
Computing and Informatics, Vol. 40, 2021, 648–689, doi: 10.31577/cai 2021 3 648

MODELLING AND CONTROL OF RESOURCE
ALLOCATION SYSTEMS WITHIN DISCRETE EVENT
SYSTEMS BY MEANS OF PETRI NETS – PART 1:
INVARIANTS, SIPHONS AND TRAPS IN DEADLOCK
AVOIDANCE

Frantǐsek Čapkovič
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Abstract. Solving the deadlocks avoidance problem in Resource Allocation Sys-
tems (RAS) in Discrete-Event Systems (DES) is a rife problem, especially in Flexible
Manufacturing Systems (FMS), alias Automated Manufacturing Systems (AMS).
Petri Nets (PN) are an effectual tool often used at this procedure. In principle, there
are two basic approaches how to deal with deadlocks in RAS based on PN. They
are listed and illustrated here. First of the approaches is realized by means of the
supervisor based on P-invariants of PN, while the second one is realized by means
of the supervisor based on PN siphons. While the first approach needs to know the
reachability graph/tree (RG/RT) expressing the causality of the development of the
PN model of RAS, in order to find (after its thorough analysis) the deadlocks, the
second approach needs the thorough analysis of the PN model structure by means
of finding siphons and traps. Next, both approaches will be applied on the same
PN model of RAS and the effectiveness of the achievement of their results will be
compared and evaluated. Several simple illustrative examples will be introduced.
For the in-depth analysis of the problem of deadlock avoiding, next Part 2 of this
paper is prepared, where the newest research will be introduced and illustrated on
more complicated examples. If necessary (because of the limited length of particular
papers), also the third part – Part 3, will be prepared.
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1 INTRODUCTION

This paper has the character of an overview paper. It is conceived as the first part
of a two-part paper (maybe also a three-part, if it will be needed). Its main aim is to
introduce and describe principled terms and two basic approaches to the deadlock
avoidance in Resource Allocation Systems (RAS) in Discrete-Event Systems (DES)
as well as to present simple illustrative examples. The intended Part 2 of this paper
(possibly also the Part 3, if necessary), to solve more complicated cases of RAS
using newer methods, as well as comparing the mentioned two approaches, will be
submitted later.

Flexible Manufacturing Systems (FMS), lately also called Automated Manufac-
turing Systems (AMS), represent a class of DES. They consists of various resources
like machine tools, robots, buffers, transport belts, automatically guided vehicles
(AGV) and so on. The resources are usually shared by two or more subsystems
of AMS/FMS. Because of a limited number of resources different kinds of prob-
lems arise during the system operation, especially deadlocks [46]. Deadlocks are
undesirable and unfavorable because they disrupt the course of the technological
process. Due to deadlocks, either the entire plant or some of its parts remain stag-
nate. In such a way the primal intention of the production cannot be achieved. Such
a situation can be, especially from the practical view, understood as a very unsafe
form of non-determinism. Consequently, the approaches how to deal with this are
sought. The approaches employing Petri Nets (PN)-based models of AMS/FMS are
often used [52]. Besides the approaches based on the analysis of PN reachability
trees/graphs (RT/RG), the approaches based on utilizing PN siphons are more fre-
quently used. Moreover, in the recent years siphon-based approaches even started
to prevail.

DES are systems discrete in nature. Such a system remains in a real intact state
until it is forced to change this state as a consequence of the occurrence of a discrete
event. In this document, PN-based models of DES will be exclusively used.

1.1 Petri Net Structure

As to the structure, PN are bipartite directed graphs ⟨P, T, F,G⟩ with two kinds
of nodes – places pi, i = 1, . . . , n, and transitions tj, j = 1, . . . ,m, and also two
kinds of edges being directed arcs – fij ∈ Z≥0, i = 1, . . . , n, j = 1, . . . ,m, from
places to transitions (where Z≥0 is the set of non-negative integers), and gji ∈ Z≥0,
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j = 1, . . . ,m, i = 1, . . . , n, from transitions to places. In other words, fij and gji
represent weights of the directed arcs (i.e. their multiplicity).

Thus, P = {p1, . . . , pn} is a set of places; T = {t1, . . . , tm} is a set of transition;
P ∩ T = ∅, P ∪ T ̸= ∅, with ∅ being the empty set; F = {fij}i=1,n; j=1,m is
the set of the directed arcs from places to transitions (i.e. pi → tj), F ⊆ P × T ;
G = {gji}j=1,m; i=1,n is the set of the directed arcs from transitions to places (i.e.
tj → pi), G ⊆ T × P ; the set B ⊆ (P × T ) ∪ (T × P ), B ∈ Z, were Z is the set of
integers.

When nonzero elements of F , G are solely of value 1 the arcs are called ordinary,
when some of nonzero elements of F , G or all of them are greater than 1 the arcs are
called weighted. The sets F , G, B can be represented, respectively, by the incidence

matrices F ∈ Z(n×m)
≥0 , G ∈ Z(m×n)

≥0 , B ∈ Z(n×m) of the directed arcs. In general,

Z(a×b)
≥0 represents the (a× b) matrix of non-negative integers and Z(a×b) is the (a× b)

matrix of integers.
PN defined in such a way are called place/transition PN(P/T PN). PN are called

pure when they do not contain self-loops. PN are called ordinary when all weights
of their arcs are equal to one.

In general, PN places can be of three kinds:

1. operation places representing a progress in AMS/FMS;

2. fixed resources representing shared devices or elements (e.g. working tools);

3. variable resources representing e.g. availability of semi-products, parts, etc.

A transition t ∈ T is enabled in marking M , denoted by M [t⟩, if and only if
(verbally expresed by iff or symbolically by ⇔) ∀p ∈ P : M(p) ≥ F (p, t). Conse-
quently, when t is enabled in M , then t may yield (after its firing) another marking
M ′ where ∀p ∈ P : M ′(p) = M(p) − F (p, t) + G(t, p). This is denoted as M [t⟩M ′.
It means, that the enabled transition may be fired and partake of the PN marking
evolution. When t does not meet the above introduced condition, i.e. when ∀p ∈ P :
M(p) < F (p, t), it is disabled. Such t cannot be fired, i.e., it cannot share in the
marking development.

There exist specific transitions:

1. the source transition is a transition without any input place – it is uncondition-
ally enabled;

2. the sink transition is a transition without any output place – it consumes but
does not create any tokens.

1.2 Petri Net Dynamics

Besides the graph structure, PN have also dynamics (the PN marking evolution).
In an effort to make an analogy with the classical control theory, consider the PN
marking to be the state vector of the system being the PN model. Thus, the model
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can be expressed by the following constrained linear discrete integer system:

xk+1 = xk +B.uk, k = 0, 1, . . . (1)

F.uk ≤ xk (2)

where xk = (σk
p1
, . . . , σk

pn)
T with σk

pi
∈ Z≥0 is the state vector (marking) express-

ing the states of particular places (the number of tokens in pi) in the step k;
uk = (γk

t1
, . . . , γk

tm)
T with γk

tj
∈ {0, 1} (where 0 means the disabled tj, while 1 means

the enabled tj) is the control vector in the step k; F (frequently being named as
Pre), GT (frequently being named as Post) are, respectively, the incidence matrices
corresponding to sets F , G; B = (GT − F) is the incidence matrix being the struc-
tural matrix of the system (1)–(2); x0 is the initial state vector (initial marking).
Thus, the state vector xk in (1) corresponds to M(p) mentioned above.

In the following, we will use the symbol N for the PN introduced above, and
the term marking of PN places as an alternative to the state of the places (i.e. the
number of tokens placed in them). In other words, under PN we will understand
(N,x0). Under the symbol R we will mean the set of reachable states including the

initial state x0. Sometimes R will be expressed by a matrix Xr ∈ Z(n×Nv)
≥0 , whose

columns are particular reachable state vectors with Nv being the number of the
reachable state vectors (including the initial state x0). The columns of Xr represent
the particular nodes of RT corresponding to the PN in question.

2 PRELIMINARIES

Let us introduce here the basic terms representing important terminology and prop-
erties of the PN models of AMS/FMS, which will be used in this paper.

2.1 Siphons, Traps, Deadlocks, Invariants, Repetitive
and Characteristic Vectors

Definition of Siphons and Traps. There exist many papers where siphons and
traps are defined – see e.g. [72, 84, 58, 60, 61, 92, 93, 54] and many newer ones
mostly written by Chinese authors [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40]. Siphons and traps are basic net structures of
PN [84] which allow important views on the behaviour of the modelled system as
well as on some implications on this behaviour.

