
Computing and Informatics, Vol. 40, 2021, 446–468, doi: 10.31577/cai 2021 2 446

METHOD FOR REPAIRING PROCESS MODELS
WITH SELECTION STRUCTURES
BASED ON TOKEN REPLAY

Erjing Bai, Na Su

Qingdao Huanghai University
Qingdao 266427, China

Yu Liang

College of Electronics and Information Engineering
Tongji University
Shanghai 201804, China

Liang Qi∗, Yuyue Du

College of Computer Science and Engineering
Shandong University of Science and Technology
Qingdao 266590, China
e-mail: 1832678460@qq.com, yydu001@163.com

Abstract. Enterprise information systems (EIS) play an important role in busi-
ness process management. Process mining techniques that can mine a large num-
ber of event logs generated in EIS become a very hot topic. There always exist
some deviations between a process model of EIS and event logs. Therefore, a pro-
cess model needs to be repaired. For the process model with selection structures,
the mining accuracy of the existing methods is reduced because of the additional
self-loops and invisible transitions. In this paper, a method for repairing Logical-
Petri-nets-based process models with selection structures is proposed. According
to the relationship between the input and output places of a sub-model, the de-

∗ Corresponding author

https://doi.org/10.31577/cai_2021_2_446

Method for Repairing Process Models 447

viation position is determined by a token replay method. Then, some algorithms
are designed to repair the process models based on logical Petri nets. Finally,
the effectiveness of the proposed method is illustrated by some experiments, and
the proposed method has relatively high fitness and precision compared with its
peers.

Keywords: Logic Petri net, model repair, token replay, choice structures, process
model

1 INTRODUCTION

Business process management has significantly promoted the development of com-
pany business processes with the help of advanced enterprise information systems
(EIS). Meanwhile, a large number of event logs are generated every day [1]. These
event logs can be mined which in turn improve EIS [2] and further the competitive-
ness of enterprises or organizations. Process mining can extract valuable informa-
tion from the event logs and improve the actual process models [3]. Process mining
techniques mainly include process discovery, conformance checking, and process en-
hancement [1, 2, 3, 4]. For process discovery, a process model can be built by mining
the existing event logs. Conformance checking can find the deviations between a pro-
cess model and the event logs [4]. For process enhancement, a process model can be
expanded and improved by further studying event logs [5]. At present, many pro-
cess discovery algorithms have been proposed by scholars. A reasonable workflow
model with complete logs can be mined based on α algorithm [6], but non-free-
choice structures and invisible transitions cannot be well handled. Some extension
methods of α algorithm are proposed in [7, 8] to deal with the above problems.
A proposed approach based on the genetic algorithm [9, 10] can guarantee a certain
quality standard, but it restricts the accurate discovery of block-structured process
models and has high computational complexity. A repairing method proposed by
Fahland et al. has high fitness [5], but the precision is low because of self-loops and
invisible transitions. A single activity with self-loops is inserted into the original
models based on Goldratt’s and Knapsack’s method [11], but the precision is still
not high.

A process model is described by Petri nets in [12], since Petri nets have the
advantages of rigorous mathematical definitions and powerful graphic display. The
static and dynamic states of business processes can be described in Petri nets. How-
ever, the existing process models cannot completely replay event logs when busi-
ness processes or environments are changed. The repaired can replay most of the
logs without breaking the main structure of the original model [13]. In this paper,
a method for repairing process models with selection structures based on logical Petri
nets is proposed. First, model deviations are determined by calculating missing and
remaining-tokens; then, the process model is repaired according to the deviations.

448 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

The proposed method has higher fitness and precision than Fahland’s and Goldratt’s
methods [5, 11].

The rest of the paper is organized as follows. Section 2 presents some prelimi-
naries and briefly reviews some important concepts. Section 3 presents an approach
to repair models with selection structures based on a token replay method via logi-
cal Petri nets. The results and performance analysis of simulation experiments are
given in Section 4. Section 5 concludes this paper and discusses the future work.

2 PRELIMINARIES

Some basic concepts are introduced in this section including multi-sets [3], tuple [14],
event logs, projection, Petri nets [14], logical Petri nets [15], process trees, and
workflow nets.

Definition 1 (Multi-sets [3]). S is a set. A multi-set Z over S is denoted by Z :
S → N+, N+ represents a set of positive integers. β(S) represents all multi-sets
over S.

Definition 2 (Tuple [14]). A tuple consisting of n elements is denoted by x =
(a1, a2, . . . , an) ∈ S × · · · × S, where S is a set. πi(x) is the ith element of x,
where i ∈ (1, 2, . . . , n).

Definition 3 (Trace and event log [16]). Let A be a set of actives. σ ∈ A∗ is a trace
if 1 ≤ i < j ≤ σ : σ[i] ̸= σ[j], and it is a queue of actives. (&σ) represents the set
of all activities in trace σ. An event log is a finite nonempty multi-set of trace σ,
denoted as L ∈ β(A∗).

For example, given an activity set A = {t1, t2, t3, t4}, σ = ⟨t2t3t1t4⟩ is a trace
and (&σ) = {t2, t3, t1, t4}.

Definition 4 (Projection). Let β be a multi-set over A, Q ⊆ A, and σ ∈ A∗. σ|Q
denotes the projection of σ on Q, and β|Q denotes the projection of β on Q.

For example, if σ = ⟨aabc⟩, Q = {a, c}, and β = [a3, b, c2], then σ|Q = ⟨aac⟩
and β|Q = [a3, c2].

Definition 5 (Petri net). A Petri net is a four-tuple PN = (P, T ;F,M), where P
is a finite place set, T is a finite transition set, and F ⊆ (P ×T)∪ (T ×P) is a finite
arc set, where

1. N = (P, T ;F) is a net;

2. M : P → {0, 1, 2, . . . } is a marking of N ; and

3. The transition firing rules of Petri nets are as follows:

(a) For transition t ∈ T , if ∀p ∈• t : M(p) ≥ 1, then t is enabled at M , denoted
as M [t >.

