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Abstract. Software testing is one of the very important Quality Assurance (QA)
components. A lot of researchers deal with the testing process in terms of tester
motivation and how tests should or should not be written. However, it is not
known from the recommendations how the tests are written in real projects. In
this paper, the following was investigated: (i) the denotation of the word “test”
in different natural languages; (ii) whether the number of occurrences of the word
“test” correlates with the number of test cases; and (iii) what testing frameworks
are mostly used. The analysis was performed on 38 GitHub open source repositories
thoroughly selected from the set of 4.3 M GitHub projects. We analyzed 20 340 test
cases in 803 classes manually and 170k classes using an automated approach. The
results show that: (i) there exists a weak correlation (r = 0.655) between the number
of occurrences of the word “test” and the number of test cases in a class; (ii) the
proposed algorithm using static file analysis correctly detected 97 % of test cases;
(iii) 15 % of the analyzed classes used main() function whose represent regular Java
programs that test the production code without using any third-party framework.
The identification of such tests is very complex due to implementation diversity.
The results may be leveraged to more quickly identify and locate test cases in
a repository, to understand practices in customized testing solutions, and to mine
tests to improve program comprehension in the future.
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1 INTRODUCTION

The development of automated tests in a software project is a time-consuming and
costly process, as it represents more than half of the entire development process [1].
The main aim of testing is to maintain the quality of the product and, in addition
to that, tests describe the expected behavior of the production code being tested.
Years ago, Demeyer et al. [2] suggested that if the tests are maintained together
with the production code, their implementation is the most accurate mirror of the
product specification and can be considered as up-to-date documentation. Tests can
contain many useful production code metadata that can support program compre-
hension.

Understanding the code is one of the very first tasks a developer should cope with
before the implementation of a particular feature. When the product specification
changes (e.g., the requirements for new features are added), the developer must
first understand them, then create his/her mental model [3] and finally, the created
mental model is expressed in a specific artifact — code implementation. The problem
is that two developers are likely to create two different mental models for the same
issue because according to Mayer [4] mental model may vary with respect to its
completeness and veridicality. A comprehension gap could arise when one developer
needs to adapt another programmer’s mental model from the code.

An assumption can be made that by using the knowledge about the structure
and semantics of tests and their connection to the production code, it is possible to
increase the effectiveness of program comprehension and reduce the comprehension
gap. This would be possible, for example, by enriching the source code with meta-
data from the tests directly into the production code, e.g. data used for testing, test
scenarios, objects relations, comments, etc. To achieve this goal, it is necessary to
know in detail how the tests are actually written and what data they use.

There exist many guidelines on how tests should be created. First, naming con-
ventions may aid the readability and comprehension of the code. According to the
empirical study by Butler et al. [3], developers largely follow naming conventions.
Our previous research [6] shows that there is a relation between the naming of iden-
tifiers in the test code and the production code being tested. This indicates that
the relationship between the test and production code is not only at the level of
method calls, object instances, or identifier references, but also at the vocabulary
level, depending on the domain knowledge and mental model of a tester/devel-
oper.

Furthermore, many authors [7, 8, 9] define best practices to simplify the test
with the benefit of a faster understanding of the testing code and the identifica-
tion of test failure. Some guidelines lead to avoiding test smells [I0] because as
reported by recent studies [T}, 2], their presence might not only negatively affect
the comprehension of test suites but can also lead to test cases being less effective
in finding bugs in the production code. All mentioned approaches are only recom-
mendations but do not really express how the tests are written in real projects.
That means we know how tests should be written, but we do not know how they
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are written in practice. Many researchers have tried to clarify the motivation of
writing tests [I3), 14, [[5], the impact of test-driven development (TDD) on code
quality [I6, [I7] or the popularity of testing frameworks [I§].

To reveal testing practices in real and independent projects it is necessary to find
a way to identify test cases in a project, without the time-consuming code analysis.
Much more important than the number of test cases is the information where they
are located. When a testing framework is used, the test identification is mostly
straightforward, e.g. by the presence of the framework imports. On the other hand,
to obtain a general overview of testing practices regardless of the used framework,
it is advisable to consider tests that do not use any third-party framework and can
be regarded as customized testing solutions. In most of the related works, tests
are identified by searching specific file and folder names, or some specific keywords.
Considering that these keywords usually included the word “test” and based on the
authors’ experience of Java test cases development, it can be assumed that there is
a relation between the word “test” and the number of test cases in a file. That means
searching for the “test” string could be beneficial for faster test case identification.
Based on the previous reasoning, this paper defines the following hypothesis and
research question:

H 1. There is a strong correlation (r ¢ (—0.8,0.8)) between the number of occur-
rences of the word “test” in the file content and the number of test cases.

RQ 1. How many testing classes are implemented as customized testing solutions
without using any third party framework?

This paper is focused exclusively on unit testing and analyzes 38 projects that
have been carefully selected (see Section from all GitHub projects with Java
as a primary language (most of the code written in Java). Section [2| presents the
current state and found gaps in the research. In Section [3] the research method
is described, containing an examination of whether it is appropriate to search for
tests using the word “test” due to different natural languages of developers, an
overview of known testing frameworks, and a proposed algorithm for static code
analysis to automate the identification of test cases. Section [ summarizes the
results, threats to validity are mentioned in Section B and conclusions can be found
in Section

2 STATE OF THE ART

Many researchers examine software testing but we still know little about the struc-
ture and semantics of test code. This chapter summarizes the related work of soft-
ware testing from various perspectives.

Learning about real testing practices is a constant research challenge. The goal
of such research is mostly to find imperfections and risks, learn, and make rec-
ommendations on how to prevent them and how to streamline their development.
Leitner and Bezemer [19] studied 111 Java-based projects from GitHub that contain
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performance tests. Authors identify tests by searching for one or more terms in
the test file name or for the presence of popular framework import, solely in the
src/test project directory. Selected projects were subjected to manual analysis,
in which they monitored several metrics. The most important result for this paper
was the fact that 103 projects also included unit tests, usually following standard-
ized best practices. On the other hand, the performance testing approach of the
same projects often appears less extensive and less standardized. Another finding
was that 58 projects (52 %) mix performance tests freely with their functional test
suite, i.e., performance tests are in the same package, or even the same test file,
as functional tests. Six projects implemented tests as the usage examples. Using
a similar approach [19], in our case by searching for the word “test” and searching
for imports of testing frameworks in all project’s Java files, we would like to analyze
unit tests, but with a careful selection from all GitHub projects at a specific time,
resulting in more relevant projects used for analysis.