For ordinary PN the definitions of siphons and traps are defined in many papers –
see e.g [72, 17, 78, 84, 1] and many other new ones mentioned above – as follows.
A nonempty subset S ⊂ P in N is called a siphon if •S ⊆ S•, i.e., if every transition
having an output place in S has an input place in S. In [72] and several other
older works the siphon is even identified with deadlock. However, at present it is
an obsolete understanding. A nonempty subset Q ⊂ P in an ordinary PN is called
a trap if Q• ⊆ •Q i.e., if every transition having an input place in Q has an output
place in Q.
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The illustration of the simple siphon and the simple trap is introduced in Fig-
ure 1.

a) b)

Figure 1. The a) siphon S and b) the trap Q inside a net N with the set of places P

As we can see, here •S = {t1}, S• = {t1, t2}, •S ⊆ S• while Q• = {t1},
•Q = {t1, t2}, Q• ⊆ •Q. The number of tokens in the siphon S remains the same by
firing t1 and decreases by firing t2. The number of tokens in the trap Q remains the
same by firing t1, but increases by firing t2.

Consequences of Siphons and Traps. In general,

1. the siphon behaviour is such that if it has no token in a state (marking) of N ,
then it remains without any token in each successor state. Siphons represent
a very important structural concept of PN. When all places in a siphon have
no token, all transitions connecting with the siphon cannot be firable any more.
Siphons are widely used to analyze PN liveness, and also to prevent deadlocks
in PN models of DES. The terms liveness and deadlocks are introduced in the
next paragraph;

2. the trap behaviour is such that if it has at least one token in a state (marking)
of N , then it remains marked under each successor state. It was proved in [72]
that the union of two siphons (traps) is again a siphon (trap).

The evident resume is that siphons are sets of places which, if become empty of
tokens, they will always remain empty for all reachable markings of the net, while
traps are sets of places which, if become marked, will always remain marked for all
reachable markings of the net.

Traps can also be useful in combination with place invariants (see Subsection 2.2)
to recapture information lost in the incidence matrix due to the cancellation of self-
loop arcs.

Deadlocks and Their Relation with Siphons and Traps. In some literary
sources – see e.g. [76] – is shown that each reachable marking of PN enables at least
one transition. In doing so it means that each siphon S of PN contains as a subset
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an initially marked trap. It was proved by the same author in [77] that a totally
deadlocked ordinary Petri net contains at least one empty siphon.

If every non-empty siphon of PN includes a (sufficiently) marked trap then (see
e.g. [84], but also many other authors) no dead marking is reachable. This is very
important finding.

A siphon (trap) is named to be minimal if it does not contain any other siphon
(trap). Minimal siphons provide a sufficient condition for the non-existence of dead-
locks.

A strict minimal siphon [27] is a siphon containing neither other siphon nor
a trap except itself. The sum of token numbers in S is denoted by M(S), where
M(S) =

∑
p∈S M(p). A subset S ⊆ P is marked by M if M(S) > 0. A siphon is

under-marked if ∄t ∈ S• which can fire.

The proper siphon is the siphon when the set of its predecessors is strictly
included in the set of its successors. It was shown in [11, 1] that in a deadlocked
PN model all unmarked places form a siphon. Thus, the siphon-based approach
for deadlocks detection checks if the net contains a proper siphon that can become
unmarked by some firing sequence. A proper siphon does not become unmarked if
it contains an initially marked trap.

Deadlocks and Liveness. The problem of deadlocks and their effective resolution
was studied for the first time in the 60’s [15, 16], in context of the multi-threaded
computation or multi-programming (emerging at that time). Of course, since that
time the deadlock theory, and especially the deadlock avoidance one, has been in-
tensively developed – see e.g. [46, 78, 79, 80, 81, 75, 74, 73, 82, 86, 87] and especially
[63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92,
93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53].

Simply said, the deadlock is the state of N if all transitions t ∈ T are disabled.
N is named to be deadlock-free when none reachable state x ∈ R is a deadlock.
Thus, the deadlock is a state of N when DES modelled by PN comes to a state in
which no further changes are possible. In other words a deadlock is [70] a subset of
places which, if none of them is marked at the beginning of the Petri net activity,
will remain unmarked in all subsequent evolution. It can also be said that a subset
of places I ⊂ P is a deadlock iff (if and only if) each transition which is input
transition of a place in I is also output transition of a place in I.

It was said in [26] that if M0 is initial marking of N then in (N,M0) is a deadlock
only on the condition that t ∈ T : M0[t⟩ is never found.

In general, deadlocks occur in DES (especially AMS/FMS) when processes,
which want to run (and should run), hold insufficient resources, as a result of which
the system comes to a standstill. This is the acute problem which should be solved
by means of PN based RAS.

A N is said to be live, more precisely M0 is said to be a live marking for N , if (no
matter what state (marking) has been reached from M0) it is possible to ultimately
fire any transition of N by progressing through further firing sequence. A live PN



654 F. Čapkovič

guarantees [72] deadlock-free operation, no matter what firing sequence is chosen.
More details about five kinds of liveness can be found in [72]. Namely, a transition t
in (N,M0) is said to be:

1. dead (lived on the level 0 – L0 live) – if it never be fired in any firing sequence
in L(M0);

2. potentially fired (L1 live) – if it can be fired at least once in some firing sequence
in L(M0);

3. L2 live – when for k > 0 it is fired at least k-times in L(M0);

4. L3 live – if it appears infinitely often in some firing sequence in L(M0);

5. L4 live or live if it is L1 live for every marking M in R(M0).

The simple example of the live PN together with its reachability tree (RT) is
given in Figure 2 while the simple example of the nonlive PN together with its
reachability tree (RT) is given in Figure 3.

a) b)

Figure 2. a) The live PN and b) its RT

As we can see in Figure 2 b), no state discontinues the course of the modelled pro-
cess. On the other hand, in Figure 3 b) we can see that the states x1 = (0 1 0 1 0 0)T ,
x6 = (0 0 1 0 1 0)T and x7 = (0 0 0 1 0 0)T do this. These states are deadlocks.
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a) b)

Figure 3. a) The nonlive PN and b) its RT

Simply said, a transition t of N is said to be live iff for all reachable states
(markings) xr ∈ R there exists a sequence of transition firings which results in
a marking in which t is enabled. The N is said to be live if all its transitions are
live. Liveness of PN implies absence of deadlocks in the modelled DES. When RT
has a node (vertex) without a successor, then PN is not live. As to RT, the Koenig
lemma [14] is also useful. It says: “Let RT be a tree of finite degree (i.e., every
vertex has a finite number of successors) and with an infinite number of vertices.
Then RT has an infinite branch.”

In PN theory siphons and traps have been introduced [11] to characterize dead-
locks of PN. Simultaneously, they can help us at finding deadlock avoidance methods.

Other details about behavioral properties of liveness are summarized in [18].
How to deal with the problem caused by the deadlock, that is a cardinal question.

There exist three basic approaches for RAS (see e.g. [19, 74, 73]) how to deal with
deadlocks and problems pertinent to them:

1. deadlock detection and recovery – i.e., to detect deadlock occurrences and restore
the systems operations with recovery procedures;

2. deadlock prevention – i.e., to prevent circular wait conditions using offline strate-
gies, mutual exclusion,

3. deadlock avoidance – i.e., to prevent deadlock situation applying online policy
control of resource allocation.

In doing so there are two principles how to create related methods, namely by means
of digraphs or by means of PN. Their comparison can be found in [20].

In this paper, solely the PN-based approaches will be used.
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2.2 Invariants, Repetitive and Characteristic Vectors

Invariants. There are two kinds of PN invariants: T -invariants and P -invariants.
It is well known – see e.g. [72] – that the T -invariant of PN is defined as the (m× 1)
vector w for which B.w = 0, w ̸= 0, where 0 is the (n×1) vector of zeros, while the
P -invariant is defined as the (n× 1) vector y for which BT .y = 0, y ̸= 0, where 0 is
the (m× 1) vector of zeros. When we want to compute so called proper invariants
we have to ask w > 0 and y > 0, respectively. What is important is that:

1. The T -invariant, if it exists at all, will give the number of times different tran-
sitions should be fired in order that a particular marking may be reproducible.

