RGB and depth data from 10 Kinect v2 sensors,
and 3D body poses. The full dataset yields around 6 hours of recordings. The
synchronization of the devices is hardware-based, although, as the authors state
in the database description, there is no way to perfectly synchronize multiple
Kinects. However, most of the data is aligned accurately by hardware mod-
ifications for time-stamping. The skeleton structure consists of 15 joint loca-
tions. The database captures multiple actors of different gender, age and body
shape.

5.2 Evaluation Metrics

In the process of evaluation, we used mean per joint position error (MPJPE) and
mean average precision (mAP) as metrics, following [T}, 8, [T5], BT]. Mean average pre-
cision is defined as percentage of all skeletal joints predicted under 10 cm threshold
from ground truth.

5.3 Implementation Details

We conduct experiments on NVIDIA GTX 1070. Both networks are trained using
the Adam optimizer with the initial learning rate equal to 1073, and an exponential
decay rate of d = 0.2 applied at the end of each epoch. All weights are initial-
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ized with Xavier normal initializer. The batch size is fixed to b = 32 for both
models.

Regarding segmentation network, the categorical cross-entropy is employed as
a loss function, to measure the accuracy of the body part classification. In the
case of the regression network, mean absolute error between the predicted locations
and the ground truth labels of all skeletal joints is used to determine the model
loss. We have also evaluated the performance of the regression network using hu-
ber loss with a regularization term, yielding approximately the same estimation
accuracy.

For the regularization purposes, a single dropout layer with rate of 0.2 is in-
cluded before the output layer of the segmentation network (as shown in Fig-

ure [[|(top)).
5.4 Experiments

For the purpose of evaluation, we used several benchmark datasets, including the
challenging ITOP front-view [8], UBC3V hard-pose [31], MHAD [35] and a subset of
CMU Panoptic dataset [I2]. On a test set of the ITOP front-view dataset, the mean
per joint position error our method achieves is 6.40 cm (as shown in Figure , left).
Using a 10 cm threshold, the mean average precision is 85.57 %, which is comparable
to the state-of-the-art results.

Regarding the CMU dataset, we evaluated our method specifically on the Range
of motion section of the dataset, yielding approximately 141K frames, as it was
the only section capturing a single person, having ground truth labels available
at the time of this research. Since prior to our work, there was no protocol es-
tablished for the utilized section of the dataset, and considering the amount of
data in the selected section of the dataset, we marked 20 % of the data obtained
by random sampling as the test set. There are also no existing results to com-
pare to, concerning the single person pose estimation on this dataset (up to our
knowledge). The mean per joint position error using our proposed approach is
2.11cm (as shown in Figure [f right), and the mean average precision at 10cm is
98.39 %. Figure [2] illustrates the qualitative results on samples from CMU Panoptic
dataset.

Similarly, the MHAD dataset does not originally come with a train and test
split, thus we carried out experiments using two different protocols:

1. choosing the test set as randomly sampled 25 % of the dataset,

2. leave-one-subject-out cross validation.

In case of MHAD data, the original skeleton is rather complex, containing as many
as 35 skeleton nodes. We have slightly modified the original skeleton structure by
removing several redundant joints — one pair repeated at fingertips, two additional
pairs present at toe tips. This way, we restricted the skeleton to the resulting
29 joints (as shown in Figure [3), in the same way as in [I]. However, we present
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Figure 2. Qualitative results of our method on CMU Panoptic dataset [12]. The ground
truth skeletons (green) vs. our estimation (magenta). Best viewed in color.

results of our approach also on the original full skeleton, to be able to compare our
strategy to the existing methods (as shown in Table . Since in the case of the
modified skeleton we have only removed the redundant skeletal nodes, we have not
reduced the complexity of the skeleton in a significant manner, but rather increased
the focus on more relevant joints in the skeleton. As it can be seen in Table [I]
the mean per joint position error has visibly decreased after omitting the redundant
skeletal joints.

Figure 3. The original skeleton structure used in MHAD dataset (left) vs. the modified
skeleton (right)

Following the first protocol, i.e. establishing the test set as 25 % of the data by
random sampling, our method achieves the mean per joint position error as low as
1.39 cm for the multi-view approach, and 1.59 cm for the single-view approach (as
shown in Figure @, left), when using the modified skeleton structure. The achieved
mean average precision at 10cm is as high as 99.80 % and 99.21 % for the multi-
view and single-view approach, respectively (Figure E[) We set a novel state-of-
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datasets

the-art for MHAD dataset, lowering the mean per joint position error by almost
65 % following the multi-view approach, and by approximately 50 % following the

single-view approach.