Method for Repairing Process Models 449

(b) If M [t>, then transition t can fire at M , and it generates a new marking M ′,
denoted as M [t > M ′. For ∀p ∈ P , we have

M ′(P) =

 M(P)− 1, p ∈ •t− t•;
M(P) + 1, p ∈ t• − •t;
M(P), otherwise.

Definition 6 (Pre-set and post-set [15]). Let N = (P, T ;F) be a net. For x ∈
P ∪ T , •x is the pre-set of x if •x = {y|y ∈ P ∪ T ∧ (y, x) ∈ F}. x• is the post-set
of x if x• = {y|y ∈ P ∪ T ∧ (x, y) ∈ F}.

Definition 7 (Workflow net [17]). WFN = (P, T ;F,M, i, o) is a workflow net,
where P , T , F and M can constitute a Petri net; i represents an input place and
o represents an output place, where

1. There is an input place i ∈ P , •i = ϕ and Mi is an initial marking;

2. There is an output place o ∈ P , o• = ϕ, and Mo is a final marking; and

3. x ∈ P ∪ T is always on the path from i to o.

Definition 8 (Logic Petri net). A logic Petri net is a six-tuple denoted by
LPN = (P, T ;F, I, O,M), where

1. P represents a finite set of places;

2. T = TD ∪ TI ∪ TO represents a finite set of transitions, and T ∩ P = ϕ. If
t ∈ TI∩TO, then

•t∩t• = ϕ. TD represents a set of traditional transitions in Petri
nets. TI represents a set of logic input transitions. For ∀t ∈ TI ,

•t is restricted
by a logical input expression fI(t). TO represents a logic output transitions set.
For ∀t ∈ TO, t

• is restricted by a logical output expression fO(t);

3. F = (P × T)(T × P) is a finite set of arcs;

4. I is a mapping from logic input transitions to logic input functions, and for
∀t ∈ TI , I(t) = fI(t);

5. O is a mapping from logic output transitions to logic output functions, and for
∀t ∈ TO, O(t) = fO(t);

6. M : P → {0, 1, 2, . . . } is the marking function; and

7. The transition firing rules are as follows:

(a) For ∀t ∈ TD, the transition firing rules are the same as in Petri net;

(b) For ∀t ∈ TI , if fI(t)|M = •T•, then a logic input transition can be fired,
denoted as M [t > M ′, and for ∀p ∈ •t, M ′(p) = 0; and for ∀p /∈ •t ∪ t•,
M ′(p) = M(p); and for ∀p ∈ t•, M ′(p) = 1; and

(c) For ∀t ∈ TO, if ∀p ∈ •t, M(p) = 1, then a logic output transition can be
fired, and for ∀p ∈ •t, M ′(p) = 0; for ∀p ∈ t• must satisfies fO(t)|M = •T•,
and for ∀p /∈ •t ∪ t• : M ′(p) = M(p).

450 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

For example, a logic Petri net is shown in Figure 1. t1 is an input transition.
I(t1) = p1 ∨ p2 is the logic input function of t1. From firing t1, there are three
situations:

1. p1 contains a token, or

2. p2 contains a token, or

3. both p1 and p2 contain a token.

t3 is an output transition. O(t3) = (p6 ⊗ p7) ∧ p8 is the logic output function of t3.
There are two situations when t3 is fired: each of p6 and p8 contain a token, or each
of p7 and p8 contain a token.

p1

p2

t1 p3
t
2 p5

t
3 p7

p6

p8p4

I(t1)=p1Úp2 O(t3)=(p6Äp7)Ùp8

Figure 1. A logic Petri net model LPN 1

Definition 9 (Process tree [18]). Let A be a set of actives. ⊕ is a given operator
set, and τ is an invisible transition, where

1. a ∈ A ∪ {τ} is a process tree;

2. If PT 1, . . . , PT n (n > 0) are process trees, then ⊕(PT 1, . . . ,PT n) is also
a process tree; and

3. There are 4 operators:

• × stands for a selection relation, and only one sub-tree can occur among
PT 1, . . . , PT n;

• → represents a sequence relation, and the corresponding sub-trees will occur
in sequence;

• ∧ denotes a parallel relation, and the corresponding sub-trees will occur
simultaneously; and

• ⟲ represents a loop structure, and PT 1 denotes a circulatory body, and PT 2,
. . . , PT n (n ≥ 2) denotes a loop path.

3 MODEL REPAIRING OF SELECTION STRUCTURES

When business processes or actual working environment changes, event logs gen-
erated by actual processes cannot be completely replayed by its original model.
Therefore, deviations between an actual event log and its original model should be

Method for Repairing Process Models 451

identified, and the original process model can be repaired accordingly. In this sec-
tion, a repairing method is proposed based on a token replay method for models
with selection structures. It can find deviations between the original model and the
generated logs. Therefore, an original model can be repaired.

3.1 Model Repairing with the Equal Number of Transitions
and Log Activities

When a model is repaired, it is necessary to determine the location of deviations
between a model and logs. By replaying event log L in a model, the missing and
remaining-tokens can be calculated [19]. The position of deviations can be deter-
mined. In token replay, tokens will dynamically change from the initial place to the
final place when a trace is completely consistent with a model. If there are devia-
tions between a trace and a model, tokens cannot reach the end place according to
the missing-tokens, and the fitness of the rest trace cannot be analyzed. Thus an
enhanced replaying algorithm is given next.

