Computing and Informatics, Vol. 40, 2021, 690-728, doi: 10.31577/cai_2021_3_690

WHAT IS YOUR CODE CLONE DETECTION
AND EVOLUTION RESEARCH MADE OF?

Chaman WIJESIRIWARDANA

University of Moratuwa, Katubedda
Sri Lanka
e-mail: chaman@uom. 1k

Prasad WIMALARATNE

University of Colombo School of Computing
Reid Avenue, Colombo 7, Sri Lanka
e-mail: spw@ucsc.cmb.ac.1k

Abstract. Over the past few decades, clone detection and evolution have become
a major area of study in software engineering. Clone detection experiments present
several challenges to researchers such as accurate data collection, selecting proper
code detection algorithms, and understanding clone evolution phenomena. This
paper attempts to facilitate clone detection and evolution research by providing
a structured and systematic mechanism to conduct experiments. Clone detection
experiments usually consist of several tasks such as fetching data from a version con-
trol system, performing necessary pre-processing activities, and feeding the data to
a clone detection algorithm. Therefore, a particular clone detection experiment can
interpret as a meaningful combination of such tasks into a scientific workflow. In
this work, the concrete tasks in a code clone detection workflow are referred to as
Building Blocks. This paper presents a useful collection of Building Blocks iden-
tified based on a systematic literature review, and a conceptual framework of an
experimental testbed to facilitate clone detection experiments. The reusability of
the Building Blocks was validated using four case studies selected from the litera-
ture. The validation results confirm the reusability and the expressiveness of the
Building Blocks in new ventures. Besides, the proposed experimental testbed is
proven beneficial in conducting and replicating clone detection experiments.

https://doi.org/10.31577/cai_2021_3_690

Building Blocks of Code Clone Detection 691

Keywords: Code clone detection, clone evolution, scientific workflows, building
blocks, experiemental testbed

1 INTRODUCTION

Code clones are source code fragments that are similar or identical in terms of text,
structure, or meaning. During software development, code fragments are copied
and pasted with or without major alternations. The pasted portion of the code
is said to be a clone, and this practice is known as code cloning. This has been
a common practice in the software development process due to several reasons such
as limitations of the programming languages, delaying refactoring, and high code
reuse [46]. The negative impacts of code cloning has been reported in several stud-
ies [34] B, [§]. The consequences of code cloning, clone evolution, and clone removal
have both positives and negatives. Fowler et al. [24] were one of the firsts to argue
that code cloning is one of the leading causes of bad smells in software systems. On
the other hand, some researchers counter-argued by highlighting several positives
of cloning such as improved productivity [5, 43, [71]. According to [15], there can
be organizational reasons to copy-paste code. Therefore, a systematic analysis is
required before the clone removal. As a result, clone removal can sometimes directly
associate with a considerable risk factor. More research along this direction should
be conducted to get a better understanding, and the uncertainties mentioned above
evidently emphasize the need for systematic Code Clone Detection and Evolution
(CCDE) experiments.

This paper contributes to this field of study by proposing a structured and or-
ganized way to plan and conduct CCDE experiments. Clone detection studies are
conducted based on a well-defined logical process with some common steps. For
example, studies typically start with mining activity, e.g., by retrieving data from
a version control system. Then the mined source code is processed and transformed
into an intermediate format, such as tokens, code metrics, Abstract Syntax Trees
(ASTSs), or Program Dependency Graphs (PDGs). This data is then fed into a code
clone detection algorithm to extract the clones. Finally, the detected code clones
can be further subjected to clone genealogy analysis (i.e., clone patterns, visual-
ization) to understand clone evolution better. This research insists that the steps
mentioned above can adequately arrange and combine into a well-defined scientific
workflow [I8, BO]. Each step represents a particular clone detection task, such as
mining the code base, calculating metrics, or generating an AST. These tasks may
be in different representation levels and the effort required to perform the tasks may
have significant differences. However, the identification of representation levels and
the effort required for the tasks are out of the scope of this paper. In this paper,
these concrete tasks are referred to as Building blocks for CCDE research. We be-
lieve that the concept of Building blocks will provide direct solutions to some of the
common challenges such as accurate data extraction, data cleaning, and pick the

692 C. Wijesiriwardana, P. Wimalaratne

correct clone detection technique in conducting CCDE studies. Therefore, Building
blocks provide ways to thoroughly comprehend the clone detection process as well
as to replicate previous experiments systematically. This work devised a conceptual
framework and a proof-of-concept experimental testbed to conduct CCDE exper-
iments, which could be extended to conduct other types of software engineering
experiments as well.