Code coverage, also known as test coverage, is a very popular method for eval-
uating project quality. Ellims et al. [20] investigated the usage of unit testing in
practice in three projects that authors evaluated as well-tested. Statement coverage
was found to be indeed a poor measure of test adequacy. According to the findings
of Hemmati [21], basic criteria such as statement coverage are a very weak metric,
detecting only 10 % of the faults. A test case may cover a piece of code but miss its
faults. According to Hilton et al. [22], coverage can be beneficial in the code review
process if a smaller part of the project is evaluated. By reducing coverage to a sin-
gle ratio of the whole project, much valuable information could be lost. Kochhar
et al. [23] performed an analysis of 100 large open-source Java projects showing that
31 % of the projects have coverage greater than 50 % and only 8 % are greater than
75 %.

Many experiments try to express the quality of tests by testing “mutants” [24],
i.e., by modifying a program in small ways to create artificial defects. According to
Gopinath et al. [25] mutants do not necessarily represent real bugs, therefore, they
are not able to relevantly evaluate the quality of the test suite nor to find relations
between the coverage and mutants’ reveal. However, there is a statistically signif-
icant correlation between code coverage and bug kill effectiveness of real software
errors (non-mutants) [26]. The quality of the test suite is influenced by the way the
mental model is expressed in the code, so examining real tests is more beneficial
instead of using mutants.

The fact that unit tests are the most common test type in a project is confirmed
by Cruz et al. [27]: 39 % of 1000 analyzed Android projects used unit tests. Another
finding was that frequently updated projects were more aware of the importance of
using automated tests than those updated several years ago. The adoption of tests
has increased over the last few years, so focusing on information mining from the
tests makes sense.

Another type of research was done by Munaiah et al. [28], who focused on the
assessment of GitHub projects. They proposed a tool that can be used to identify
repositories containing real engineered software projects. The aim was to eliminate
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the repository noise such as example projects, homework assignments, etc. One of
the metrics they use for assessment is unit test occurrence in the project using test
ratio (number of source lines of code in test files to the number of source lines of
code in all source files) to quantify the extent of the unit testing effort. Package
imports of JUnit and TestNG frameworks were searched to identify tests in the
project. This method could be useful when looking for the occurrence of specific
testing frameworks in the code.

3 METHOD

First of all, it is necessary to find suitable projects containing test cases. Thus,
metadata of all GitHub open-source projects was obtained via GHTorrent [29] (Sec-
tion due to their high availability. GHTorrent collects projects’ metadata from
GitHub, one of the biggest project-sharing platform in the world. The experiment
was limited to projects with Java as the primary language. Searching for testing
frameworks’ imports [30] or files containing the word “test” in the filename [19] are
common test class identification techniques.

Because our main goal for the future is to improve production code comprehen-
sion from a particular test case, we go deeper in this study and try to identify specific
test cases (not only test classes), therefore, it is necessary to consider whether the
searching for the word “test” is appropriate. Keep in mind, that the aim is not
to count the number of test cases in a project. Otherwise, we could run tests
via an automated build tool (e.g. ant, maven, or gradle) and collect the number of
tests. In that case, the issue is that building such open-source projects often fails [31]
and we need to build every single project and run tests what is a time-consuming
task. In this paper, we try to count and especially find the location of such test
cases.

Since the testing process can also be denoted by other keywords (e.g. Verifyﬂ,
examine, etc.), an in-depth analysis (Section of testing process denotation in
various foreign languages was performed, which showed that searching for the word
“test” is suitable. Due to the limitations of the GitHub Search API, it was possible
to search only one word across all Github Java projects.

As the framework is assumed to influence developer thinking and test case im-
plementation, a list of 50 unit testing frameworks for Java (Section has been
created. Because the goal is to detect customized testing practices compared with
framework-based ones in existing projects, it is not possible to use an automated
method, and since it is not possible to manually analyze all GitHub projects, we
need to select the most suitable ones. Based on the meaning of the word “test”
we assume that there will be a correlation between the number of occurrences
of the word “test” (in file content or filename) and the number of test cases.

! See Mockito verify() method used for soft assertions: https://javadoc.
io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/
VerificationMode.html


https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html
https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html
https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html
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Therefore, three datasets were created using the searching GitHub API for (Sec-

tion :
1. the word “test” in filename,
2. the word “test” in file content,

3. frameworks’ imports in file content (38 frameworks).

Every single project was searched as mentioned above, 4.3 million projects in
total. It is possible to expect that the more occurrences of the word “test” in the
project, the more test cases will be present in it and the more we will learn from
it in the future. Therefore, projects with the highest occurrence of the word “test”
(in file content or filename) or with the highest occurrence of a specific framework’s
import were selected for manual analysis. By searching for “test” regardless of the
framework, we were also able to analyze testing practices without using any third-
party framework. Because GitHub contains many projects that are not relevant, e.g.
testing, homework, or cloned projects, rules for searching relevant projects have been
defined (Section , resulting in a set of projects used for manual and automated
analysis. A script for automated analysis was created to partially automate the
identification of test cases (see Section . All methodology details are described
in the following sections.

3.1 Data Source

To provide conclusions that are as general as possible, it would be ideal to analyze
all types of projects, i.e. proprietary and open source. Because of limited access to
proprietary projects, this experiment is focused exclusively on open source projects.
GitHukﬂ has become one of the most popular web-based services to host both pro-
prietary and mostly open-source projects, therefore, we can consider it a suitable
source of projects. It provides an open Application Programming Interface (API)E|
allowing one to work with all public projects (with small exceptions).

To avoid the latency of the official API, the GitHub Archive projectﬁ stores
public events from the GitHub timeline and publishes them via Google BigQuery.
Downloading via Google BigQuery is charged, therefore, GHTorrent [29] was used
instead, which provides a mirror of GitHub projects’ metadata. It monitors the
GitHub public event timeline, retrieves contents and dependencies of every event,
and requests GitHub API to store project data into the database. That includes
general info about projects, commits, comments, users, etc. The study data mining
started in May 2019, therefore, the last MySQL dum mysql-2019-05-01 has been
used.

2
3
4

https://github.com/
https://docs.github.com/en/rest
https://wuw.gharchive.org/

5 https://ghtorrent.org/downloads.html
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3.2 Denotation of the Word “test”

Leitner et al. [I9] searched for tests only in src/test directory and test classes
identified manually. However, the tests can be placed in any project’s directory
(e.g. Androidﬂ uses src/androidTest). Another approach is to search for “test”
string in filenames as executed by Kochhar et al. [I5] because they assumed that
the tests would be exclusively in files containing the case-insensitive “test” string. As
in the previous case, best practices lead the developer to use “test” in the file name,
but it is not mandatory. For this reason, the most accurate should be searching
for the word “test” in the file content. Of course, firstly it is necessary to consider
whether the word “test” is the right one for searching. Therefore, the meaning of
the word “test” using Google Translat{] was verified in 109 different languages (all
available by Google) as follows:

1. From English to foreign language and back to English
Using this method the most frequentﬂ meanings of the word “test” in a foreign
language were obtained. By translating them back to English we found out
which foreign language translations correspond to the original word “test”.