Algorithm 1 Enhanced Replaying Algorithm

Input: A Workflow net WFN = (P, T ;F, i, o) and an event log L ∈ β(σ∗);
Output: M .
1: for each p ∈ P do
2: if p = i then
3: M(i) = 1;
4: else
5: M(p) = 0;
6: end if
7: end for
8: for (j = 1; tj ∈ &(σ); j ++) do
9: if tj ∈ T and p ∈ •tj − t•j then

10: M(p)←M(p)− 1;
11: end if
12: if tj ∈ T and p ∈ t•j − •tj then
13: M(p)←M(p) + 1;
14: end if
15: end for
16: M(o)←M(o)− 1;
17: return M.

In Algorithm 1, all places are initialized in Steps 1–7. There is a token in the
initial place, and there is no token in other places. The transitions in traces are
replayed in Steps 8–15. If tj ∈ T and p ∈ •tj − t•j , then M(p) = M(p)− 1. If tj ∈ T
and p ∈ t•j − •tj, then M(p) = M(p) + 1. In Step 16, a token is consumed from
the output place, and a final marking is obtained in Step 17. The computational
complexity of Algorithm 1 is O(n).

452 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

Example 1. A workflow netWFN 1 is shown in Figure 2 where σ1 = ⟨t1, t2, t4, t5, t6,
t7⟩ is replayed. Table 1 shows the change of tokens based on Algorithm 1.

p1

p2

t1

p6

t2

t4

p3

p4

t3

p8
t5

p5

t6 p7

t7

Figure 2. Workflow net model WFN 1

M(p8) = 0 at the end of a replay. After executing Algorithm 1, M(p2) =
−1 represents that a token is missing, and M(p3) = 1 represents that a token is
remaining. For missing-token places, there should be an arc connecting a place
such that tokens can be generated. For remaining-token places, there should be
an arc connecting a transition to consume a token. The locations of missing and
remaining-token places represent an end position and a start position of an adding
arc, respectively. When a model is repaired, another side of the connecting arc needs
to be calculated. For example, •p3 should connect t4 in Figure 2. To repair WFN 1,
the arc from p3 to t4 should be added based on σ1 = ⟨t1, t2, t4, t5, t6, t7⟩. Another
side of an added arc can be determined based on the start position p2 or the end
position p5 in selection structures. From a process tree and selection relation pairs,
start and end pairs are defined with selection structures.

Transisions M(p1) M(p2) M(p3) M(p4) M(p5) M(p6) M(p7) M(p8)

Start 1 0 0 0 0 0 0 0

t1 0 1 0 0 0 1 0 0

t2 0 0 1 0 0 1 0 0

t4 0 −1 1 1 0 1 0 0

t5 0 −1 1 0 1 1 0 0

t6 0 −1 1 0 1 0 1 0

t7 0 −1 1 0 0 0 0 1

End 0 −1 1 0 0 0 0 0

Table 1. Change of token in WFN 1

Definition 10 (Selection relation). Let PT be a process tree of WFN = (P, T ;F,
M, i, o). n = ”×” is a node of PT , and it represents a selection structure. CRP =
(t1, t2) is called a selection relation where t1 = nl and t2 = nr where nl and nr

represent the leftmost and rightmost subtree of a selection structure, respectively.
SCRP represents a set of selection relations, i.e., SCRP = {(t1, t2) | t1 = nl, t2 =

nr,∀n = ×}. For example, SCRP = {(t2, t5)} in Figure 3.

Method for Repairing Process Models 453

®

t6

t1 t7
Ù

´

®®

t3
t2 t5t4

Figure 3. The process tree PT 1 of WFN 1

Definition 11 (Selection structure). PT is a process tree of WFN = (P, T ;F,M,
i, o). n = ”×” is a node of PT , and it represents a selection structure. CRP ∈ SCRP

represents a selection relation pair. CSEP = (p1, p2) represents the start and end pair
of a selection structure, and p1 = •(π1(CRP)), p2 = (π2(CRP))

•. SCSEP represents
a start and end pair set of selection structures. SCSEP = {(p1, p2) | p1 = •(π1(CRP)),
p2 = (π2(CRP))

•, ∀CRP ∈ SCRP}.

For example, CRP = (t2, t5), and
•t2 = {p2}, t•5 = {p5}, in Figure 3. Therefore,

CSEP = (p2, p5), and SCSEP = {(p2, p5)}. Thus, an algorithm of calculating SCSEP

is given as follows.
Algorithm 2 gives a calculating method of start and end pair sets with selection

structures. SCRP and SCSEP are initialized in Step 1. Steps 2–15 find out the left-
most and rightmost sub-tree pairs of all selection structures in WFN , and they are
saved in SCRP . Steps 16–18 calculate the start and end pairs of selection structures,
according to SCRP , and store them in SCSEP . Step 19 returns SCSEP .

Definition 12 (Mapping function). Given log activity a ∈ &(σ) and a transition t
corresponding to it, Map(a, t) is the mapping function from a log activity to a model
transition for trace σ in log L.

p1

p2

t1

p6

t2

t4

p3

p4

t3

p8
t5

p5

t6 p7

t7I(t4)=p2Äp3

Figure 4. A repaired model of WFN 1 with L1

Algorithm 3 gives a model repairing method. Step 1 calls Algorithm 1 to re-
play the logs. Step 2 calls Algorithm 2 to calculate the start and end pair set of

454 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

Algorithm 2 SCSEP Calculation

Input: A Workflow net WFN , the non-leaf node of process tree PT denoted by n;
Output: A start and end pair set of selection structures, SCSEP .
1: SCRP ← ϕ, SCSEP ← ϕ;
2: for each n ∈ PT do
3: if n! = ϕ and n ∈ ⊕ then
4: if n = ”×” then
5: SCRP ← SCRP ∪ {(nl, nr)};
6: else
7: for all the sub nodes SN ∈ n do
8: n← SN ;
9: Skip to Setp 3;

10: end for
11: end if
12: else
13: break;
14: end if
15: end for
16: for CRP ∈ SCRP do
17: SCSEP ← SCSEP ∪ {(•(π1(CRP)), (π2(CRP))

•)};
18: end for
19: return SCSEP .