Table [2] summarizes the mean per joint position error on UBC3V hard-pose
dataset for both single-view and multi-view approach. Using our approach, the
achieved mean per joint position error is 3.36 cm in the case of single-view data,
and 3.53 cm with multi-view data (as shown in Figure [ right). The mean aver-
age precision at 10cm is 95.63% and 95.71% for the single-view and multi-view
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Method Eval. Protocol MPJPE [cm] MPJPE [cm]

Single-View Multi-View
Shafei et. al [31] LOSO - 5.01
PBPE [I] random 25 % 7.46 3.92
PBPE [1] (29 joints) random 25 % 3.20 -
Ours - FCPE LOSO 3.97 3.36
Ours — FCPE (29 joints) LOSO 3.23 2.97
Ours — FCPE random 25 % 1.85 1.62
Ours — FCPE (29 joints) random 25 % 1.59 1.39

Table 1. The mean per joint position error (MPJPE) of our approach on MHAD dataset
evaluated following the leave-one-subject-out (LOSO) cross validation strategy, as well as
randomly sampled test set, compared to state-of-the-art methods

09 r
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0123 456 7 8 91011121314
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Threshold (cm)
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Figure 6. Mean average precision at 10cm threshold on MHAD dataset for multi-view
and single-view approaches

approach respectively. The claimed results of the Deep Depth Pose (DDP) model
proposed in [I5] are listed in italics, due to a number of unsuccessful attemps to
reproduce them by various researchers. The observed results on the reproduced
DDP model, implemented following the same training procedures as the original
implementation, are indicated in the table as well. Sample qualitative results on
UBC3V hard-pose test set are shown in Figure [7] predicted on merged multi-view
point clouds.

We also present evaluation of the first stage of our pipeline. The accuracy of
the semantic segmentation into the corresponding body regions over training epochs
for all examined datasets is depicted in Figure 8l Our method achieves up to 95%
segmentation accuracy on CMU Panoptic dataset.
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Method MPJPE (cm) MPJPE (cm)

Single-View Multi-View
DDP (observed) 19.23 -
PBPE [1] 7.59 5.59
Shafei et. al [31] 5.64
DDP (claimed) [15] 3.15 2.36
Ours - FCPE 3.57 3.53

Table 2. The mean per joint position error (MPJPE) of the proposed method on the test
set of the UBC3V hard-pose dataset compared to state-of-the-art methods

Figure 7. Qualitative results of our approach on test set of UBC hard-pose dataset [31].
The ground truth skeletons (green) vs. our estimation (magenta). Best viewed in color.

6 LIMITATIONS

We consider an important part of this study to point out the most relevant limi-
tations we encountered during the experiments. Regarding the depth-based human
pose estimation, we see the biggest shortage in the range and accuracy of the avail-
able datasets. The suitable public datasets, containing both depth data of a captured
human subject and the ground truth skeletal joint coordinates, are either too small
to be used as training data for a neural network, or the accuracy of the ground truth
labels is not sufficient. Moreover, even in large datasets, the data is often incom-
plete for certain sections, so the valid subset of the dataset ends up of a too small
range after all. The limited accuracy of the ground truth poses is usually caused
by poor synchronization of a depth sensor and a motion capture system. The most
commonly used depth sensors do not have a stable frame rate, which results in
time delays and misalignment between frames, and makes the precise synchroniza-
tion practically impossible. In some of the datasets, this issue is partly fixed by
time-stamping technique, refining the frame alignment, and filtering out the mis-
matches. It is even harder considering the multi-view approach, when the multiple
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Figure 8. Accuracy of the body-parts segmentation performed in the first stage of our
pipeline on all examined datasets

depth sensors need to be synchronized mutually as well as with the motion capture
system.

7 CONCLUSIONS

We proposed a novel method for the accurate single-person depth-based human pose
estimation called Segmentation-Guided Pose Estimation (SGPE). Main contribution
of our work is the elimination of drawbacks related to the projection of 3D space
to a 2D image, when estimating pose from depth maps, by introducing a concept
of unordered point clouds as a permutation-invariant input to a neural network.
To allow the network to maintain both local and global contextual information, we
employ intermediate concatenation of extracted pointwise and aggregated features
inside the model. Additionally, we perform semantic segmentation of the input
point cloud into the corresponding body regions, and utilize the per-point region
assignment as an extend of the input point cloud before the final regression. We
believe engaging sparse point clouds as an input to the neural network instead of the
commonly used depth maps allows us to provide a representation of the human body
that is easier to be perceived by the network, while lowering memory requirements
and computational cost at the same time. Moreover, to help preserve gradient
flow throughout the entire depth of the network, we improved the shared multi-
layer perceptron modules by additional skip-connections. Our strategy achieves
competitive results on a number of benchmark datasets, and outperforms state-of-
the-art approaches.
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