2. From the definition of P -invariants (yT .B = 0, i.e. yT .xk
!
=yT .x0) it follows that

for all reachable markings xk ∈ R, the weighted sum of tokens is a constant.
Let I is a P -invariant. The set PI ⊂ P is called the support of I [45] iff PI =
{p ∈ P | I(p) ̸= 0}. I is called non-negative iff I ≥ 0. I ≩ 0 is called minimal
iff there exists no P -invariant I′ ≩ 0 with I′ ≨ I. Here, the symbol ≩ means
greater-than but not equal and the symbol ≨ means less-than but not equal.

For the example of PN given in Figure 2 invariants (Figure 2 a)) and proper
invariants (Figure 2 b)) are as follows:

I1 = (0, 0, 0, 1, 1, 1, 0, 0)T ,

1Iprop = (0, 0, 0, 1, 1, 1, 0, 0)T ,

I2 = (1, 1, 1, 0, 0, 0, 0, 0)T ,

2Iprop = (1, 0, 1, 0, 1, 0, 1, 1)T ,

I3 = (0,−1, 0, 0, 1, 0, 1, 1)T ,

3Iprop = (1, 1, 1, 0, 0, 0, 0, 0)T .

Consequently, when we use the proper invariants being considered to be invari-
ants, the supports are the following:

PI1 = {p4, p5, p6},

PI2 = {p1, p3, p5, p7, p8},

PI3 = {p1, p2, p3},

while for PN displayed in Figure 3 there exists only one invariant, one proper
invariant equal to this invariant, and one support invariant as follows:

I1 = (0, 0, 1, 1, 0, 0)T ,

1Iprop = (0, 0, 1, 1, 0, 0)T ,

PI1 = {p3, p4}.
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Simply said, P -invariants are the sets of places whose weighted token sum re-
mains constant for all possible markings, while T -invariants are the sets of firings
that will cause a cycle in the state space, meaning the comeback to the original state
(markings). The set of nodes corresponding to non-zero entries of an invariant is
called the support of this invariant I, written as supp(I). An invariant I is called
minimal if ∄ I′ : supp(I′) ⊂ supp(I), i.e., its support does not contain the support
of any other invariant I′, and the greatest common divisor of all non-zero entries of
I is 1.

Characteristic Vectors. Let, in general, the P -vector means a vector expressing
states of places (number of tokens inside them) – in (1)–(2) it is the state vector x –
and the T -vector means a vector expressing states of transitions (enabled, disabled) –
in (1)–(2) it is the control vector u.

Let S ⊆ P be a subset of places of N . The (n×1) vector Sσσσ is called [58, 51, 91]
the characteristic P -vector of S if ∀p ∈ S : Sσp = 1; otherwise Sσp = 0. The (m×1)
vector Sγγγ = BT .Sσσσ is called the characteristic T -vector of S.

The physical interpretation of the T -vector of a subset of places is the following:

1. Sγ(t) > 0 means that Sγ(t) tokens are put into S when the transition t fires;

2. Sγ(t) = 0 means that the number of tokens in S does not change after t fires;
(iii) Sγ(t) < 0 implies that |Sγ(t)| tokens are removed from S when t fires.

Repetitive Vectors. In [72] the term repetitiveness was also introduced. Namely,
N is said to be (partially) repetitive if there exists a marking x0 and a firing sequence
U = {ta, tb, tc . . . } from x0, i.e. x0[ta⟩x1[tb⟩x2[tc⟩ . . . , such that every (some) transi-
tion occurs infinitely often in U . It was proved there that N is (partially) repetitive
iff there exists an (m × 1) vector q of positive (non-negative) integers such that
B.q ≥ 0, q ̸= 0. Such vector q is named as the repetitive vector.

A repetitive vector q is reachable [23] iff there exists a reachable state (marking)
x ∈ R that allows firing a sequence U whose corresponding characteristic T -vector
is q.

The System Evolution. The (1)–(2) represent the discrete event system – DES.
For completeness’ sake it is necessary to introduce also the procedure of the marking
development in PN (i.e. the system evolution).

Let us develop the system (1) from x0 to xq

x1 = x0 +B.u0 (3)

x2 = x1 +B.u1 = x0 +B.u0 +B.u1 = x0 +B.(u0 + u1) (4)

. . . (5)

xq = x0 +B.(u0 + u1 + · · ·+ uq−1) = x0 +B.

q−1∑
i=0

ui (6)
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By the way, the vector represented the sum in (6) is called (in general) the Parikh’s
vector. Its entries show how many times the particular transitions are fired during
the system evolution. Denote this vector in our case as Pq. Now, develop analogically
the system from xq to xr

xq+1 = xq +B.uq (7)

xq+2 = xq +B.uq +B.uq+1 = xq +B.(uq + uq+1) (8)

. . . (9)

xr = xq +B.(uq + uq+1 + · · ·+ ur−1) = xq +B.

r−1∑
i=q

ui (10)

Denote the vector represented the sum in (10) as Pr. Hence,

xr = x0 +B.(Pq + Pr). (11)

The Parikh’s vectors Pq, Pr represent, respectively, not only the firing sequences
U1 (from x0 to xq) and U2 (from xq to xr) but also how many times particular
transitions are fired during the developments (6) and (10). From the point of view
of the state xq we can speak about the input firing sequence U1 and output firing
sequence U2 or about Pq and Pr, respectively.

A live PN guarantees deadlock-free operation, no matter what firing sequence
is chosen. Moreover, equations introduced above represent the analytical expression
of the principle of causality in PN.

2.3 Controllability Conditions for PN vs. Invariants and Siphons

An ordinary net N is said to be completely controllable if any marking is reachable
from any other marking. Details how invariants and siphons make possible to control
DES represented by PN models are introduced in following sections.

In case of control synthesis based on P -invariants, the permissive controller
(supervisor) have to fulfill some conditions imposed on mutual relations among states
of particular PN markings (states) in order to avoid deadlock identified by means
of the thorough analysis of RT (RG).

In case of siphon-based approach the thorough structural analysis of PN is per-
formed. Then, the properties of found siphons are utilized at the control synthesis.
Although this topic was opened long ago [72, 1, 2] it is still very live – see recent
contributions [7, 24, 25, 51, 9, 10, 63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40]. The basis of such an approach to control consists
in avoiding of emptying (unmarking) of places creating the siphons. A siphon in
ordinary PN is said to be controlled [24] if it cannot be empted (unmarked) at any
reachable marking.
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If PN is generalized, owing to the weights of arcs, the non-emptyability of
a siphon is not sufficient for the absence of dead transitions, and the controllability
of a siphon is much more complex.

Elementary and Dependent Siphons. The overview and definitions of different
kind of siphons in PN are given in [58]. The motivation to propose the concept of
elementary siphons is to control dependent siphons by explicitly controlling their
elementary siphons only.

Elementary siphons play an important role in the development of deadlock pre-
vention approaches, that lead to structurally simple supervisors enforcing liveness,
based on monitors.

The set ΠE = {Sα, Sβ, . . . , Sγ}, {α, β, γ} ⊆ Z, is called the set of elementary
siphons if {γγγα, γγγβ, . . . , γγγγ} is a linearly independent maximal set of the matrix SΓ
consisting of T -vectors Sγγγ – i.e. SΓ = BT .SΣ, where SΣ is the matrix consisting of
P -vectors Sσσσ.

The T -vector Sγγγ is associated [91] with each siphon S such that Sγ(i) is the num-
ber of tokens gained in or lost from S by firing the transition ti once. A dependent
siphon S0 strongly depends on elementary siphons S1, S2, . . . , Sk if

Sγ(0) = a1.
Sγ(1) + a2.

Sγ(2) + · · ·+ ak.
Sγ(k) (12)

with ai ∈ Z≥0, i = 1, 2, . . . , k, being positive integers and Sγ(k) being nonzero entries
of Sγγγ. Such dependent siphons are named as the strongly dependent siphons (SDS).
S0 is a weakly dependent siphon (WDS) if some ai are negative. The T -vectors
for elementary siphons are mutually independent. More details can be found e.g.
in [47, 48, 49, 50, 51] as well as in [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40].

More details can be seen e.g. in [47, 48, 49, 50, 51] as well as in a great deal of
applications in [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40], where also newest approaches to the siphon-based control of AMS/FMS
and RAS are presented as follows.