SCSEP . Steps 3–13 calculate a pre-set for remaining-places, remaining-places, the
number of remaining-places, a post-set for missing-places, missing-places, and the
number of missing-places. Their results are stored in Ts[], Ps[], m, Tq[], Pq[],
and n, respectively. All remaining-places and missing-places are judged whether
they belong to a start or end place of selection structures in Steps 14–29. If the
answer is no, an arc should be added from a remaining-place to Tq[i], and a logic
input expression I(Tq[i])← Ps[j]⊗ Pq[i] should be added, for the remaining-places.
Moreover, an arc should be added from Ts[j] to Pq[i], and a logic output expression
O(Ts[j])← Ps[j]⊗Pq[i] should be added too, for the missing-places. Steps 30 and 31
mean P ′ and T ′ are the same as P and T , respectively. Finally, Algorithm 3 returns
a repaired model LPN in Step 32. The computational complexity of Algorithm 3 is
O(n3).

Example 2. Algorithm 3 is used to repairWFN 1 in Figure 2 where L1 = {⟨t1, t2, t4,
t5, t6, t7⟩}. The repaired result is shown in Figure 4.

Example 3. Algorithm 3 is used to repairWFN 1 in Figure 2 where L2 = {⟨t1, t2, t3,
t5, t6, t7⟩}. The repaired result is shown in Figure 5.

Method for Repairing Process Models 455

Algorithm 3 Model Repairing Algorithm

Input: A workflow net WFN = (P, T ;F,M, i, o) and an event log L ∈ β(σ∗);
Output: A repaired logic Petri net, denoted by LPN = (P, T ;F, I, O,M).
1: Call Algorithm 1 to replay event logs;
2: Call Algorithm 2 to calculate the set of a start and end pair SCSEP ;
3: for (i = 1; i < |T |; i++) do
4: m = n = 0;
5: if M(pi) > 0 then
6: Ts[m]← •pi;
7: Ps[m]← pi;
8: m++;
9: end if

10: if M(pi) < 0 then
11: Tq[n]← p•i ;
12: Pq[n]← pi;
13: n++;
14: end if
15: end for
16: for (j = 1; j <= m; j ++) do
17: for (i = 1; i <= n; i++) do
18: for each σ ∈ L(k = 1; k < |σ|; k ++) do
19: if Ts[j] ∈ σk and Tq[i] ∈ σk+1 then
20: if Ps[j] /∈ π1(SCSEP) and Ps[j] /∈ π2(SCSEP) then
21: F ′ ← F ′ ∪ Ps[j]→ Tq[i];
22: I(Tq[i])← Ps[j]⊗ Pq[i];
23: end if
24: if Pq[i] /∈ π1(SCSEP) and Pq[i] /∈ π2(SCSEP) then
25: F ′ ← F ′ ∪ Ts[j]→ Pq[i];
26: O(Ts[j])← Ps[j]⊗ Pq[i];
27: end if
28: end if
29: end for
30: end for
31: end for
32: P ′ ← P ;
33: T ′ ← T ;
34: return LPN = (P ′, T ′;F ′, I, O,M).

456 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

p1

p2

t1

p6

t2

t4

p3

p4

t3

p8
t5

p5

t6 p7

t7

O(t3)=p4Äp5

Figure 5. A repaired model of WFN 1 with L2

3.2 Model Repairing with Different Number of Transitions
and Log Activities

It is supposed that model activities and log activities are the same in Algorithm 3.
However, log activities generated by an actual process are generally more than model
activities. When this situation happened, Algorithm 3 cannot complete a model
repairing. To take with this problem, newly added log activities need to be calculated
first. A sub-model can be mined according to the newly added log activities and the
inductive algorithms. Finally, a sub-model can be inserted into the original model.
The algorithm for calculating the newly added log activities is given as follows.

Algorithm 4 New Log Activities

Input: A workflow net WFN = (P, T ;F,M, i, o) and an event log L ∈ β(σ∗);
Output: The set of newly added log activities, denoted by NewAct .
1: NewAct ← ϕ, TM ← ϕ;
2: for (i = 1; i <= |T |; i++) do
3: TM ← TM ∪ {ti};
4: end for
5: for each σ ∈ L do
6: for (j = 1, aj ∈ σ; j <= |σ|; j ++) do
7: Map(aj, tk);
8: if tk /∈ TM then
9: NewAct ← NewAct ∪ {aj};

10: end if
11: end for
12: end for
13: return NewAct .

New log activities are calculated in Algorithm 4. Step 1 initializes NewAct and
TM as an empty set. From Steps 2–4, all model activities are added in TM . Log
activities are mapped to model activities in Steps 5–13, and it is judged whether
the model activities belong to TM . If the answer is no, then the log activities are
added to NewAct . Step 14 returns NewAct of new activities. The computational
complexity of Algorithm 4 is O(n2).

Method for Repairing Process Models 457

WFN 2 is shown in Figure 6, and L3 = {σ1, σ2, σ3, σ4, σ5} = {⟨t1, t2, t4, t8⟩,
⟨t1, t9, t5, t6, t12, t8⟩, ⟨t1, t3, t5, t6, t7, t8⟩, ⟨t1, t9, t10, t12, t8⟩, ⟨t1, t9, t11, t12, t8⟩}. Newly
added log activities t9, t10, t11 and t12 can be calculated based on Algorithm 4.

p1 p2t1

t2

t3

p3

p4

t4

p6t5 p5 t6 p8t7 p7 t8

Figure 6. Workflow net model WFN 2

Algorithm 5 Order Relation from an Event Log

Input: An event log L ∈ β(σ∗);
Output: An event log relation set R.
1: R← ϕ, R′ ← ϕ;
2: for each σ ∈ L do
3: R′ ← R′ ∪ {ai >L ai+1};
4: if a ∈ σ and b /∈ σ or b ∈ σ and a /∈ σ then
5: R← R ∪ {a#Lb};
6: end if
7: if a >L b and b ≯L a then
8: R← R ∪ {a→L b};
9: end if

10: if a >L b and b >L a then
11: R← R ∪ {a||Lb};
12: end if
13: end for
14: return R.