2. From foreign language to English and back to foreign language
The opposite approach was used to find whether the string “test” has a meaning
in a particular foreign language. The word was translated into English and all
its meanings were verified against the available translation alternatives in the
given language.

Multiple translations ensured that the correct meaning of the word in a particu-
lar language was understood. Using the first method it was found out that word sets
related to the testing process of different foreign languages are mostly translated as
“test” in English, see Figure [l This means that when a foreign developer would
like to express something related to testing (e.g. to write a test case), he/she will
use mostly the word “test”. In this meaning, it is the first choice when searching
test cases by a string. Occasionally occurred meaning outside of testing area, e.g.,
essay, audition or flier. Because such meanings occurred only infrequently, they can
be omitted. There were also 14 languages which did not include the word “test” in
their reverse translation at all, but its meaning was rather denoting ezamination,
check or quiz.

A total of 44 languages used non-Latin charset. For these languages, the second
approach did not make sense to use. For the remaining languages, the meaning was
completely identical in 43 languages and the same or similar meaning in 20 cases.

6 https://developer.android.com/

" https://translate.google.com/

8 Frequency determined by Google Translate service, indicates how often a translation
appears in public documents: 3 — high; 2 — middle; 1 — low frequency.
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Sum of frequencies in public documents

tryout
witness
workout

Translations

Figure 1. Sum of reverse translation frequency of the word “test” in public documents of
different languages

We found only 2 languages (Hungariarﬂ and Latviaﬂ, in which the word “test”
has a completely different meaning, such as body, hew, or tool (nothing related to
testing). The analysis shows that the word “test” will refer to the testing process
in the code and the meaning can vary in very rare cases. Only the word “test”
will be searched for in this study because of the rate limitations of the GitHub API

(explained in Section [3.4)).
3.3 Java Testing Frameworks

The crucial question is whether developers are motivated to use the word “test” in
their code. The developer is often influenced by a testing framework, which leads him
or her to different habits. As a part of this study, we analyzed 50 Java unit testing
frameworks, extensions, and support libraries (see Table [l)) to determine whether
the use of the word “test” during test implementation is optional, recommended,
or mandatory. The list was created from different sources, such as blogs, technical
reports, research papers, etc.

Because it is sometimes difficult to find the boundary between unit and integra-
tion testing, the table lists frameworks supporting integration testing under the unit
testing category. Information about the first version and the last commit may be in-
teresting in terms of the framework lifetime and its occurrence in projects. Projects
marked as archived or test generators in Table[]] were excluded from further analysis
for the following reasons:

9 https://translate.google.com/?sl=hu&tl=en&text=test
10 https://translate.google.com/?sl=1v&tl=en&text=test
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1. archived projects usually had unavailable documentation or were never released;

2. test generators produce tests that are not based on the programmer’s mental
model but are generated automatically (semi-randomly), which is not interesting
from the code comprehension point of view.

Name Package for Import Framework  First Last Com- Must
Type Version mit Include
”test”
SpryTest N/A U N/A N/A N/A
(archived)
Instinct N/A B 24.01.2007 07.03.2010 N/A
(archived)
Java  Server-Side N/A U 17.11.2010 17.11.2010 u
Testing framework (archived)
(JSST)
NUTester N/A U 05.02.2009 27.03.2012 N/A
(archived)
SureAssert N/A A 29.05.2011 04.02.2019 N/A
(archived)
Tacinga N/A U 14.02.2018 22.02.2018 N/A
(archived)
Unitils N/A U 29.09.2011 08.10.2015 N/A
(v3.2) (archived)
Cactus org.apache.cactus U 11.2008 05.08.2011 ]
(archived)
Concutest N/A U 30.04.2009 12.01.2010 u
(archived)
Jtest N/A G 1997 21.05.2019 ]
(last release)
Randoop N/A G 23.08.2010 05.05.2020 ]
EvoSuite N/A G 25.12.2015 30.04.2020 |
(v1.0.2)
JWalk N/A G 19.05.2006 14.06.2017 u
TestNG org.testng U 31.07.2010 11.04.2020 |
(v5.13)
Artos com.artos U 22.09.2018 19.04.2020 ]
JUnit 5 org.junit U 10.09.2017 02.05.2020 ]
JUnit 4 org.junit U 16.02.2006 10.04.2020 ]
JUnit 3 junit.framework U N/A N/A ]
BeanTest info.novatec.bean-test U 23.04.2014 02.05.2015 ]
GrandTestAuto org.GrandTest Auto U 21.11.2009 22.01.2014 ]
Arquillian org.jboss.arquillian U 10.04.2012 21.04.2020 ]
EtlUnit org.bitbucket. U 02.12.2013 04.04.2014 ]
bradleysmithllc.etlunit (v2.0.25)
HavaRunner com.github.havarunner U 16.12.2013 08.06.2017 ]
JExample ch.unibe.jexample U 2008 N/A |
Cuppa org.forgerock.cuppa U 22.03.2016 01.10.2019 ]
DbUnit org.dbunit U 27.02.2002 24.02.2020 n
GroboUtils net.sourceforge.groboutils U 20.12.2002 05.11.2004 ]
JUnitEE org.junitee U 23.07.2001 11.12.2004 ]
(v1.2)
Needle de.akquinet.jbosscc.needle U N/A 16.11.2016 L]
OpenPojo com.openpojo U 13.10.2010 20.03.2020 |
Jukito org.jukito U/M 25.01.2011 17.04.2017 u
Spring testing org.springframework.test M/U 01.10.2002 06.05.2020 ]
Concordion org.concordion U/SbE 23.11.2014 27.04.2020 O
(v1.4.4)
Jnario org.jnario B 23.07.2014 O
Cucumber-JVM io.cucumber B 27.03.2012 04.05.2020 O
Spock spock.lang B 05.03.2009 01.05.2020 O
JBehave org.jbehave B 2003 23.04.2020 O
JGiven com.tngtech.jgiven B 05.04.2014 10.04.2020 ]
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JDave org.jdave B 18.02.2008 17.01.2013 |
beanSpec org.beanSpec B 15.09.2007 27.06.2014 O
(alpha)
EasyMock org.easymock.EasyMock M 2001 10.04.2020 ]
JMock org.jmock M 10.04.2007 23.04.2020 ]
JMockit org.jmockit M 20.12.2012 13.04.2020 ]
Mockito org.mockito M 2008 30.04.2020 ]
Mockrunner com.mockrunner M 2003 16.03.2020 ]
PowerMock org.powermock M 28.05.2014 30.03.2020 ]
(v1.5.5)
AssertJ org.assertj A 26.03.2013 05.05.2020 ]
Hamcrest org.hamcrest A 01.03.2012 06.05.2020 ]
XMLUnit org.xmlunit A 03.2003 04.05.2020 ]

Legend: U — unit; B — behavioural; A — assert; M — mock; G — generator; SbE — specification by example

Table 1: Analyzed unit testing frameworks and extensions for Java

It can be seen that 37 of 50 frameworks require the word “test” as method/
class annotation (@Test) or part of its name (testMethod, methodTest). The listed
frameworks are mostly extensions that depend on one of the base frameworks, such
as JUnit or TestNG. Different versions of JUnit are listed separately because test
labeling differs between them (annotations vs. method name format). A deeper ana-
lysis of frameworks’ JavaDocs revealed that many frameworks include other classes,
methods, or annotations that include the word “test” in their names. Although the
use of these methods is not mandatory, it may support the search.