In [56] the new controllability condition for siphons is presented. In [59] the
necessary and sufficient condition of a kind of PN (namely GS3PR) was proved.
In [60, 62, 64] important findings in the area of robust deadlock control of AMS
with unreliable resources are published. In [53, 50, 49, 48, 47, 91] the application
of elementary siphons, being topical at present, is broadly investigated. In [55,
28, 29, 30, 31, 32, 33] the very useful iterative solution how to avoid the need of
enumerating all the states or siphons using mathematical programming techniques
were published. In [35, 36] also distributed resolution approaches to solving the
deadlock avoiding were published. In [37] the very useful approach to simplification
of the supervisor structures was published. In [37] the supervisor synthesis and
performance improvement in an integrated way are also presented. In the works [38,
39, 40] the direct application of assembly AMS in the practice was shown.
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2.4 Resource Allocation Systems vs. Petri Nets

RAS represent [86] a special class of concurrent systems, especially AMS/FMS,
where the attention is focused on resources. RAS consist of a finite set of processes
that share (in a competitive way) a finite set of resources. Such a competition can
bring (i.e., is conducive to) existence of deadlocks. The deadlock causes an unac-
ceptable state when some processes in AMS/FMS are waiting for the evolution of
other processes that are also waiting for the evaluation of former ones in order to
evolve.

PN models of RAS are especially useful at synthesizing deadlock prevention
policies as well as deadlocks avoidance ones. Although many papers about RAS
were published in the last three decades, it may be said that principle papers about
RAS are [46, 78, 79, 80, 81, 75, 74, 73, 82, 86, 87]. Newer papers with very important
contributions in this area are especially [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60,
61, 47, 48, 49, 50, 51, 52, 53].

There exist several standard kinds (paradigms) of RAS [41, 51, 22, 21, 94].
Specific nomenclatures have been established, e.g. Simple Sequential Process (S2P),
Simple Sequential Process with Resources (S2PR), Systems of Simple Linear Sequen-
tial Processes with Resources (S2LSPR), Systems of Simple Sequential Processes
with Multiple Resources (S3PMR), the subclass of System of Simple Sequential
Processes with General Resource Requirements (S3PGR2) [75], Generalised Sys-
tems of Simple Sequential Processes with Resources (GS3PR), Systems of Simple
Sequential Processes with Resources (S3PR), Linear S3PR (LS3PR), Extension of
S3PR (ES3PR), and already mentioned S3PGR2 modelling manufacturing systems
in general, Weighted System of Simple Sequential Processes with Several Resources
(WS3PSR), System of Sequential Systems with Shared Resources (S4R), System of
Sequential Systems with Shared Process Resources (S4PR), etc.

The S3PR are frequently used in AMS and they are modelled by means of
PN. They represent a class of AMS with flexible routing and single-unit resource
acquisition. In such systems the part being produced using only one copy of one
resource at each processing step. Such systems create a subclass of a higher (upper)
class S∗PR [94, 21] where more copies of one resource are allowed. The asterix
does not represent exactly an integer expressing the number of copies, but a level of
complexity. Multiple-unit systems with routing flexibility are much less investigated.
S4PR are explored a lot less than S3PR. They are adequate [86, 87] for the modeling
of a wide variety of RAS. The special syntactic characteristics of this class allow to
study the modelled systems from a structural perspective. The newer publications
[63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92,
93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53] investigate
also such kinds of AMS/FMS.

The relation among some of PN-based models of RAS is illustrated in Figure 4.
From this point of view two kinds of PN places (being added to the PN model

because of the siphon control) can be distinguished as to the synthesis of AMS/FMS
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a) b)

Figure 4. Relations (based on sets) among some of more important PN models of RAS

control, namely:

1. ordinary places;

2. weighted places.

Ordinary places have ordinary arcs and are added to the original PN in order to
prevent related siphon from becoming unmarked whenever it is possible. Weighted
places adopt a conservative policy controlling the release of component or parts in
AMS/FMS, modelled by PN, into the system. It means that they are added to
the original/modified PN, namely to the source transitions of the resultant PN, by
means of their output arcs.

2.5 Literature Survey

In case of the approach based on P -invariants most important contributions can be
seen in [42, 43, 71, 88, 89], but also in many other works.

However, in about the last two decades the siphon-based approach dominates
among the methodologies that deal with the deadlock analysis and control of re-
source allocation systems. This research has uncovered many useful results. Very
important share on the development of the siphon-based approach to deadlock avoid-
ing have the works [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53],
but also some others. The new controllability condition for siphons is presented
in [56]. The necessary and sufficient condition of a kind of PN (namely GS3PR) was
proved in [59]. Very important are findings in the area of robust deadlock control of
AMS with unreliable resources [60, 62, 64]. The application of elementary siphons,
being topical at present, is broadly investigated in [53, 50, 49, 48, 47, 91]. Very useful
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is the iterative solution using mathematical programming techniques to avoid the
need of enumerating all the states or siphons published in [55, 28, 29, 30, 31, 32, 33]
having direct impact on practice. Also distributed resolution approaches to solv-
ing the deadlock avoiding were published [35, 36]. Very useful is the approach to
simplification of the supervisor structures [37]. The supervisor synthesis and perfor-
mance improvement in an integrated way are also presented in [37]. For the direct
application in the practice of assembly AMS are important the works [38, 39, 40].

A suitable combination of the approaches in the form of invariant-controlled
elementary siphons is presented in [50].

Of course, in this paper it is impossible to devote to the complete problem of the
deadlock avoidance in AMS/FMS. Here, in the Part 1, only a broader introductory
part to the problem will be inducted and illustrated by simple explanatory examples.
The permissible scope of this article does not allow more. In the second part –
Part 2, being in preparation, newer methods of deadlock avoidance as well as their
application to more complicated cases of AMS/FMS will be analyzed. May be that
also a third part – Part 3 will be necessary because of the limited space for one
paper in this journal.

2.6 The Paper Organization

After the detailed introduction in Section 1 and preliminaries in Section 2, which
were necessary for initiation into the problem of the widely developed subject inside
PN, the paper includes the next parts.

In Section 3, solving problems in RAS is introduced – namely, the description
how to remove deadlocks and how to control RAS. This section is the core of the
paper. It consists of three subsections. Subsection 3.1 details the proposal and appli-
cation of the P -invariant method for synthesizing the supervisor removing deadlocks
in RAS while Subsection 3.2 presents the proposal and application of siphon-based
method for synthesizing the supervisor removing deadlocks in RAS. Subsection 3.3
presents a short comparison and evaluation of both approaches. Section 4 introduces
the research plan for the future. Section 5 concludes the paper.

3 SOLVING PROBLEMS WITH DEADLOCKS IN RAS

Two possible approaches to remove deadlocks by means of the supervisory control
are presented here.

The first one starts from the thorough analysis of RT of the PN model of RAS
or equivalently from RG. It is necessary to say that RG arises from RT by means of
joining all RT leaves with the same name into one node of RG. The adjacency matrix
is the same for both RT and RG. From RT/RG (expressed either in graphical form or
in the form of the adjacency matrix), information about deadlocks can be obtained.
After finding deadlocks, the supervisor based on P -invariants is synthesized in order
to remove these deadlocks.
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The second approach performs the thorough structural analysis of the PN model
of RAS. It finds and uses PN siphons and traps to synthesize the supervisor removing
deadlocks. No RT/RG is necessary in this case.

Each of the mentioned approaches has its advantages and disadvantages. There-
fore, we will test both approaches on simple practical examples and compare them.
In Part 2 (potentially also in Part 3) more complicated cases of RAS will be tested
using the newest findings in that field.

3.1 An Approach Based on P -Invariants with Current Knowledge of RG

After a detailed analysis of RG the deadlocks can be identified. Then, the conditions
for supervisor synthesis based on P -invariants may be established.

Let us try to design a controller based on P -invariants – see e.g. [4]. Let the
matrix Y denote the (s× n) matrix of P -invariants, which are not known till now.
Start from the definition of P -invariants

YT .B
!
=0. (13)

Consider the restrictive condition (following from the detail analysis of RG) on the
state vector in the form as follows:

L.x ≤ b (14)

where L is the (s × n) matrix of integers expressing the expected relations among
states to eliminate deadlocks, and b is the (s× 1) vector of positive integers deter-
mining some restrictions on linear combinations of corresponding entries of the state
vector x. In order to remove the inequality (14), add a slack vector xs and put

L.x+ xs = L.x+ Is.xs = (LIs).(x
TxT

s )
T = b (15)

where the (ns × 1) vector xs consists of slack variables and Is is the (s× s) identity

matrix. Now, when we force (LIs) instead of YT , we obtain (LIs).(B
TBT

s )
T !
=0.