Algorithm 5, the order relationship of logs can be found. a →L b, and a||Lb,
a#Lb represent a causality, parallel, choice relation between a and b, respectively.
The computational complexity of this algorithm is O(n).

A repairing method of including sub-models with selection structures is shown
in Algorithm 6. Algorithm 4 is called to calculate a new log activities set NewAct
in Step 1. Step 2 calculates the projection of NewAct in L to find sub log SL.
InductiveMiner(SL) algorithm is called to mine a sub-model WFN ′ = (P ′, T ′;F ′,
M ′, i′, o′) in Step 3. Step 4 calls Algorithm 5 to calculate the order relation of event
logs. A sub-model is inserted into the original model in Steps 5–13. Step 14 calls
Algorithm 3 to repair the model.

Example 4. Workflow net WFN 2 can be repaired based on Algorithm 6, and L3 =
{σ1, σ2, σ3, σ4, σ5} = {⟨t1, t2, t4, t8⟩, ⟨t1, t9, t5, t6, t12, t8⟩, ⟨t1, t3, t5, t6, t7, t8⟩, ⟨t1, t9,
t10, t12, t8⟩, ⟨t1, t9, t11, t12, t8⟩}.

458 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

Algorithm 6 Model Repairing Method for Sub-Models with Choice Structures

Input: A workflow net WFN = (P, T ;F,M, i, o) and an event log L ∈ β(σ∗);
Output: The repaired logic Petri net LPN = (P ′, T ′;F ′, I, O,M).
1: Call Algorithm 4 to calculate a new log activities set NewAct ;
2: Calculating the projection of NewAct in L to find its sub log SL;
3: Call InductiveMiner(SL) algorithm to mine a sub-model WFN ′ = (P ′, T ′;F ′, i′,

o′,M ′);
4: Call Algorithm 5 to calculate the order relationship of event logs;
5: for each (ti →L i′•) ∈ R do
6: F ′ = F ′ ∪ (t•i → i′•);
7: end for
8: for each (•o′ →L ti) ∈ R do
9: F ′ = F ′ ∪ (•o′ → •ti);

10: end for
11: F ′ = F ∪ F ′ − (i′ → i′•)− (•o′ → o′);
12: T = T ∪ T ′;
13: P = P ∪ P ′ − i′ − o′;
14: Call Algorithm 3 to repair the model.

i' p1't9

t
10

t
11

p2' t
12

o'

Figure 7. Sub Workflow net model WFN ′

NewAct = {t9, t10, t11, t12} is calculated first according to the Algorithm 4. Then
the sub log SL = {⟨t9, t12⟩, ⟨t9, t10, t12⟩, ⟨t9, t11, t12⟩} is calculated based on NewAct
and L2. A sub-model WFN ′ can be mined according to the inductive algorithm,
and the result shows in Figure 7. The relationship between the new log activities
t9–t12 and the original model transition is calculated. Besides, the relationships are
t1 → t9, t2#t9, t3#t9, and t12 → t8. Finally, WFN ′ is inserted into the original

p9t9

t
10

t
11

t
12

p1 p2t1

t2

t3

p3

p4

t4

p6t5 p5 t6 p8t7 p7 t8

O(t9)=p4Äp9 I(t12)=p6Äp10

p
10

Figure 8. Repaired model of WFN 2

Method for Repairing Process Models 459

model and the model is repaired according to Algorithm 3. The repaired model is
shown in Figure 8.

4 SIMULATION EXPERIMENTS

Simulation experiments are conducted in this section. The data is from an inspection
department from a hospital in Qingdao, China, and event logs can be accessible at:
https://pan.baidu.com/s/1AG4TvrxF62uAP2Q0owOSEQ. The experimental results
of the proposed method in this paper are compared and analyzed with those of
Fahland’s method [5] and Goldratt’s method [11], where the former is implemented
by the corresponding plug-ins in ProM 6.10 available at http://www.promtools.
org/; and the latter is implemented in the DOS window and edited in ProM 6.10.

4.1 Model Repairing

The Petri net model in Figure 9 can be mined by α algorithm [7] according to
event logs, and it shows the whole process of patients from outpatient appointments
to treatment and departure. First, a patient makes an appointment at the triage
station or by phone call. Then he (or she) needs to book and then gets a reservation
number. Some patients may not make an appointment, but they need to register
at first. After that, the patients need to wait for calling their number and are
inquired by the doctor. Then the patients may need to do some examinations, i.e.,
common CT, PET-CT, chest enhanced scan, ESR, biochemical full set, blood gas
analysis, and blood routine. Then, the doctor makes a diagnosis according to the
results of examinations and decides whether the patients leave the hospital or be
hospitalized.

The event logs L1–L3 are shown in Table 2 including the number and length of
traces, and the number of events and activities.

Logs Traces Events Activities Length

L1 105 980 24 7 ∼ 11

L2 210 1 960 24 7 ∼ 11

L3 314 2 938 24 7 ∼ 11

Table 2. Event logs

There are some deviations between event logs and the process model in Figure 9
since there are some new occurring activities. For example, a patient can make
an appointment by internet or WeChat. Besides, the doctor may choose other
decisions after diagnosis, i.e., referral or conservative treatment.