3.4 Searching Projects and Data Gathering

The whole process of data gathering can be seen in Figure 2l GHTorrent provided
140 million GitHub projects. From this set all deleted, non-Java, or duplicated
projects have been removed. After cleaning the initial data, a total of 6.7 million
projects were kept for further analysis.

ghtorrent project

8 6 8 Gihub Restful AP

Projects Project Watchers
————
languages 1. Download projects’

8 8 metadata

Issues Commits

5. Download project

metadata Input: Example )
+ - project_url /repos/rstudic/rstudia :
g ! Output: H
Datastore { - commits 12 334 H
| - number of "test” found in: H
3. Djlete Data envicher i - Javafilenames 5 H
non-Java - - | - Java files content 10 E
projects 4. Enrich project | - number of framework imports: :
- jUnit3 2 i
- TestNG 3 H
i - OpenPojo a H
6. Save to DB S N

Figure 2. The GitHub data mining process for the study
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GHTorrent contained only basic metadata about the projects, which was not
sufficient for our needs. Given the meaning of the word “test” (see Section [3.2))
we searched for it across all projects. The GitHub API provides a code search|
endpoint, which index only original repositories. Repository forks are not searchable
unless the fork has more stars than the parent repository. If the project has been
detected as deleted, private, or blocked by GitHub during querying code search, it
has been not considered. Finally, a total of 4.3 million projects were included. For
each project, two requests to the GitHub code search API were called, as presented
in Table 2] The GitHub code search API had the following limitations:

e up to 1000 results for each search;
e up to 30 requests per minute (authenticated user);

e global requests rate limited at 5000 requests per hour;

e only files smaller than 384 KB and repositories with fewer than 500 000 files are
searchable.

Search “test” in  Example request at https://api.github.com/search/code
Java files content |?q=test+in:file+language:java+repo:apache/camel
Java filenames 7q=filename:test+language: javat+repo:apache/camel

Table 2. The GitHub API requests used to search the string “test” in a project

3.4.1 Code Search Strategy

GitHub indexes only the default branch code (usually master), so the whole analysis
was performed only using the default branch. The string “test” can also be a part of
other words, e.g. fastest, lastest, thisistestframework. There exist 532 such words
containing “test”lE in total. To avoid inaccuracies when searching for a word of
the selected string, false positives must be excluded from the search. When using
regular GitHub search, the search term will appear in the results when driven by
the following rules:

e string uses camel case convention without numbersEL e.g., myTest,

e string uses snake case convention, e.g., my_test, test_123;

e string includes a delimiter or special character (space, ., #, $, @, etc.), e.g.,
test.delimiter, @Test;

e search is case insensitive, e.g. Test sentence, test sentence.

11
12
13

https://docs.github.com/en/rest/reference/search
https://www.thefreedictionary.com/words-containing-test

Numbers can be used, but they are not considered as individual words, e.g. 123Test
or test123 will not be found.


https://api.github.com/search/code
https://api.github.com/search/code?q=test+in:file+language:java+repo:apache/camel
https://api.github.com/search/code?q=filename:test+language:java+repo:apache/camel
https://docs.github.com/en/rest/reference/search
https://www.thefreedictionary.com/words-containing-test
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GitHub considers as Java language file any file with . java or .properties ex-
tensions. The same search rules apply to both search types: file content and filename
search. Obviously, according to the above rules, GitHub search automatically filters
the results, therefore, unwanted words containing the string “test” do not appear in
the results, but neither the words testing or testsAllMethods will be matched.

3.4.2 Selection of Relevant Projects

When searching for different testing types, the effort is to go through as many
projects as possible. Because GitHub contains millions of repositories, it is a chal-
lenge to choose the projects that can be the most instructive and filter out ir-
relevant ones. To make the selection as objective as possible, we planned to use
reaper tool [28], which can assess a GitHub repository in collaboration with GHTor-
rent using project metadata and code: architecture, community, continuous in-
tegration, documentation, history, issues, license, and unit testing. By evaluat-
ing all these metrics (see [28] for details), reaper tags a particular repository as
a real software project and thus exclude example projects, forks, irrelevant ones,
ete.

Many assessment attributes of the reaper too]El require project files to be avail-
able, so each project needs to be cloned or downloaded as an archive. For large
projects, it can be gigabytes of data and the size of the project subsequently af-
fects the length of the analysis. To find out whether reaper will be beneficial for
our study, a manual analysis of 50 projects was performed and the results were
compared with the evaluation by reaper. All available evaluation attributes were se-
lected except for unit tests assessment because it was limited to JUnit and TestNG
frameworks. The thresholds and weights of particular attributes defined by the de-
velopers of the tool were preserved because these values were considered empirically
confirmed.

Because we want to select a sample of projects from which we would learn the
most, projects with the highest number of files containing the word “test” in its
body and filename were selected for the comparison. The same attributes as used
by the reaper were taken into account in the manual evaluation, but the relevance
of the project for this study was assessed by an observer. Evaluation of 50 projects
using the reaper tool took 10 days, with the most time being spent on evaluating
the project architecture. Many repositories with the highest “test” presence in
file content or filename were actually identified as Subversion (SVN) mirrorﬂ by
manual analysis and because there were multiple copies of the same code (caused by
the SVN’s branching style), the projects were not relevant, but the reaper assessed
such projects as suitable. According to this significant issue, important projects
could be lost by assessing project in an automated manner, so it was concluded that

14 mttps://github.com/RepoReapers/reaper
15 ¢g.  https://github.com/zg/jdk, https://github.com/dmatej/Glassfish,
https://github.com/svn2github/cytoscape
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it is more efficient to select projects manually driven by the following rules, inspired
by existing research:

e Priority was given to projects with the highest number of the word “test” in
the project (in file content and filename). According to [32] we can expect the
presence of tests in popular projects. If it is assumed that the word “test”
will be correlated with the number of test cases in the project, large and long
maintained projects are expected, which authors consider the best sample for
the study.

e History, as evidence of sustained evolution. Projects under 50 commits were
excluded (inspired by the reaper) because they represented small or irrelevant
projects. Those projects that contained a large number of commits (more than
1000 per day), considered committed by a robot, were also excluded.

e Originality was evaluated by comparing the readme file for similarities in other
repositories. By such comparison, it is possible to detect clones and similar
repositories [33]. Jiang et al. [34] found that developers clone repositories to
submit pull requests, fix bugs, add new features, etc. The problem is that devel-
opers often do not create forks but project clones (a manual copy of a project),
but readme file is often unchanged.

e Community, as evidence of collaboration, was assessed by the number of con-
tributors in the project. The more developers participate in the project, the
more likely it is that the (testing) code will be written in a different style.