Hence, the structural matrix and the initial state of the supervisor are

Bs = −L.B,

x0
s = b− L.x0

(16)

where Bs = GT
s − Fs. Then the extended PN model (the original uncontrolled PN

model together with the supervisor) has the following structural matrix and the
initial state.

Bex =

(
B
Bs

)
,

x0
ex =

(
x0

x0
s

)
.

(17)



664 F. Čapkovič

The approach can be explained in details by means of the following simple example
illustrating the primary problem of RAS – removing deadlocks. There it will be
presented what difficulties can deadlocks cause in RAS as well as ways how to deal
with them.

3.1.1 Example 1

Consider the very simple PN model in Figure 5 a). The corresponding RT is shown
in Figure 5 b). There it can be seen that the state No. 9 (i.e. x9), being the 10th

column of the matrix Xr in (20) (because the numbering of reachable states starts
from 0), represents the deadlock.

a) b)

Figure 5. The simple example of a) the deadlocked PN and b) its RT

Therefore, it is necessary to avoid the deadlock. Let us demonstrate removing
the deadlock by a supervisor synthesis based on P -invariants.

The P -invariant based approach starts by the thorough analysis of the RT. Doing
so we can see that in order to eliminate the deadlock it is necessary to ensure the
priority t3 ≻ t4. Namely, it follows from the “fork” emerging from the state No. 2
(i.e. x2) being the 3rd column in (20), as well as from the “fork” emerging from the
state No. 6 (i.e. x6) being the 7th column in (20).

In this specific case it is possible to do this elimination very simply – by adding
p6 to the original PN model and interconnect it with the PN model by the arcs
from t3 to p6 and from p6 to t4. This ensures the priority t3 ≻ t4 in RT given in
Figure 5. It is clear from Figure 6 a) and from RT (right). However, the states of
the controlled model displayed in Figure 6 as well as the numbers of RT nodes are
different from the states and numbers of RT nodes of the uncontrolled model given
in Figure 5.
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a) b)

Figure 6. The a) supervised PN model and b) its RT

However, the P -invariant based approach analytically described by (13)–(16) is
general one. The described procedure of the supervisor synthesis presented in [4]
can impose the restriction on the state vector x in the form (14). In our case

L = (0, 0, 1,−1, 0) and b = (1) (18)

where the matrix L is represented by the row vector and the restriction b = (1)
is the scalar, because only one of two possibilities (firing either the transition t3 or
transition t4) is possible.

To perform the analytical expression of the approach let us introduce the fol-
lowing. The structural matrix of the original PN model, the initial state x0 and RT
nodes in (20) are as follows:

B = GT − F =


−1 0 1 0
1 −1 0 0
0 −1 0 1
1 1 −1 −1
0 0 −1 1

 , x0 =


1
0
1
0
1

 , (19)

Xr =


1 0 0 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 2 1 0 2
1 1 0 1 2 0 1 1 0 2 2
0 1 2 0 0 1 1 1 2 0 0
1 1 1 0 2 0 2 0 0 3 1

 . (20)
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Because of (16), the structural matrix Bs of the supervisor and the initial state xs
0

of the supervisor are

Bs = (1, 2,−1,−2) and xs
0 = (0). (21)

The structure of the supervisor is

Bs = GT
s − Fs where GT

s = (1, 2, 0, 0) and Fs = (0, 0, 1, 2). (22)

The supervisor has very simple structure – it is represented by the place p6. Hence,
the supervised PN model is given in Figure 7 a). The corresponding RT is shown in
Figure 7 b). As we can see in RT, no deadlock is detected. It is necessary to add
that the states of the controlled PN in such a way as well as the RT nodes in this
case are different from the states and RT nodes in previous two cases.

a) b)

Figure 7. The a) supervised PN by means of P -invariant and b) its RT

3.1.2 Example 2

Let us introduce now a practical example. A cell of AMS/FMS consists of three
workstations, W1 with a robot R1, W2 with a robot R2, and W3 with a robot R3,
and a single AGV (being served by the robots) that transports parts among the
workstations and the input and output ports I/O of the cell. The simple scheme of
the cell is displayed in Figure 8.

There is exercised the concurrent production of the two process types with planes
as follows – P1: W1 → W2 → W3 and P2: W3 → W2 → W1. P1 produces parts of
a kind A while P2 produces parts of a kind B. Each workstation has a working table
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Figure 8. The example of the real RAS with the deadlock

on which only one workpiece at a time can be held. It is evident from the routing
information about processes P1, P2 that none of the currently loaded parts is able
to go forward to the next workstation, because the corresponding working table is
occupied by the other part. This situation illustrate the deadlock that can be met
in this AMS/FMS. Simultaneously, the Figure 8 can be understood to be a kind of
RAS.

The PN model of the cell and its RT are given in Figure 9. Its parameters are

B = GT −F =



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1

−1 1 0 0 0 0 −1 1
0 −1 1 0 0 −1 1 0
0 0 −1 1 −1 1 0 0


, x0 =



1
0
0
0
1
0
0
0
1


(23)

The places p1, p2, p3 express the presence of parts A on the working tables, while
p4, p5, p6 express the presence of parts B on the working tables. The resource
availability is monitored by the marking of the resource places p7, p8, p9.

As we can also see on the PN model of the RAS in Figure 9 a), and especially
on RT in Figure 9 b), there is the deadlock in the state x1 = (1 0 0 1 1 0 0 0 0)T . It
occurs immediately after firing t5 at the initial state x0 = (1 0 0 0 1 0 0 0 1)T .

To control the system consider the natural initial state x0 = (0 0 0 0 0 0 1 1 1)T

when all resources are available at the beginning. The corresponding RT is given in
Figure 10.

As we can see there, the states x13 = (1 1 0 1 0 0 0 0 0)T and x14 = (1 0 0 1 1 0 0 0
0)T , i.e., the 14th and 15th column of the following matrix of reachable states Xr

are deadlocks. All nodes of the RT, where the first column represents the initial
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a) b)

Figure 9. The a) PN model and b) corresponding RT of the RAS

state x0, are expressed by particular columns as follows:

Xr =



0 1 0 0 1 0 1 0 0 1 0 0 1 |1| |1| 0 0 0 1 0
0 0 0 1 0 0 1 0 1 0 0 0 0 |1| |0| 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 |0| |0| 0 1 0 1 0
0 0 1 0 1 0 0 0 1 0 1 0 0 |1| |1| 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 1 0 0 |0| |1| 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 |0| |0| 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0 1 0 0 |0| |0| 0 1 0 0 0
1 1 1 0 1 0 0 1 0 0 0 1 1 |0| |0| 1 0 0 0 0
1 1 0 1 0 1 1 0 0 1 0 1 0 |0| |0| 0 0 1 0 0


. (24)

3.1.3 Detail Analysis of RT

The detail analysis of RT yields the following results:

1. the sequences of firing t2 ≻ t5 as well as t5 ≻ t2 have to be forbidden, i.e., p2
and p4 cannot be active simultaneously;

2. the sequences of firing t1 ≻ t6 and t6 ≻ t1 have to be forbidden, i.e., p1 and
p5 cannot be active simultaneously;

3. the sequences of firing t1 ≻ t5 as well as t5 ≻ t1 have to be forbidden, i.e., p1
and p4 cannot be active simultaneously.

Thus, putting inequalities σp2 + σp4 ≤ 1, σp1 + σp5 ≤ 1, and σp1 + σp4 ≤ 1 we can
synthesize the supervisor. As we can see below, these places create the nonzero
entries of the matrix L, and right sides of the inequalities create the vector b.
Putting the initial state of the PN model of RAS as x0 = (0 0 0 0 0 0 1 1 1)T (i.e.,
when all three resources are available), the process of the supervisor synthesis is the
following.
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Figure 10. The corresponding RT of the RAS model

3.1.4 Supervisor Synthesis

The anterior inequalities create the restrictive condition with L and b in the form

L =

 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0

 , b =

 1
1
1

 , (25)

Bs = −L.B =

 0 −1 1 0 −1 1 0 0
−1 1 0 0 0 −1 1 0
−1 1 0 0 −1 1 0 0

 , x0
s =

 1
1
1

 . (26)

Here, the positive nonzero entries of Bs = GT
s − Fs create nonzero entries of GT

s ,
while negative nonzero entries of Bs create nonzero entries of (−Fs).