The model in Figure 9 can be repaired by three methods. The repaired model of
Fahland’s method is shown in Figure 10. The repaired model of Goldratt’s method
is shown in Figure 11. The repaired model of our approach is shown in Figure 12.
From Figures 10, 11 and 12 the repaired models of Fahland’s and Goldratt’s methods

https://pan.baidu.com/s/1AG4TvrxF62uAP2Q0owOSEQ
http://www.promtools.org/
http://www.promtools.org/

460 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

consult

without

reservation

reservation

at triage

station

reserve by

phone

booking
get

reservatio

n number

call

number by

order

inquiry

PET-

CT

chest

enhanced

scan

Biochemical

full set

blood

routine

diagnosis

hospitaliz

ation

leave

arranging

registration

ES R

common

ct

blood gas

analysis

Figure 9. A Petri net of thoracic surgery

add some self-loops and invisible transitions to improve the fitness of models. Self-
loops and invisible transitions can decrease the model precision, and increase the
model complexity.

The following situation will occur according to actual occurrence logs in this
paper. After the common CT, it is possible to check blood gas analysis, ESR,
blood routine, biochemical full set, or entering the diagnosis directly. In this paper,
suppose that the logic output function of t12 is O(t12) = p9 ⊗ p10 ⊗ p11 ⊗ p12. After
checking chest enhanced scan, blood routine, biochemical full set, or directly entering
the diagnosis can be done. Thus the logic output function of t13 is set as O(t13) =
p10⊗p11⊗p12. After checking PET-CT, biochemical full set or directly entering the
diagnosis can be done. The logic output function of t14 is set as O(t14) = p11 ⊗ p12.
Common CT can be done before checking ESR. Therefore, the logic input function
of t16 is set as I(t16) = p8 ⊗ p9. After inquiry blood routine, biochemical full set,
blood gas analysis or directly entering the diagnosis can be done. Therefore, the
logic input function of t15, t17, t18, t19 are set as I(t15) = p8 ⊗ p9, I(t17) = p8 ⊗ p10,
I(t18) = p8 ⊗ p11, I(t19) = p8 ⊗ p12, respectively.

In the process model of Figure 12, the mapping relationship between transitions
and activities is shown in Table 3.

4.2 Model Evaluation

The simplicity of the repaired process model can be analyzed by three repairing
methods according to the principle of Occam’s Razor [20]. The increased number
of places, transitions, invisible transitions and arcs are compared in Table 4, after

Method for Repairing Process Models 461

consult

without

reservation

reservation

at triage

station

reserve by

phone

booking
get

reservatio

n number

call

number by

order

inquiry

PET-

CT

chest

enhanced

scan

Biochemical

full set

blood

routine

diagnosis

hospitaliz

ation

leave

arranging

registration

ES R

common

ct
blood gas

analysis

reserve by

WeChat

reserve by

Internet

Biochemical

full set

blood

routine

Recommend

referral

Referral

treatment

Conservative

treatment

Figure 10. Fahland’s method

Transitions Activities Transitions Activities

t1 reserve by phone t13 chest enhanced scan

t2 reservation at triage station t14 PET-CT

t3 reserve by Internet t15 blood gas analysis

t4 reserve by WeChat t16 ESR

t5 consult without reservation t17 blood routine

t6 booking t18 biochemical full set

t7 get reservation number t19 diagnosis

t8 registration t20 leave

t9 arranging t21 hospitalization

t10 call number by order t22 conservative treatment

t11 inquiry t23 recommend referral

t12 common CT t24 referral treatment

Table 3. The mapping relationship of transitions and activities in Figure 9

462 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

consult

without

reservation

reservation

at triage

station

reserve by

phone

booking
get

reservatio

n number

call

number by

order

inquiry

PET-

CT

chest

enhanced

scan

Biochemical

full set

blood

routine

diagnosis

hospitaliz

ation

leave

arranging

registration

ES R

common

ct
blood gas

analysis

reserve by

WeChat

reserve by

Internet

Biochemical

full set

blood

routine

Recommend

referral

Referral

treatment

Conservative

treatment

common

ct

Figure 11. Goldratt’s method

the model is repaired by three methods. From the analysis, the invisible transitions
are not added in our method, while 8 and 7 invisible transitions are increased by
Fahland’s and Goldratt’s methods, respectively. From the increasing number of
arcs, 21 arcs are added by the repairing method of this paper, while 30 arcs are
increased by Fahland’s and Goldratt’s methods, respectively. Thus, the simplicity
of our approach is lower than the two repairing methods.

Models Places Transitions Invisible transitions Arcs

Our approach 1 5 0 21

Fahland’s method 1 5 8 30

Goldratt’s method 0 5 7 30

Table 4. Comparison of simplicity in three repairing models

Method for Repairing Process Models 463

p9

t9 t
10

t
11

p10

t
12

p1 p2t3

t1

t2

p3

p4

t4
p6

t5

p5

t6

p8

t7

p7

t8

t
13

t
14 p11

t
18

p12
t
17

t
15

t
16

t
19

p
13

t
20

t
21

t
22

t
23 p

14 t
24

p
15

O(t12)=p9Äp10Äp11Äp12
O(t13)=p10Äp11Äp12
O(t14)=p11Äp12

I(t15)=I(t16)=p8Äp9
I(t17)=p8Äp10
I(t18)=p8Äp11
I(t19)=p8Äp12

Figure 12. The repaired model by our approach

The fitness [21] is another important metric of conformance checking of pro-
cess models. The fitness of different models is analyzed based on the number of
traces in Figure 13. The fitness of Fahland’s and Goldratt’s methods are cal-
culated according to the tool of ProM 6.10 plug-in “Replay a Log on Petri Net
for Performance Analysis”. The fitness of the logical Petri net model proposed in
this paper is calculated manually according to reference [21]. From Figure 13, the
fitness of every method is more than 0.9. besides, Fahland’s method is slightly
lower than our approach and Goldratt’s method. The fitness of our approach
is 1.