3.4.3 Searching Java Testing Frameworks

We were inspired by the work of Stefan et al. [30], who searched for Java performance
testing frameworks imports to assess performance testing practices. In our work we
are interested in the impact of testing frameworks on test writing, so we also searched
for imports of all testing frameworks in Table [I| (excluding generators and archived
projects).

Using the search for imports we obtained projects with different testing frame-
works. Only projects that contained the word “test” in the Java file body at least
once were queried. Because there was a large number of requests (37 per single
project), the project set was limited to 500 000, ordered by the number of Java files
containing the word “test” in its body, using the following request:

https://api.github.com/search/code?q="org.testng"+in:
file+language: java+repo:apache/camel

For each testing framework, we created a separate list of projects, sorted by the
occurrence of the word “test” in the project, to find projects with a high number of
test cases if possible. Original repositories of the searched framework were removed
from the analysis (e.g. when searching for JUnit, the original JUnit framework repos-
itory was excluded). Subsequently, the selection of relevant projects was performed
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according to the steps mentioned in the Section For some frameworks, e.g.
JEzampleEL which were created as a part of the research [35], no software repos-
itories with business focus were found and as a consequence, it was necessary to
include also example, homework, or cloned/forked ones, if the original one was not
publicly available.

3.5 Repository Analysis

Three different data sets were received by searching via GitHub API:

1. the word “test” in filename,
2. the word “test” in file content,

3. frameworks’ imports in file content.

The first four relevant and top projects (highest “test” or framework’s import string
occurrence) were manually investigated from each set to find out the test writing
practices. The projects were cloncdﬂ and to keep the consistency between the “test”
search and the manual analysis, the project was reverted to the timestamp of GitHub
API download using the following command:

git checkout ‘git rev-list -n 1
--before="<DOWNLOADED_AT>" "<DEFAULT _BRANCH>"¢

For each project, all files with the word “test” in content or filename, or frame-
work’s import in file content has been selected as possible option for manual analysis.
The project files that contained the largest occurrence of the word “test” and frame-
work’s import in their content (expected a higher number of tests) were analyzed
first. During the investigation of tests from different authors and projects, we cre-
ated an automated supportive method for detecting the number of test cases in
a file. It does not require compiling the code, such as for computing code coverage,
or building abstract syntax tree (AST), e.g. indexing in an IDE.

Regardless of the framework, it is advisable to investigate the count of the
following attributes of a source file containing the word “test”:

Annotations @Test: very popular mostly thanks to JUnit and TestNG.

Methods containing test in the beginning of the name: best practices lead
developers to use this convention (also for historical purposes).

Methods containing Test in the end of the name: an alternative of previous
one.

Public methods: possibly all public methods of a test class can be considered as
tests.

16 https://github.com/akuhn/jexample
7 git clone
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Occurrence of main: customized testing solutions are executed via main().
File path containing test: should relate to testing.

Classes containing $ in the name: the character $ in a class name mostly
denotes a generated codd™| that should not be analyzed.

Total number of test occurrence in file content: to reveal the relation be-
tween executable test cases and the word “test” presence in the content.

All listed metrics (counts of occurrence in a file) were saved for each analyzed
file. The pseudocode for collecting mentioned metrics can be seen in Listing []
(implementation available at GitHuHED. The presented algorithm is partly the
result of the study because it was created in parallel with the manual analysis. The
manual analysis complements the algorithm implementation and vice versa. This
algorithm was used to evaluate the test identification for each Java file containing
the word “test”. Subsequently, the automated identification was checked during
the manual analysis to determine the correct number of test cases and the metric
used for the calculation (e.g., the number of annotations and public methods can be
the same, but the relevant number of tests can only come from one of them). It is
necessary to identify the number of particular test cases to link a specific test case
with the unit under test (UUT) and its specific method. Each test case is likely to
represent a unique use case and thus unique information to enrich the production
code.

Algorithm predictTests (filePath)
Input: File path to analyze.
Output: List of statistical data

content := load filePath content and remove comments
nonClassContent := remove all class content, keep only content outside
of it
such as imports or class annotations
classContent := remove all content outside of the class block and keep
only
first —level methods without body using /\{(["\{\}]++]|(?R))=\}/
annotations := matches count of regex /@Test/ in classContent
startsWithTest := matches count of regex

/public +.xvoid *.x +[Tt]est [a—2A-Z\\d$\_]x =*\(/
in classContent
endsWithTest := matches count of regex
/public +.xvoid *.x +[a—2A—7Z$\_]{1}[a—=2A—Z\\d$\_]* Test =\(/
in classContent

publicMethods := matches count of regex /public +.xvoid +.x\(/
in classContent

includesMain := matches count of /public +static +void +main.x\(/
in classContent

hasDollar := if $ in filename, then true, else false

testInPath := if ”/test” in filePath, then true, else false

18 mttps://docs.oracle.com/javase/specs/jls/sell/html/j1s-3.html#j1s-3.8
19 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
AnalyzeProjectCommand.php
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if TestNG import found in content, then
if @QTest found in nonClassContent, then
testCaseCount := publicMethods
else
testCaseCount := annotations
else if JUnit4 import found in content, then
testCaseCount := annotations
else if JUnit3 import found in content, then
testCaseCount := startsWithTest
else if startsWithTest > 0, then
testCaseCount := startsWithTest
else if annotations > 0, then
testCaseCount := annotations
else
testCaseCount := 0

return annotations, startsWithTest, endsWithTest, publicMethods
includesMain , hasDollar, testInPath, testCaseCount

Listing 1. Pseudocode of the algorithm for gathering metadata and identified number of
tests in a Java source file

Gathered metadata about test case identification were analyzed from different
perspectives. Test classes with the highest number of the following attributes were
analyzed:

@Test annotations,
public methods with names starting with test,
public methods with names ending with Test,

main method,

ANl .

word “test” occurrence.
For framework-dependent searches there was an additional analysis of files with the

highest framework import occurrence in the content.

3.6 Hypothesis and Research Question Evaluation

Our null and alternative hypotheses are:

H,u 1 (H[I). There is not a strong correlation (r € (—0.8,0.8)) between the num-
ber of occurrences of the word “test” in the file content and the number of test cases
in projects with high number of “test” occurrence.