This paper intends to address the following Research Questions (RQs):

RQ1: Is it possible to identify reusable data flow-based Building Blocks for code
clone detection and evolution from the existing literature and express them in
a unified manner?

RQ2: How to interlink such Building Blocks categorized into multiple abstraction
levels to develop a conceptual framework of an experimental testbed to conduct
code clone detection and evolution experiments?

Based on the research questions, this paper presents three main contributions.
First, a novel concept and a methodology for identifying re-usable building blocks
from various research workflows in the area of code clone detection. Second, a con-
crete collection of useful formal building blocks was collected via the above method-
ology. Finally, a conceptual framework of an experimental testbed by interlinking
the identified building blocks to conduct and replicate previous CCDE experiments.

The remainder of this paper is organized as follows: Section [describes the back-
ground of software evolution analysis and code clone detection. Section [§]details our
research methodology to identify building blocks from the analysis workflows. In
Section [, we present our catalog of building blocks extracted via the literature sur-
vey followed by the conceptual framework of the experimental testbed in Section [f]
Then we present validation in Section [f] followed by the discussion and conclusion
in Section [7] and Section [§] respectively.

2 BACKGROUND

Analysis of software evolution is known as an enormously dynamic field of research
in software engineering. Understanding the evolution of large-scale software systems
is a demanding problem for several reasons: huge amounts of information have to
be considered, and historical data has to be analyzed. Software evolution analysis
mainly focuses on two main aspects; to better understand the reasons for its existing
problems and to forecast its future developments [I7]. Software evolution analysis
experiment such as CCDE is a classic example to address both of these goals. First,
we summarize some of the pioneer surveys in CCDE and indicate how our approach
conceptually differs from the existing surveys. Then we dig into the CCD techniques
and tools followed by a summary of the existing approaches for software engineer-
ing data analytics. Finally, we briefly describe the need for a novel mechanism to
facilitate the researchers in conducting CCDE experiments.

Building Blocks of Code Clone Detection 693
2.1 Surveys in Code Clone Detection and Evolution

A considerable number of code clone related survey papers are published in the past.
Koshke [46] was one of the first to write a survey paper on code clone detection.
That paper reports some essential aspects such as different categorizations of clone
types, root causes for cloning, current opinions of cloning, empirical studies on the
evolution of clones, benchmarks for clone detector evaluations, and presentation
issues.

Roy et al. [70] presented a qualitative comparison and evaluation of the existing
literature in clone detection techniques and tools. A more detailed description can
be found in [68]. The findings of their research could help new potential users of
clone detection techniques in understanding the range of available techniques and
tools and selecting those most appropriate for their needs. Ratten et al. [67] perform
a systematic review of existing code clone approaches based on 213 identified papers.
The results are presented in different dimensions like classification of clone research,
code clone management as cross-cutting domain, types of clones, clone detection
tools, and clone detection approaches. Similar to [68], this approach also intends
to facilitate researchers in conducting code clone detection researches. Sheneamer
et al., [76] also surveyed code clone detection. The aim of this paper goes beyond
comparing the tools and techniques. Instead, it presents several observations in
developing hybrid techniques in the future. Pate et al. present a survey paper in
code clone evolution., [63]. They have indicated that human-based empirical studies
and classification of clone evolution patterns as two significant areas for further work.
Ain et al. [3] reviewed 54 journal papers and conference papers, which emphasized
the need to introduce novel approaches to detect all four types of clones. Walker
et al. [84] presented a systematic mapping study on existing CCD tools with regards
to technique, open-source nature, and language coverage. Finally, they propose some
possible future directions for code-clone detection tools.