The precision of the three repairing methods is shown in Figure 14. The pre-
cision of Fahland’s and Goldratt’s methods are calculated by plug-in “Check Pre-
cision based on Align-ETCformance” in ProM 6.10. The precision of the logical
Petri net model proposed in this paper is calculated manually according to refer-
ence [21]. When the given amount of available repair resources is small, the re-
paired model by Goldratt’s method cannot display all the new log activities. If
the value of R is set to 16 in Goldratt’s method, all log activities can appear in
the repaired model. Therefore, the precision of Goldratt’s method is relatively low,
around 0.67. The precision of Fahland’s method is about 0.73. The precision of
our approach is about 0.85. Obviously, our approach has higher precision than
others.

464 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

100 200 300 400

1

0.995

0.99

0.985

0.98

0.975

0.97

0.965

0.96

0.955

0.95

Fahland method our approach Goldratt method

fitness

Figure 13. The fitness between different models

100 200 300 400

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

Fahland method our approach Goldratt method

precision

Figure 14. The precision between different models

5 CONCLUSIONS

Aiming at the low precision of Fahland’s and other repairing methods, a repairing
method of token replay is proposed based on logical Petri nets in this paper. The
deviation locations are firstly determined by token replay. A sub-model of newly
added log activities is mined by the inductive algorithm. Then an insertion location
of the sub-model is determined based on the relationship between the input and
output places of the sub-model and event logs. Finally, an original model can
be repaired by given algorithms via logical Petri nets. The repairing methods of
process models with selection structures are discussed in this paper. Therefore, the

Method for Repairing Process Models 465

repairing methods of process models with parallel structures or loop structures will
be analyzed in our future research.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of
China under Grant No. 61903229 and Grant No. 61973180, and in part by the
China Electronics Technology Group Corporation (CETC).

REFERENCES

[1] van der Aalst, W.M.P.—Stahl, C.: Modeling Business Processes: A Petri
Net Oriented Approach. The MIT Press, Cambridge, USA, 2011, doi: 10.7551/mit-
press/8811.001.0001.

[2] Conforti, R.—Dumas, M.—Garćıa-Bañuelos, L.—La Rosa, M.: BPMN
Miner: Automated Discovery of BPMN Process Models with Hierarchical Structure.
Information Systems, Vol. 56, 2016, pp. 284–303, doi: 10.1016/j.is.2015.07.004.

[3] Wang, L.—Du, Y.Y.—Liu, W.: Aligning Observed and Modelled Behaviour
Based on Workflow Decomposition. Enterprise Information Systems, Vol. 11, 2017,
No. 8, pp. 1207–1227, doi: 10.1080/17517575.2016.1193633.

[4] Wang, Y.Y.—Du, Y.Y.: Comformance Checking Based on Extended Footprint
Matrix. Journal of Shandong University of Science and Technology (Natural Science),
Vol. 37, 2018, No. 2, pp. 9–15.

[5] Fahland, D.—Van der Aalst, W.M.P.: Model Repair – Aligning Pro-
cess Models to Reality. Information Systems, Vol. 47, 2015, pp. 220–243, doi:
10.1016/j.is.2013.12.007.

[6] van der Aalst, W.M.P.—Weijters, T.—Maruster, L.: Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering, Vol. 16, 2004, No. 9, pp. 1128–1142, doi: 10.1109/tkde.2004.47.

[7] Wen, L. J.—van der Aalst, W.M.P.—Wang, J.M.—Sun, J.G.: Mining Pro-
cess Models with Non-Free-Choice Constructs. Data Mining and Knowledge Discov-
ery, Vol. 15, 2007, No. 2, pp. 145–180, doi: 10.1007/s10618-007-0065-y.

[8] Wen, L. J.—Wang, J.M.—Sun, J.G.: Mining Invisible Tasks from Event Logs.
In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (Eds.): Advances in Data and
Web Management (APWeb 2007, WAIM 2007). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 4505, 2007, pp. 358–365, doi: 10.1007/978-3-540-
72524-4 38.

[9] van der Aalst, W.M.P—de Medeiros, A.K.A.—Weijters, A. J.M.M.:
Genetic Process Mining. In: Ciardo, G., Darondeau, P. (Eds.): Application and The-
ory of Petri Nets 2005 (ICATPN 2005). Springer, Berlin, Heidelberg, Lecture Notes
in Computer Science, Vol. 3536, 2005, pp. 48–69, doi: 10.1007/11494744 5.

https://doi.org/10.7551/mitpress/8811.001.0001
https://doi.org/10.7551/mitpress/8811.001.0001
https://doi.org/10.1016/j.is.2015.07.004
https://doi.org/10.1080/17517575.2016.1193633
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.1109/tkde.2004.47
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/978-3-540-72524-4_38
https://doi.org/10.1007/978-3-540-72524-4_38
https://doi.org/10.1007/11494744_5

466 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

[10] de Medeiros, A.K.A.—Weijters, A. J.M.M.—van der Aalst, W.M.P.:
Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge
Discovery, Vol. 14, 2007, No. 2, pp. 245–304, doi: 10.1007/s10618-006-0061-7.

[11] Polyvyanyy, A.—van der Aalst, W.M.P.—Ter Hofstede, A.H.M.—
Wynn, M.T.: Impact-Driven Process Model Repair. ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 25, 2017, No. 4, Art. No. 28, 60 pp., doi:
10.1145/2980764.

[12] Du, Y.Y.—Qi, L.—Zhou, M.C.: A Vector Matching Method for Analyzing Logic
Petri Nets. Enterprise Information Systems, Vol. 5, 2011, No. 4, pp. 449–468, doi:
10.1080/17517575.2010.541943.

[13] Rozinat, A.—van der Aalst, W.M.P.: Conformance Checking of Processes
Based on Monitoring Real Behavior. Information Systems, Vol. 33, 2008, No. 1,
pp. 64–95, doi: 10.1016/j.is.2007.07.001.