H,: 1 (H[[). There is a strong correlation (r ¢ (—0.8,0.8)) between the number of
occurrences of the word “test” in the file content and the number of test cases.

The method of calculating standard Pearson’s correlation coefficient [36] was
used to confirm or reject H[I] The correlation coefficient was calculated as follows:

r= Z(m_mw)(y_my) (1)
V(@ —mg)? 3o (y —my)?
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where m, is the mean of the vector z (number of “test” occurrences in file) and m,
is the mean of the vector y (number of identified test cases in file). We will consider
the Hyun [I] as accepted when r € (—0.8,0.8), as only absolute correlation higher
than 0.8 is commonly considered significant.

To address RQ (1], a class/file will be considered a customized testing solution if
the following conditions are met:

e Must include actual tests of production code.
e There is at least one occurrence of the word “test”.
e There is no framework import from Table [T}

o File contains main() function.

The conditions are based on Section 4.2 which shows that customized testing
solutions were mostly implemented as common java programs using main() function
without using any third party framework import.

4 RESULTS

Using the automated script all repositories’ files from Table [ were processed, 38 re-
positories and 170076 classes altogether, from which 803 classes and 20340 test
methods were manually investigated. Some special practices in terms of the structure
of the testing code or the developer’s reasoning were observed. The first 4 projects
from Table [ represent repositories with the largest occurrences of the word “test”
in the filename, another 4 in file content and other repositories represent the top
import occurrence of a particular framework. The whole dataset of searching “test”
via GitHub API can be found at Zenodd®|

4.1 Accuracy of Automated Test Case Identification

To evaluate the precision of the algorithm from Listing [T} results were compared to
manual test identification of 20340 test cases across all three datasets. Accuracy of
95.72 % for test cases detection was achieved by automated identification considering
only test methods, i.e., 95.72 % of all test cases were correctly identified. Considering
all 28 975 methods of manually analyzed files (with non-testing ones) a total accuracy
of 96.97 % was achieved with the sensitivity of

L true positives 19600
Sensitivity = = = 0.9968 2
cnswenty true positives + false negatives 19600 + 62 )
and specificity of
t ti 8498
Specificity = [e Tiegarnues =0.9125.  (3)

true negatives + false positives ~ 8498 + 815

20 https://doi.org/10.5281/zenodo. 4566198
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. Analyzed Analyzed Java
Repository Framework Classes Tests KLOC Ta
A M A M
openjdk/client testng, junit 30410 130 30410 1661 5149 20798
SpoonLabs/astor junit 30331 36 30331 1548 2338 13324
apache/camel junit 10438 81 10438 625 1240 6847
apache/netbeans testng, junit 13056 78 13056 1627 5009 11908
JetBrains/intellij-community testng, junit 20375 49 20375 4805 3842 13630
SpoonLabs/astor testng, junit 30331 44 30331 5883 2338 13324
corretto/corretto-8 testng, junit 13688 10 13688 1659 3638 10792
aws/aws-sdk-java junit 28574 18 28574 302 3680 20528
wildfly /wildfly arquillian 5109 24 5109 123 548 3553
eclipse-eedj/cdi-tck arquillian 4758 30 4758 139 97 2748
resteasy/Resteasy arquillian 2821 13 2821 144 220 1675
keycloak /keycloak arquillian 1681 16 1681 104 396 1286
jsfunit/jsfunit cactus 222 13 222 125 21 142
bleathem/mojarra cactus 737 16 737 250 171 556
topeoder-platform cactus 1635 8 1635 42 366 1199

/tc-website-master
apache/hadoop-hdfs cactus 325 4 325 20 101 282
zanata/zanata-platform dbunit 770 21 770 171 197 554
B3Partners/brmo dbunit 145 18 145 37 47 106
gilbertoca/construtor dbunit 145 18 145 64 24 53
sculptor /sculptor dbunit 153 11 153 101 26 103
geotools/geotools groboutils 3424 5 3424 5 1272 3659
notoriousre-i-d /ce-packager groboutils 107 11 107 75 46 91
tliron/prudence groboutils 16 2 16 3 13 11
MichaelKohler/P2 jexample 36 12 36 53 4 24
akuhn/codemap jexample 132 15 132 286 41 112
wprogLK/TowerDefence ANTS jexample 17 3 17 50 9 12
rbhamra/Jboss-Files needle 44 21 44 30 5 30
akquinet/mobile-blog needle 19 10 19 33 2 10
s-case/s-case needle 46 15 46 13 39 33
dbarton-uk/population-pie needle 7 6 7 16 1 4
abarhub/rss openpojo 26 2 26 3 6 20
BRUCELLA2 .

/Prescriptions-Scolaires openpojo % 19 % 40 10 18
jpmorganchase/tessera openpojo 382 8 382 12 45 234
tensorics/tensorics-core openpojo 161 3 161 1 24 85
O’a}liifiﬁiifﬁ‘;ﬁfier jgiven 21 1 21 33 2 16
eclipse/sw360 jgiven 175 4 175 51 56 161
Orchaldir .

/Fantasy WorldSimulation Jetven 54 13 54 198 7 37
kodokojo/docker-image-manager  jgiven 11 5 11 8 3 8
Sum 170076 803 363730 20340 31033 127973

Legend: A — processed automated; M — investigated manually; KLOC — kilo of lines of code;
T4 — average time of automated test case detection in ms.

Table 3. Statistics of the investigated repositories

Most false positives and false negatives occurrences were caused by customized test-
ing solutions, e.g., when tests were performed directly from the main() function by
calling methods of the class. If the naming conventions of the called (testing) meth-
ods were not governed by the principles of frameworks (e.g., prepending method
name with “fest” or using public methods), not all test cases were detected in
an automated way.
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4.2 Correlation Between the Number of the Word “test”
and the Number of Test Cases in a Class

The proposed algorithm was used to identify all tests in all Java classes of projects
from Table f] The script was used for all Java files that contained string “fest” in
the file content or the filename (in total 170076 files). Figure [3|shows the correlation
with the linear regression line of the word “test” and the number of test cases in
a particular class. A standard Pearson’s correlation coefficient of » = 0.655 was
reached (statistical significance p = 0.0, rounded on 5 decimal places), that means
there is a weak correlation when considering absolute threshold a@ = 0.2 defined
in Section B:6] Nevertheless, from the perspective of finding projects containing
tests, this technique is beneficial and can help future experimenters to filter projects
containing tests much faster. Because projects have different numbers of test classes
and use different frameworks, the detailed ratio of the word “test” occurrence and
test case presence per project can be found at GitHubEl.