2.2 Code Clone Detection: Techniques and Tools

Code reuse is a frequent activity in software development. Code reusing can be in
the form of copying a portion of the code and pasting it with or without modifica-
tions. This type of reuse known as code cloning and the pasted code fragment is
called a clone of the original code [T0]. Nevertheless, during the maintenance stage,
identifying the original code fragment and the copied code fragment is a non-trivial
task. Several clone detection approaches have been proposed in the literature span-
ning from textual to semantic approaches. However, this paper does not consider
the techniques and tools proposed for cross-language clone detection [57].

Text based clone detection: During this approach, code fragments are compared
with each other in the form of texts; strings or lexemes and similar portions are
identified as code clones [67]. One of the earliest clone detection approaches
was proposed by Johnson [36, B8]. He applied a fingerprinting mechanism for

694 C. Wijesiriwardana, P. Wimalaratne

comparison of source code. Ducasse et al. [21] developed a language independent
clone detection tool, duploc, which aims at overcoming the obstacle of having
the right parser for the right dialect for every language. However, this approach
requires a significant effort in pre-processing and transforming the source code
into the required syntax. Duploc cannot detect Type-3 clones or deal with
modifications and insertions in copy-pasted code [76]. NICAD [69] is a text-
based clone detection tool that is capable of effectively detecting clones up to
type 3. It is based on lightweight parsing to implement code normalization
and code filtering. Seunghak and Jeong [49] presented a text-based code clone
detection technique. They have implemented Similar Data Detection (SDD)
tool, which is an Eclipse plug-in. Dou et al. [20] has effectively used text-based
clone detection technique in detecting clones in spreadsheets.

Token based clone detection: Token-based clone detection techniques are con-
sidered better than text-based detection. In this approach, lexical analysis is
used to extract the tokens from the source code by lexical analysis. One of the
focal points behind token-based clone detection algorithms is to perform suffix
tree or suffix array based token-to-token comparisons. A suffix tree is a data
structure that exposes the internal structure of a string in a deeper way [28].
Suffix array is also a conceptually simple data structure which is initially devel-
oped for on-line string searches [54]. The central advantage of suffix arrays over
suffix trees is that, in practice, suffix arrays use three to five times less space.
CCFinder [40)] is a well-known tool of this category, which finds identical subse-
quences by using a suffix tree matching algorithm. The research community for
code clone analysis as well as code clone management broadly uses CCFinder.
Dup [7, [6] is another token-based clone detection tool, which divides the source
files into tokens by a lexical analyzer. CCLEARNER [51] is a token based clone
detection tool developed by leveraging deep learning. However, approaches such
as [69] and [74] are not exploiting suffix trees or arrays in detecting code clones.
For example, Sajanai et al., [74] uses an optimized partial index and filtering
heuristics to achieve large-scale clone detection. This technique has used in
recent studies as well [73].

Tree-based clone detection: In tree-based clone detection algorithms, the source
code transformed into a parse tree or an abstract syntax tree. A parse tree is
a data structure for the parsed representation of a statement in a particular code
fragment [12]. The usefulness of generating the parse tree is that, by parsing
two code fragments and comparing their parse trees, it is possible to determine
whether the code fragments are identical or not. Abstract Syntax Tree is also
a special kind of parse tree. In parse trees, the roots of subtrees represent
nonterminal symbols of the grammar, while leaves represent terminal grammar
symbols. In an abstract syntax tree, operators represent root nodes, while leaves
symbolize operands [60]. Once the trees are generated, tree-matching algorithms
are used to find the similar code fragments. One of the first approaches of this
category was presented by Yang [89]. CloneDR [I1] is another token-based clone

Building Blocks of Code Clone Detection 695

detection tool, which can detect exact and near-miss clones using hashing and
dynamic programming. Wahler et al. [83] presented a technique to find clones
at a more abstract level by converting abstract syntax tree to XML format.