The PN model of the supervised system is displayed in Figure 11 where the
controller is represented by the triplet {p10, p11, p12}. RT of such system is given in
Figure 12.
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Figure 11. The controlled PN model

Figure 12. The RT of the controlled PN model
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Of course, the incidence matrices and the initial state of the controlled system
are

Fcs =

(
F
Fs

)
, GT

cs =

(
GT

GT
s

)
, x0

cs =

(
x0

x0
s

)
(27)

where F, GT are incidence matrices of the uncontrolled RAS and x0 is its initial
state.

The RT of the controlled RAS is given in Figure 12. No deadlock can be seen
in Figure 12. The particular nodes of this RT are expressed by the columns of the
matrix

Xr =



0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 0 1 1 1 0 1 1 0 0 0 1 0 0 0
1 1 1 0 0 0 1 0 1 1 1 0 0 0 0
1 1 0 1 1 1 0 0 1 0 0 0 1 0 0
1 1 0 0 1 0 1 0 1 1 0 0 1 0 0
1 0 1 1 0 0 1 0 1 0 1 1 0 0 0
1 0 0 1 1 0 1 0 1 0 0 1 1 0 0



(28)

where the first column represents the initial state x0
cs of the controlled RAS.

3.1.5 Example 3

Let us add a simple example relating the deadlocked S3PR PN model. The problem
of a deadlock in S3PR can be resolved also by means of adding a transition to the
original deadlocked PN model of RAS. Namely, imbedding such a transition into the
deadlocked PN model it is possible to achieve initial state from the deadlocked state.
Then, the development of the model can proceed from the initial state in some other
way. It was proved in [83] for S3PR kind of deadlocked PN model. Applying this
on (6), the single additional transition brings the structural matrix of the supervisor
Bs = x0 − xq. Consider the deadlocked PN model given in Figure 13 a) having
RT displayed in Figure 13 b) where the RT node No. 4 (i.e. x5) is the deadlock in
question.

Because x0 = (2, 0, 1, 0, 0, 1, 0, 2)T and x5 = (1, 1, 0, 0, 0, 0, 1, 1)T , after
calculation Bs = (1, −1, 1, 0, 0, 1, −1, 1)T . Thus, Fs = (0, 1, 0, 0, 0, 0, 1, 0)T

(arcs from places to the transition) and GT
s = (1, 0, 1, 0, 0, 1, 0, 1)T (arcs from

the transition to places). Hence, the supervised PN model without the deadlock is
given in Figure 14 a) and its RT is displayed in Figure 14 b).

Sometimes such a procedure can be used in more complicated RT having so
called diamond(s) between two different nodes. Even, the paths (left and right)
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a) b)

Figure 13. The a) PN model of RAS with the deadloch x5 and b) its RT

a) b)

Figure 14. The a) supervised PN model by means of the added transition t7 and b) its
RT

creating the diamond(s) may be longer than that in RT displayed in Figure 14 a)
and Figure 14 b). More about this will be said in Part 2 of this paper.

3.1.6 Local Conclusion

The approach based on P -invariants has an exact analytically expressed procedure.
After thorough analysis of RG and finding conditions how to mutually eliminate
states of relevant places (in order to eliminate deadlocks), the procedure of the
supervisor synthesis is very clear and simple. Introduced examples illustrate that the
deadlock problem can be resolved relatively simply. However, in a more complicated
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structure of the PN model of RAS with RT having too patulous branching, just
the choice of the restrictions in the form of inequalities may be complicated or
even impossible. Therefore, it is also necessary to look for another approaches or
combinations of them.

3.2 Approach Based on Siphons Without the Need to Know RG

Based on the previous findings, especially those being introduced in Section 2 (Pre-
liminaries), we have to unconditionally control siphons. Of course, first of all we
have to know them, i.e., we have to compute them. There are several algorithms
how to do this. Although the calculation of siphons is not a subject of this paper,
let us mention at least several approaches to it by means of:

1. solving logical equations, namely a siphon S has to satisfy a set of conditions:
∀ti ∈ T : t•i ∩ S ̸= ∅ ⇒ •ti ∩ S ̸= ∅ – see e.g. [44];

2. linear algebraic calculation – see e.g. [45];

3. Thelen’s prime implicant method – see [90];

and some others. However, for working in Matlab the most useful seems to be the
GPenSIM tool developed by Davidrajuh [12, 13] for PN, which is able to calculate
(among other things) also siphons and traps as well as minimal siphons and minimal
traps.

The problem of deadlock avoidance in DES is equivalent to the problem of the
avoidance of empty siphons in the original ordinary PN model. The siphon based
control of a deadlocked PN has to guarantee that none of its siphons ever becomes
empty. Unfortunately, this approach does not have as much analytical support as
in the first approach based on P -invariants. Therefore, it is necessary to work with
graphical tools for the PN modelling and analyzing, more than in the first approach.
The siphon behaviour is such that if it has no token in a state (marking) of PN,
then it remains without any token in each successor state. The trap behaviour is
such that if it has at least one token in a state (marking) of PN, then it remains
marked under each successor state.

It can be said that a siphon can only lose tokens whereas a trap can only gain
tokens. Therefore, arising out of these properties, we want to utilize siphons and
traps for analyzing of PN liveness as well as for synthesizing supervisors in order to
avoid deadlocks in PN models.

Siphons are tied with deadlocks especially in PN models of RAS. As it was al-
ready mentioned, once a siphon loses all its tokens, it remains unmarked at any
subsequent markings that are reachable from the current marking – see e.g. [22].
If a siphon is emptied at a certain marking, some of its output transitions would
never be enabled. This leads to a deadlock. There exist many papers about dead-
lock prevention which have been based on siphons. They especially add monitors
(additional places) to the PN model for strict minimal siphons in order to achieve
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deadlock prevention. In this paper using the minimal siphons will be illustrated on
simple examples.

On the other hand, there exist newer papers – e.g. [63, 8, 25, 55, 56, 57, 59,
62, 64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65,
66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53]. They bring very interesting
contributions in the form of new approaches how to deal with deadlocks by means of
siphons, as it already was mentioned in Section 2.5. Some of them utilize elementary
siphons. These newer approaches will be analyzed in Part 2 of this paper, which is
being prepared.

A siphon S is said to be controlled in a net (N,M0) iff ∀M ∈ R(N,M0),
M(S) > 0. Hence, any siphon that contains a marked trap is controlled, since
the marked trap can never be emptied. In an ordinary Petri net, a siphon that is
controlled does not cause any deadlock.

Siphon S in an ordinary net system (N,M0) is [51] invariant-controlled by P -
invariant I under M0 iff LT .M0 > 0 and ∀p ∈ P\S, I(p) ≤ 0, or equivalently,
lT .M0 > 0 and ||I||+ ⊆ S. Here ||I||+ = p ∈ P | I(p) > 0 is the positive support of
P -vector I.

Briefly, a siphon S is said to be controlled if it can never be emptied, and it is
said to be invariant-controlled by P -invariant I if lT .M0 > 0 and ||I||+ ⊆ S.

The problem of deadlock avoidance in DES is equivalent [88, 89] to the problem
of avoidance of empty siphons in ordinary PN model of DES. This is very important
especially in real AMS/FMS. Siphons that do not contain other siphons are named
as minimal siphons. It is sufficient to consider only minimal siphons at the supervisor
synthesis. Hence, it is necessary to ensure that the sum of the number of tokens in
each minimal siphon S is never less than one in any reachable marking. Thus, the
general condition for ith siphon Si.x ≥ b proceeds into the form Si.x ≥ 1.

Generally, the main purpose of control of DES by means of PN is to avoid
undesirable or illegal markings. In [42, 43, 88] an appropriate formal specification

lT .x ≥ b i.e. b− l.x ≤ 0 (29)

is proposed where l is a (s×1)-dimensional weight row vector; x is a state vector (i.e.
marking); and b is a scalar. Verbally it means that the weighted sum of the number
of tokens in each place should be greater than or equal to a constant. The theorem
was proved there that if a PN with incidence matrix B satisfies b− lT .x0 ≤ 0, then
a control place pc can be added which enforces the previous inequality (29). When
bc : T → Z denotes the weight vector of arcs connecting pc with the transitions in
the PN, the bc can be obtained by

bc = lT .B (30)

and the initial number of tokens in pc is

x0(pc) = lT .x0 − b ≥ 0. (31)
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The control place pc enforces maximally permissive control strategy (or logic). It
means that the only reachable markings of the original net N , that pc avoids, are
those violating [42, 43]. Here, the bc is the row extending the matrix B with respect
to pc.