5000 ~

4000 A

3000 ~

2000

1000 ~

Number of "test" occurrences in the file content

0 200 400 600 800 1000 1200
Number of test cases in the file

Figure 3. Correlation of the word “test” presence and number of test cases for analyzed
classes by automated script

Due to existing research [19] that identified test files using searching “test” in
the file path, when limiting our results to files containing “test” in the path (120907
files) the correlation coefficient of r = 0.6649 was reached. On the other hand, 49 169
classes with 3855 test cases were discarded. Limiting results to files containing
“test” in filename (74530 files), we reached correlation coefficient » = 0.7004 with

2l https://github.com/madeja/unit-testing-practices-in-java/blob/master/
correlation-boxplot.png
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loss of 95546 classes and 17 440 test cases. By any limitation the correlation did not
significantly change, therefore, to find as many test cases as possible it is convenient
to search for the word “test” in the file content.

Occurrence of the function main without the third party testing framework (more
explained in Section was detected in 26205 (15.41 %) classes containing the
word “test” in their content. The proposed algorithm in Section B.5 successfully
identified test cases in only 6% classes of this set. Because main tests make up
a fairly large proportion and the identification of test cases is not clear, it is necessary
to investigate this testing style deeper in the future.

H[1} There is a strong correlation (r ¢ (—0.8,0.8)) between
the number of occurrences of the word “test” in the file content
and the number of test cases.

We accept Hyun [[] and reject Hyy [[ because only weak Pearson’s correlation
coefficient r = 0.655 was achieved in general. In some projects, when the
correlation was calculated for each project separately, a significant correla-
tion was achieved but so far no relationship has been found concerning the
framework, the number of the word “test” presence in the content, or other
dependencies.

4.3 Efficiency of the Proposed Automated Test Case Identification

Executing a full code analysis, e.g. in an IDE, of a large project with thousands of
kilo of lines of code (KLOC), is a time-consuming task. Such example is the project
openjdk/client from Table[3] To get faster feedback about tests in a project, the
proposed algorithm was used for static source code analysis. Because the proposed
automated algorithm should run as a part of an integrated development environ-
ment (IDE) extension in the future it should be fast enough. To emulate a similar
environment that a developer can use, a laptop with 2.3 GHz Dual-Core Intel Core
i5 CPU and 8 GB 2133 MHz LPDDR3 RAM was used. In Table[3] the average time
(T4) of automated analysis executed 10 times can be seen. The average time of
execution was 158ms per KLOC, which authors consider as a satisfactory response
time in terms of user experience for use in an IDE extension.

4.4 Revealed Testing Practices

In related work (Section [2]) there are best practices that developers can follow and
therefore can be expected in the code. During the manual investigation of mul-
tiple repositories containing tests, we identified special testing practices used by
developers, which are described in the following paragraphs. The listings that are
given as examples come from the analyzed repositories, but the code was simpli-
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fied for presentation purposes. Code listings refer to GitHub? repository of this
paper.

4.4.1 Testing Using Third Party Frameworks

Regular test. Tests that follow best practices and avoid test smells fall into this
category. They represent the most of occurrences in the projects and since
these approaches are already described in the available literature [7, 8, @], this
group will not be given detailed attention. However, the basic aspect of such
tests is that information about context and evaluation are available directly in
the particular test method (considering also test setup, teardown, and fixtures),
thanks to which the test comprehension is straightforward.

Master test. This testing code style represents test classes which contain only one
executable test method (see GitHubEI). JUnit will consider only the all()
method as a test case because it is annotated with @Test annotation. Other
methods are considered auxiliary ones. The problem with such a notation is
the complexity of test comprehension. If the test fails, the developer only has
information that the test case titled all failed but does not know what the test
should have verified, what data was used, etc.

According to the best practices, it should be clear from the test name what the
test verifies. In this context, from a semantic point of view, it is possible to
consider methods as test cases on lines 1-8 (here from L1-8). The mentioned
methods are crucial in terms of failure and understanding of the test, and from
the method name, it is also clear what the test verifies. Another disadvantage
of these test types is the assertion roulette test smell [I0] because iterations of
the test over the input data make it difficult to determine which data caused the
test failure and whether the input data do not interfere with each other between
the tests.

Reverse proxy test. If a separate test is written for each use case, the recom-
mendations are met, but this does not mean that it will be easy to comprehend.
Some tests call one auxiliary method in multiple tests and the result is evaluated
in the auxiliary method. According to the test evaluation manner, they can be
divided into:

1. Result evaluation via method name (see GitHubED.
2. Result evaluation via internal object state (see GitHubE[).

22 https://github.com/madeja/unit-testing-practices-in-java

23 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_masterTest. java

“Y https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_reverseProxyMethod. java

%> https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_reverseProxyObject. javal
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https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_masterTest.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_reverseProxyMethod.java
https://github.com/madeja/unit-testing-practices-in-java/blob/master/examples/c_reverseProxyMethod.java
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The first approach is much more difficult to comprehend due to the high degree
of abstraction. It is not clear directly from the test method code (L6-8) what is
compared during the test because the input data are loaded from a file deter-
mined by the test method name (L3). In the JetBrains/intellij-community
project, from which the example is given, the doTest () method is the general
one and it was necessary to investigate multiple classes to comprehend how tests
are evaluated. At the same time, too generic auxiliary method can result in the
general fixture test smell.

The second approach is similar to the previous one but uses the internal state
of an object (that is initialized before a particular test during test setup) or the
enum type with different method implementations. The problem may arise when
object attribute or method input parameter change the control flow. If the same
test is called with different object state or input data, the test logic does not
change and therefore it is the same test. However, if the control flow changes
in the test, e.g. by some variable value, it can be considered as a separate test
(different flow, different test). If the same help method is called more than once,
it may behave like two different test cases, which contradicts best practices and
makes the comprehension difficult.

Multiple test execution. Server-side applications test different use cases, which
require an action after the execution of base functionality, e.g. whether the right
content is shown after main test execution (see GitHubED. Because of using
JUnit3 in the example, every public method prepended by “test” is considered
as test case, so testEcho () is executed twice; as a single test case and as a part
of testA4JRedirect().

4.4.2 Customized Testing Solutions

Custom testing practices are classic Java programs executable via main() function,
whose task is to verify the functionality of the production code. Such tests are
often written due to the possibility of configuring the execution via command line
parameters, which allows variability of test execution. On the other hand, tests
should not be so environmentally dependent that they need to be configured to such
an extent. The second reason for writing such tests is that they make the code with
a large number of test cases more readable. Test methods are called directly from
main() and, if necessary, also the environment setup is performed in this function.
The following ways of calling test methods and objects were observed (examples can
be found at GitHub@:

Calling methods one by one: all testing methods are manually called from
main() together with parameters.

% https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_multipleExecution. java
“f https://github.com/madeja/unit-testing-practices-in-java
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Calling methods according to input data: by iterating the test data, specific
tests are called based on the current data.