Program dependency graph based clone detection: A program dependence
graph (PDG) is a graph representation of a code fragment. In PGDs, basic
statements such as variable declarations, assignments, and function calls are
represented by program vertices. Edges between program vertices in PDGs rep-
resent the data and control dependencies between statements [23]. In Program
Dependency Graphs (PDG), the source code is abstracted to extract the con-
trol flow and data flow graphs. Krinke [48] has presented a methodology for
identifying similar code based on finding similar maximal sub-graphs by using
the k-limiting technique. Hugo and Kusumoto [29] proposed a methodology to
enhance PGD based clone detection based on PDG specializations and detection
heuristics. Clone detection tools based on PGDs, as proposed in [44] and [87],
can be used to identify type 4 clones.

Metric based clone detection: In a metric-based approach 45, B5] the source
code is divided into smaller units (e.g., one line, one method, one class) and
metrics are calculated for each unit. The metrics of each unit are compared,
and those with the same values are identified as clones. Examples of metrics are
the number of function calls within a unit or the cyclomatic complexity of the
unit. The type of metrics used by each tool impacts the language dependency
of the tool.

Hybrid clone detection: Hybrid clone detection techniques typically employ
a combination of clone detection techniques. A hybrid approach aims at over-
whelming the problems encountered by specific techniques. Leitao [50] presents
a hybrid approach that combines syntactic techniques and semantic techniques
with specialized comparison functions. Hummel et al. [33] present ConQat,
which is an incremental index-based hybrid technique to detect clones. Agrawal
et al. [2] described a hybrid approach by combining token-based and textual ap-
proaches to find code cloning. Hu et al. [31], B2] recently proposed BINMATCH,
which is a hybrid approach to detect binary clone functions.

2.3 Code Clone Evolution

Software evolves from one version to another when adding new features, getting
involved with fixing bugs, improving performance and increasing reliability. As
a result, code clones also evolve simultaneously together with software systems.
Therefore, analysis of code clone evolution is critical to comprehend the effect of
code clones to the entire software system.

There are several noteworthy studies in the literature on code clone evolution
with a particular focus on clone genealogies. Kim et al. [43] has pioneered one of the
first investigations on code clone evolution. That paper defined clone genealogies
as the history of how each element in a group of clones has changed concerning

696 C. Wijesiriwardana, P. Wimalaratne

other elements in the same group. In that research, they emphasized the need for
understanding clone genealogies to maintain code clones better. Saha et al. [71]
extended the research conducted by Kim et al. [43] by incorporating different di-
mensions. They have presented an empirical study to investigate clone genealogies
using 17 open source software systems. Clone evolution related investigations have
been further reported by Géde [26], Barbour et al. [§] and Krinke [47].

2.4 Software Engineering Data Analytics

Existing frameworks for software engineering data analytics based on either generic
query languages such as SQL or domain-specific languages. Some of the approaches
that directly follow the standard SQL syntax are Gitana [16], AlitheiaCore [27]
and MetricMiner [77]. However, such approaches not specifically targeted at facil-
itating CCDE experiments. Thus, CCDE specific functionalities are not available.
Besides, the domain-specific languages such as Boa [22] and QWALKEKO [78] re-
quires a prior understanding of the language itself. Hence, the usability of such
frameworks, particularly, for novice researchers is questionable.

2.5 Summary

Our approach is conceptually different from the previous work. Existing survey
papers on CCDE mainly focused on identifying the different techniques, tools, com-
pare them, selecting appropriate technique, and present the observations on future
CCD tools. This paper presents a different dimension to facilitate researchers in
understanding and conducting code clone detection experiments by utilizing a set
of Building Blocks that are meant to CCD experiments. For example, conducting
comparison studies is hard for the researchers as the clone detection techniques are
naturally complex as there are many different pre-processing activities, transfor-
mation activities, and algorithms are involved. Therefore, a unified framework to
facilitate replication studies is important, and to the best of our knowledge, such
frameworks are not adequately presented in the literature. Thus, we believe that
our approach would shed light on future directions such as [63].