In general (for more additive places p1, . . . , ps) it can be written the following

L.x ≥ b or L.x− xc = b (32)

where L ∈ Zs×n
≥0 having the weighted vectors lTi , i = 1, . . . , s as its rows; b ∈ Zs×1

≥0 is

the vector of restrictions and xc ∈ Zs×1
≥0 is the vectors of slacks. We can found the

extended incidence matrix Bex and the initial state of extended state vector x0
ex as

follows:

Bc = L.B, (33)

x0
c = L.x0 − b

!

≥0, (34)

Bex =

(
B
Bc

)
, x0

ex =

(
x0

x0
c

)
(35)

where Bc = GT
c − Fc is the matrix corresponding to s additive places (monitors)

p1, . . . , ps.

Putting lTi
!
=Si, where Si is the ith PN siphon, or in general L

!
=Sm where Sm is

the matrix of all PN siphons (being its rows), we have the structure of the supervisor
as follows Bc = Sm.B.

3.2.1 Example 4

Consider the same PN model given in Figure 5. In the PN siphon-based approach
we have to find siphons and traps.

Minimal siphons in this net are {p1, p3, p4}, {p1, p2, p4} and in the matrix form:

Sm =

(
1 0 1 1 0
1 1 0 1 0

)
. (36)

Minimal traps in this net are {p1, p3, p4}, {p1, p4, p5} and in the matrix form:

Tm =

(
1 0 1 1 0
1 0 0 1 1

)
. (37)

We can see that the first siphon is equal to the first trap. This is also clear from
comparing first rows of the matrices Sm and Tm. Such a siphon is out of our interest
because it cannot be emptied once it is initially marked. Namely, this siphon contains
the marked trap, i.e., there is no deadlock threat.

Now, we have to consider the second siphon {p1, p2, p4}. We can see from Xr

in Example 1 (see (20)) that for S = (1 1 0 1 0) no marking contains M(S) > 0.
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a) b)

Figure 15. The a) supervised PN by means of siphons and b) its RT

The siphon contains neither the marked trap, because the trap is T = (1 0 0 1 1).
Consequently, the siphon is not controlled. Hence, it is necessary to control it

in order to avoid the deadlock. Putting l
!
=S, or in general LT !

=Sm, we have the
structure of the supervisor as follows

Bc = Sm.B =

(
1 0 1 1 0
1 1 0 1 0

)
.


−1 0 1 0
1 −1 0 0
0 −1 0 1
1 1 −1 −1
0 0 −1 1

 =

(
0 0 0 0
1 0 0 −1

)
.

(38)
Because the first row of Bc is the zero vector, the equation implies that there is only
one place pc, namely p6 in Figure 15, that will represent the supervisor/controller.
Thus, incidence matrices of the supervisor are as follows:

Fc =
(
0 0 0 1

)
, GT

c =
(
1 0 0 0

)
. (39)

The reachable states of the controlled (supervised) PN model are the following

Xc =


1 0 0 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 2 1 0 2
1 1 0 1 2 0 1 1 0 2 2
0 1 2 0 0 1 1 1 2 0 0
1 1 1 0 2 0 2 0 0 3 1
1 2 2 2 1 2 1 3 3 0 2

 (40)
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where the columns represent state vectors x0 . . .x10 being nodes of the RT.
The controllability of siphon S is ensured by adding a monitor. Namely, the

number of tokens leaving S is limited by a marking invariant law being implemented
by a P -invariant whose support contains the monitor.

The supervised PN model is given in Figure 15 a). The corresponding RT is
shown in Figure 15 b) in order to see that no deadlock occurs in the supervised
system.

By the way, the controlled system in Figure 15 a) is the same as that in Fig-
ure 6 a) obtained by the prejudged relation t3 ≻ t4.

3.2.2 Example 6

In Subsection 3.1.2 (Example 2) the supervisor eliminating deadlocks was proposed.
Consider here the same deadlocked PN model and let us use the siphon-based ap-
proach to solve the problem. The PN model contains the following minimal siphons
and traps:

S1 = {p3, p4, p9},

T r1 = {p3, p4, p9},

S2 = {p2, p5, p8},

T r2 = {p2, p5, p8},

S3 = {p1, p6, p7},

T r3 = {p1, p6, p7},

S4 = {p3, p5, p8, p9},

T r4 = {p2, p4, p8, p9},

S5 = {p2, p6, p7, p8},

T r5 = {p1, p5, p7, p8},

S6 = {p3, p6, p7, p8, p9},

T r6 = {p1, p4, p7, p8, p9}.

or in the matrix form

Sm =


0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 0 0
0 0 1 0 1 0 0 1 1
0 1 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1 1

 , Tm =


0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 0
1 0 0 1 0 0 1 1 1

 . (41)
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The first three siphons are equal to the first three traps.

As it can be seen from (41), the places p2, p6, p7, p8 of the siphon S5 (the 5
th row

of Sm) are active in several state vectors of the PN model – see the corresponding
rows 2, 6, 7, 8 of this matrix (24).

As we can see in Figure 9, places p2, p6, p7, p8 included in the siphon S5,
create even the empty siphon (as to marking). All the output transitions of S5

are S•
5 = {t2, t3, t6, t7, t8}. The transition t1 does not belong in S•

5 because it is the
source transition (generating siphons) and it does not fall with the siphon definition.
By the way, t5 is also the source transition. All actual output transitions of S•

5 are
disabled, since they require at least one token from some place in S5.

All of input transitions of S are •S5 = {t2, t3, t6, t7, t8}.
Even, any transition which could bring tokens in S5 is a part of •S5, and con-

sequently is disabled. Consequently, S5 will remain empty during entire system
dynamics evolution as well as the transitions in S•

5 will be dead during this evolu-
tion. Alike, we could analyze also other nonzero siphons S4, S6. Such a work is too
toilsome.

It means that it is necessary to find a way how to deliver tokens into the siphon
places. Therefore, let us compute the monitors that will make this for us.

Put L
!
=Sm. Then,

Bc = Sm.B =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 1 0 −1 1 0 0

−1 1 0 0 0 −1 1 0
−1 0 1 0 −1 0 1 0

 . (42)

Excluding the upper zero sub-matrix we obtain the controller with the incidence
matrices

Fc =

 0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0

 , GT
c =

 0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0

 . (43)

The supervised PN model of RAS and its RT are given in Figure 16 a) and 16 b),
respectively. The supervisor consists of the imbedded places (monitors) A, B, C. RT
is not necessary in this approach but it is included in order to see that no deadlock
occurs in the supervised RAS.

The nodes of RT are the rows of the following matrix where the first row is the
initial state vector x0. No state vector represents a deadlock. The nodes of the RT
are the state vectors being rows of the following matrix
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a) b)

Figure 16. The PN model of the supervised RAS

XT
r =



0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 0 0
0 0 0 1 0 0 1 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0
0 0 0 0 1 0 1 0 1 1 0 0
0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1
1 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 1 1 0 0


. (44)

3.2.3 Local Conclusion

The approach based on siphons has not so exact analytically expressed procedure
(especially in case of siphons and traps computation) like the previous approach
based on P -invariants and analysis of RT. Firstly, it is necessary to analyze the PN
model of RAS and find its siphons and traps. There are Matlab tools for calculation
of siphons and traps – see e.g. [12, 13]. After thorough analysis of the set of siphons
and the set of traps, the procedure of the supervisor synthesis can start on. The
analytical approach to computation of monitors is utilized. Then, the procedure is
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also clear and simple as well as in case of the previous approach. The analysis of
RT is not necessary in this case. However, it is possible to generate RT in order to
be sure that the controlled PN model of RAS is deadlock-free.

3.3 A Short Comparison of Both Approaches

When we compare both approaches applied on the relatively simple cases of dead-
locked RAS, we can say the following:

1. the weak point (shortcomming, weakness) of the first approach consists in the
computational demands at finding RT/RG and the labor consumption at find-
ing the conditions for elimination deadlocks. In case of largely branched RT
computing takes a very long time. The dependance on the initial state is also
a weakness;

2. the weak point of the second approach consists in computational demands at
finding siphons. This may also takes a very long time.