Helper function that returns an array of test cases: the helper method re-
turns an array of instances created from abstract classes, whereas the abstract
methods (which represent test cases) are implemented during the instance cre-
ation. The main() contains an iteration over the array of object instances.

Iterating values of enum: similar to the previous one, but it iterates over enum
values. When creating the enum, the method of test class is implemented and
the data is set. The test class has its own implementation of a method and state
in each iteration.

Calling constructor: in the main function the testing class instance is created
and the tests are called from the constructor.

There is a problem of how to identify such tests using an automated way and
how to determine the number of tests in such a class. The main() function also
occurs in classic tests (e.g. to run test outside of IDE or without a build automation
too]E[)7 e.g. based on JUnit or TestNG. The function can also be found in modified
runners of testing frameworks. To clearly distinguish the presence of a customized
solution without any framework, it is possible to check the presence of the framework
import — if a class contains the main () function and an import together, it is a runner
or regular test based on the framework, not a customized solution.

Other interesting ways of writing customized tests were also observed. For exam-
ple, in the openjdk/client repository, there were tests for trichotomous relations for
which a custom @Test annotation was implemented (see GitHub?)). The annotation
is used to indicate the test and, at the same time, to define the type of comparison
in the method (L1, L4). Thanks to the word “test” usage, it is possible to detect the
correct number of tests, in a similar way as for JUnit. In this example, the impact
of third party framework on the developer’s customized solution is visible. There
are many tests in the repository using standardized frameworks, therefore the usage
of @Test annotation is a logical way of defining a test case. Writing tests manually
using a framework would not be as effective and would be difficult to comprehend.
On the other hand, such tests in large iterations can easily give rise to the assertion
roulette test smell, which makes it difficult to identify a test failure.

While in the previous case the test was evaluated using asserts, some approaches
have their own error handling. e.g. in the same repository for all ResourceBundle
classes, a helper test class RBTestFmwk has been implemented, which represents
a custom framework and test classes inherit from it. The framework provides the
processing of the main() function parameters, performing tests, and processing re-
sults. The test methods to be performed are defined as input parameters. The

% https://junit.org/junit4/faq.html
2 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_mainl. java
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disadvantage is that when performing such tests, it is necessary to know the inter-
nal structure of the class, at least method names that need to be performed.

In general, the following risks were observed by analyzing other main testing
methods:

Execution interruption: If a test fails, execution may be completely interrupted
and no further tests will be performed (e.g. raised exception).

Failure identification: Because testing is often performed repeatedly over differ-
ent data, it can be difficult to identify the exact cause of test failure and in some
cases may require debugging the test code.

Dependence: Tests often use the same sources or data for testing and may affect
the results of other tests. Also, the tests are often order-dependent and the test
order randomness was not found in any repository.

Occurrence of the main() function without any third party testing framework
was detected in 26205 (15.41 %) classes containing the word “test” in their content.
The proposed algorithm in Section [3.5] successfully identified test cases in only 6 %
classes of this set. The set can contain not only testing code, but also a production
one. Because such classes make up a fairly large proportion and the identification of
test cases is not clear due to the high diversity of writing such tests, it is necessary to
carry out an extensive study dealing solely with this issue, to find a way to precisely
identify such test cases.

RQ [} How many testing classes are implemented as cus-
tomized testing solutions without using any third party frame-
work?

A total of 15 % of classes were identified as customized testing solutions. The
diversity of such tests is very high, therefore, future investigation is needed.
This high incidence is probably caused by the nature of big projects with
a high occurrence of the word “test” in file content and it is assumed the use
of third party frameworks should be more common in smaller projects.

5 THREATS TO VALIDITY

Internal validity: The study relied on GHTorrent databank and GitHub API
search algorithm to identify relevant projects. Because only projects with Java
as a primary language were selected, testing practices in projects, where Java
was not a major language could have been lost. Test classes that did not use
the word “test” to indicate a test case were also lost. Searching for test cases
was based on best practices and rules of the identified frameworks, but there
may still exist other ways of how to identify them. The manual classification
was based on observers’ experiences and identification of practices out of the
generally known recommendations (best practices, test smells, etc.).
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Test case detection results were compared to manual ones with an accuracy
of 96.97%. As stated, it is necessary to further investigate customized testing
solutions that use regular Java programs to test the production code. The
implementation of such programs is often diametrically different and it is difficult
to identify test cases. Real test cases were identified by the script in 6 % of classes
containing main() function.

External validity: To provide generalizable results, 20k of test cases were ana-
lyzed manually and 170k by an automated way. Also, the meaning and oc-
currence of the word “test” was analyzed for different natural languages and
test frameworks. The results can be used to identify test cases in Java-based
projects or projects with a different programming language with the usage of
similar testing conventions. Despite the presented observations, our findings, as
is usual in empirical software engineering, may not be directly generalized to
other systems, particularly to commercial or to the ones implemented in other
programming languages.

6 CONCLUSION AND FUTURE WORK

This paper presented an empirical study of Java open source GitHub projects to
better understand how to identify test cases and their exact location in the project
without the need for deep and time-consuming dynamic code analysis. An algorithm
based on searching the word “test” in the repository files content or filenames was
proposed and, at the same time, the unusual testing practices were investigated. In
total 20 340 test cases in 803 classes were investigated manually and 170k classes in
an automated way. We summarise the most interesting findings from our study:

e There is not a strong correlation between the number of occurrences of the word
“test” and the number of test cases in a class.

e Searching for the word “test” in the file content can be used to identify projects
containing tests.

e Using static file analysis, the proposed algorithm can correctly detect 97 % of
test cases.

e Approximately 15 % of the analyzed files contains “test” in the content together
with main() function whose represent regular Java programs that test the pro-
duction code without using any third-party framework. The success rate of
identification of such test cases is very low because of implementation diversity.

Several test writing styles were found and classified, along with code samples of
the analyzed repositories. Possible code comprehension defects were also mentioned.
Based on these findings the following main contributions of this paper are concluded:

e Possibility of fast and automated test case identification together with the exact
location in the project.
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e Finding of correlation coefficient r = 0.655 between the number of occurrences of
the word “test” and the number of test cases in a file, which allows to threshold
projects or files for similar analysis.

e Overview of observed testing practices concerning the existence of customized
testing solutions with an emphasis on places in testing code usable for mining
information about the production code.

As future work, we plan to find a solution for accurate identification of test
cases in customized solutions, probably based on training a machine learning model
with manually labeled test cases of such testing solutions. We believe that studying
testing practices can help comprehend the production code more easily. Gathered
data could be used for training a machine learning model to automatically recognize
tests by the structure and nature of the code. At the same time, we would like to
focus on mining information from tests that could support the production source
code comprehension and streamline the development process.
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