[14] Teng, Y.X.—Qi, L.—Du, Y.Y.: A Logic Petri Net-Based Repair Method of
Process Models with Incomplete Choice and Concurrent Structures. Computing and
Informatics, Vol. 39, 2020, No. 1-2, pp. 264–297, doi: 10.31577/cai 2020 1-2 264.

[15] Wang, Z.—Du, Y.Y.—Qi, L.: Extended Colored Logic Petri Net and Its Reacha-
bility Analysis. Journal of Shandong University of Science and Technology (Natural
Science), Vol. 39, 2020, No. 1, pp. 84–98.

[16] Qi, H.D.—Du, Y.Y.—Liu, W.: Process Model Repairing Method Based on Reach-
able Markings. Journal of Shandong University of Science and Technology (Natural
Science), 2017, pp. 118–124.

[17] Wen, L.—Wang, J.—van der Aalst, W.M.P.—Huang, B.—Sun, J.: Mining
Process Models with Prime Invisible Tasks. Data and Knowledge Engineering, Vol. 69,
2010, No. 10, pp. 999–1021, doi: 10.1016/j.datak.2010.06.001.

[18] Buijs, J. C.A.M.—van Dongen, B. F.—van der Aalst, W.M.P.: A Genetic
Algorithm for Discovering Process Trees. Proceedings of the 2012 IEEE Congress on
Evolutionary Computation (CEC), 2012, pp. 1–8, doi: 10.1109/cec.2012.6256458.

[19] Adriansyah, A.—van Dongen, B. F.—van der Aalst, W.M.P.: Conformance
Checking Using Cost-Based Fitness Analysis. Proceedings of the 2011 IEEE 15th

International Enterprise Distributed Object Computing Conference (EDOC), 2011,
pp. 55–64, doi: 10.1109/edoc.2011.12.

[20] Witten, I.—Frank, E.: Data Minning: Practical Machine Learning Tools and
Techniques. Second Edition. Morgan Kaufmann, 2005.

[21] Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. Thesis, Technis-
che Universiteit Eindhoven, 2014, pp. 139–149, doi: 10.6100/IR770080.

https://doi.org/10.1007/s10618-006-0061-7
https://doi.org/10.1145/2980764
https://doi.org/10.1080/17517575.2010.541943
https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.31577/cai_2020_1-2_264
https://doi.org/10.1016/j.datak.2010.06.001
https://doi.org/10.1109/cec.2012.6256458
https://doi.org/10.1109/edoc.2011.12
https://doi.org/10.6100/IR770080

Method for Repairing Process Models 467

Erjing Bai received her B.Sc. degree from the Hebei Normal
University, Hebei, China, in 2000, her M.Sc. degree from the
Qingdao University of Science and Technology, Qingdao, China,
in 2014. She is currently Associate Professor at the College
of Qingdao Huanghai University, Qingdao, China. Her current
research interests are process mining, Petri nets and workflow.

Na Su received her B.Sc. degree from the Liaocheng Normal
University, Shangdong, China, in 2000, her M.Sc. degree from
the Qingdao University of Science and Technology, Qingdao,
China, in 2015. She is currently Associate Professor at the Col-
lege of Qingdao Huanghai University, Qingdao, China. Her cur-
rent research interests are process mining, Petri nets and work-
flow.

Yu Liang received his Bachelor degree in computer science and
technology from the Shandong Agricultural University, China
in 2015. He received his Master degree in software engineering
from the Shandong University of Science and Technology, China
in 2019. He is currently pursuing Doctorate in the Department of
Computer Science and Technology, Tongji University, Shanghai.
His research interests include lightweight deep neural networks
(DNNs), interpretation methods for DNNs and graph DNNs.

468 E. Bai, N. Su, Y. Liang, L. Qi, Y. Du

Liang Qi received his B.Sc. degree in information and com-
puting science and his M.Sc. degree in computer software and
theory from the Shandong University of Science and Technology,
Qingdao, China, in 2009 and 2012, respectively, and his Ph.D.
degree in computer software and theory from the Tongji Uni-
versity, Shanghai, China in 2017. From 2015 to 2017, he was
Visiting Student with the Department of Electrical and Com-
puter Engineering, New Jersey Institute of Technology, Newark,
NJ, USA. He is currently Associate Professor with the College
of Computer Science and Engineering, Shandong University of

Science and Technology, Qingdao, China. He has over 80 papers in journals and conference
proceedings, including the IEEE Transactions on Intelligent Transportation Systems, the
IEEE/CAA Journal of Automatica Sinica, the IEEE Transactions on System, Man and
Cybernetics: Systems, the IEEE Transactions on Computational Social Systems, the IEEE
Transactions on Automation Science and Engineering, the IEEE Transactions on Cyber-
netics, the IEEE Transactions on Network Science and Engineering, IEEE Transactions
on Image Processing, and IEEE Signal Processing Letters. He received the Best Student
Paper Award-Finalist in the 15th IEEE International Conference on Networking, Sensing
and Control (ICNSC2018). His current research interests include Petri nets, optimization
algorithms, machine learning, and intelligent transportation systems.

Yuyue Du received the B.Sc. degree from the Shandong Uni-
versity, Jinan, China, in 1982, his M.Sc. degree from the Nanjing
University of Aeronautics and Astronautics, Nanjing, China, in
1991, and his Ph.D. degree in computer application from the
Tongji University, Shanghai, China, in 2003. He is currently
Professor at the College of Information Science and Engineer-
ing, Shandong University of Science and Technology, Qingdao,
China. He has taken in over 10 projects supported by the
National Nature Science Foundation, the National Key Basic
Research Developing Program, and other important and key

projects at provincial levels. He has published over 200 papers in domestic and inter-
national academic publications. His research interests are in formal engineering, Petri
nets, real-time systems, process mining, and workflows.