The first approach yields the supervisor which restricts the development of the
system a little less, than the supervisor synthesized by the second approach. On the
other hand, there is a perspective of finding new and new methods in the second
approach.

However, because from several simple DES and RAS it is impossible to draw
serious conclusions, we will do this in Part 2 (may be also in Part 3) of this paper,
which is being prepared. There, not only the more complicated examples will be
tested by both approaches, and then compared each other, but also newer approaches
will be analyzed, especially some of those published in [63, 8, 25, 55, 56, 57, 59, 62,
64, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67,
68, 69, 58, 60, 61, 47, 48, 49, 50, 51, 52, 53].

4 FURTHER RESEARCH IN THE FUTURE

In this paper, the problem of deadlock avoiding in RAS was presented by means
of two different approaches. Relatively simple examples, but one of them being
practical, were introduced to illustrate the applicability of these approaches. In the
further research, we will continue in solving the problem with deadlocks in RAS,
especially of S3PR and S4PR kinds, investigated in [63, 8, 25, 55, 56, 57, 59, 62, 64,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69,
58, 60, 61, 47, 48, 49, 50, 51, 52, 53]. Both approaches (first based on P -invariants
and second based on siphons) will be tested on the same more complicated practical
examples. The effectiveness of finding their results will be mutually compared and
evaluated.

Moreover, a deeper view on admissibility of deadlock-free control of RAS will
be performed. Namely, there exist following kinds of PN states (markings) [65]:

1. legal;
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2. illegal, or else forbidden;

3. admissible,

i.e., such from which the system cannot uncontrollably reach illegal state. In PN
which are controllable only partially, an illegal state may be reachable from a legal
one by firing of uncontrollable transitions (see e.g. [3, 4, 5, 6, 65, 66, 67, 68, 69,
53, 71, 85]). Consequently, it is necessary to find more restrictive control policy
which will enforce a subset of legal states, i.e. admissible states. From such states
the system cannot uncontrollably reach an illegal state. However, this topic will be
analyzed later, probably only in Part 3 of this paper (because of the limited space
for one paper in this journal).

5 CONCLUSION

PN are a formal modelling tool. They are a popular mathematical formalism to in-
vestigate and analyze modelling and control of DES. PN theory has been one of the
most interesting topics in computer science. PN find wide application in contempo-
rary technical systems, especially in AMS/FMS where there is also a mathematical
framework to investigate the deadlock control problems in a variety of RAS. In
such a way PN become the effective tool for the design and management of modern
AMS/FMS. In the last years the siphon-based approach has dominated among the
methodologies dealing with the deadlock analysis and control of RAS – see the new
research especially in [63, 8, 25, 55, 56, 57, 59, 62, 64, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 92, 93, 94, 91, 88, 89, 65, 66, 67, 68, 69, 58, 60, 61, 47, 48, 49, 50,
51, 52, 53]. Although the approach to the same problem based on P -invariants is
a little older, it does not lag behind as to the quality of its results (sometimes more
to the contrary).

In this paper, both approaches were presented and illustrated by examples. First
on simple examples and then on more complicated ones related to real RAS. The
total number of introduced examples was 6.

Each approach was evaluated in the particular local conclusion (see Subsec-
tion 3.1.6 and Subsection 3.2.3). It was demonstrated that both approaches are
suitable for the deadlock elimination very well. The detailed comparison of both ap-
proaches on the same more complicated examples will be performed in the planned
Part 2 (may be only Part 3) of this paper to be published later.
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A Petri Net Structural Approach. Birkhäuser, 2006, doi: 10.1007/0-8176-4488-1.

[44] Karatkevich, A.: Dynamic Analysis of Petri Net-Based Discrete Systems. Springer,
Heidelberg, Lecture Notes in Control and Information Sciences, Vol. 356, 2007, doi:
10.1007/978-3-540-71560-3.

[45] Lautenbach, K.: Linear Algebraic Calculation of Deadlocks and Traps. In:
Voss, K., Genrich, H. J., Rozenberg, G. (Eds.): Concurrency and Nets. Springer,
Berlin, Heidelberg, 1987, pp. 315–336, doi: 10.1007/978-3-642-72822-8 21.

[46] Lawley, M.A.—Reveliotis, S. A.: Deadlock Avoidance for Sequential Resource
Allocation Systems: Hard and Easy Cases. International Journal of Flexible Manu-
facturing Systems, Vol. 13, 2001, No. 4, pp. 385–404, doi: 10.1023/A:1012203214611.

[47] Li, Z.W.—Zhou, M.C.: Elementary Siphons of Petri Nets and Their Application
to Deadlock Prevention in Flexible Manufacturing Systems. IEEE Transactions on
Systems, Man, and Cybernetics, Part A: System and Humans, Vol. 34, 2004, No. 1,
pp. 38–51, doi: 10.1109/TSMCA.2003.820576.

[48] Li, Z.W.—Zhou, M.C.: Control of Elementary and Dependent Siphons in
Petri Nets and Their Application. IEEE Transactions on Systems, Man, Cy-
bernetics, Part A, System, Humans, Vol. 38, 2008, No. 1, pp. 133–148, doi:
10.1109/TSMCA.2007.909548.

[49] Li, Z.W.—Zhou, M.C.: Elementary Siphons of Petri Nets for Efficient Deadlock
Control. In: Zhou, M.C., Fanti, M.P. (Eds.): Deadlock Resolution in Computer-
Integrated Systems. CRC Press, 2005, pp. 309–348, doi: 10.1201/9781315214665.

[50] Li, Z.W.—Wei, N.: Deadlock Control of Flexible Manufacturing Systems via
Invariant-Controlled Elementary Siphons of Petri Nets. The International Journal of
Advanced Manufacturing Technology, Vol. 33, 2007, pp. 24–35, doi: 10.1007/s00170-
006-0452-3.

[51] Li, Z.W.—Zhou, M.C.: Deadlock Resolution in Automated Manufacturing Sys-
tems: A Novel Petri Net Approach. Springer, London, Advances in Industrial Control
Series, 2009, doi: 10.1007/978-1-84882-244-3.

https://doi.org/10.1109/TCST.2014.2342664
https://doi.org/10.1109/TII.2012.2198661
https://doi.org/10.1109/TSMCA.2006.878953
https://doi.org/10.1007/s10626-006-0021-9
https://doi.org/10.1007/0-8176-4488-1
https://doi.org/10.1007/978-3-540-71560-3
https://doi.org/10.1007/978-3-642-72822-8_21
https://doi.org/10.1023/A:1012203214611
https://doi.org/10.1109/TSMCA.2003.820576
https://doi.org/10.1109/TSMCA.2007.909548
https://doi.org/10.1201/9781315214665
https://doi.org/10.1007/s00170-006-0452-3
https://doi.org/10.1007/s00170-006-0452-3
https://doi.org/10.1007/978-1-84882-244-3


686 F. Čapkovič
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Transaction on Automatic Control, Vol. 42, 1997, No. 10, pp. 1344–1357, doi:
10.1109/9.633824.

[80] Reveliotis, S. A.: Logical Control of Complex Resource Allocation Systems. Foun-
dations and Trends in Systems and Control, Vol. 4, 2017, No. 1-2, pp. 1–223, doi:
10.1561/2600000010.

[81] Reveliotis, S. A.: Coordinating Autonomy: Sequential Resource Allocation Sys-
tems for Automation. IEEE Robotics and Automation Magazine, Vol. 22, 2015, No. 2,
pp. 77–94, doi: 10.1109/MRA.2015.2401295.

[82] Reveliotis, S. A.: On the Siphon-Based Characterization of Liveness in Sequential
Resource Allocation Systems. In: van der Aalst, W.M.P., Best, E. (Eds.): Applica-
tions and Theory of Petri Nets 2003 (ICATPN 2003). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2679, 2003, pp. 241–255, doi: 10.1007/3-
540-44919-1 17.

[83] Row, T.C.—Syu, W.M.—Pan, Y. L.—Wang, C.C.: One Novel and Opti-
mal Deadlock Recovery Policy for Flexible Manufacturing Systems Using Iterative
Control Transitions Strategy. Mathematical Problems in Engineering, Vol. 2019,
Art. No. 4847072, 12 pp., doi: 10.1155/2019/4847072.

[84] Schmidt, K.: Verification of Siphons and Traps for Algebraic Petri Nets. In:
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