3 APPROACH

This research aims at providing a systematic way to conduct CCDE experiments by
identifying reusable tasks from the literature. Initially, a literature review on pa-
pers published on reputed software engineering conferences such as ICSEﬂ7 MSRE|7
ICSM(E)EI and FSEEI conducted for 11 years (2010-2020). All the papers are ex-

International Conference on Software Engineering
Working Conference on Mining Software Repositories
International Conference on Software Maintenance (and Evolution)

1
2
3
4 Foundations of Software Engineering

Building Blocks of Code Clone Detection 697

tracted from the main track of each of the conferences. First, the papers published
on CCDE has filtered and carefully investigated the methodology section in each
article. However, the study is not strictly limited to the baseline papers on the
mentioned conferences in the given duration. We further traced back and forth to
find related work published outside the selected papers as well. Based on this study,
a mechanism has introduced to drill-down the experiments to identify the concrete,
reusable tasks. From the clone detection experiments, four main activities has iden-
tified: data gathering, pre-processing, clone detection and post-processing. Such
activities are implemented via smaller tasks or sub-tasks, which refers to as Build-
ing Blocks in this paper. Finally, we proposed a method to represent the building
blocks using a semi-structured textual notation and a graphical notation. Below we
provide an overview of our proposed methodology.

This review can be further extended by considering the other reputed software
engineering conferences. However, the objective of this study is to find a useful
collection of building blocks to conduct CCDE experiments. Thus, the papers pub-
lished in the selected conferences were rich enough to identify the building blocks
for CCDE.

3.1 Data Collection

The process of selecting suitable research publications for a particular review has
two major problems: identifying the relevant work and assessing the quality of the
selected studies. Therefore, it was decided to minimize the risk of errors by mainly
reviewing the papers published in well-reputed software engineering conferences.
A literature review is conducted in the proceedings of the ICSE, MSR, ICSM(E)
and FSE conferences for eleven years (2010-2020). From that the papers published
on code clone detection has filtered out. Table[I] presents a summary of the reviewed
papers.

No. of Papers Reviewed

Year 46SE MSR ICSM(E) FSE
2010 1 2 3 3
2011 2 1 3 0
2012 4 0 3 0
2013 3 2 3 1
2014 3 3 7 1
2015 0 1 2 1
2016 1 0 1 1
2017 2 1 2 0
2018 1 2 2 1
2019 3 1 2 0
2020 3 0 1 0

Table 1. Number of reviewed clone detection papers

698 C. Wijesiriwardana, P. Wimalaratne
3.2 Drilling Down Code Clone Detection Experiments to Building Blocks

Scientific workflows are meant to be data flow oriented, which facilitates stream-
lining of scientific tasks to make significant scientific discoveries [53]. They widely
recognized as a useful mechanism to describe and manage complex scientific anal-
yses. Scientific workflows provide means to specify how a specific experiment can
be modeled and carried out. In such workflows, relevant activities need to sequence
in a pipeline to create a workflow that can execute a particular analysis experi-
ment. Therefore, a specific CCDE experiment can interpret as a problem of creating
a suitable workflow and running it without interruptions. In this research, scientific
workflows are considered to be the top level abstraction of CCDE experiments.

Activities: A CCDE workflow is composed of activities. Activities are the tasks
and sub-tasks that directly associated with CCDE experiments such as fetching
data from VCS, calculating metrics or removing test files. In this paper, tasks
that serve a specific analysis or perform a specific operation are grouped under
a particular Activity. For example, extracting data from a VCS is an essential
task in CCDE experiments. Therefore, fetch data from GIT, fetch data from
SVN and fetch data from CVS can be grouped under an activity called data
gathering. Similarly, tasks such as snapshot generation and token generation
can pool under the activity called pre-processing. As explained in [43], though
it is not necessary to follow all the steps, a typical clone detection process fol-
lows the key activities namely pre-processing, transformation, match detection,
formatting, filtering, and aggregation. We slightly modified the activities while
keeping the core concept unchanged to fit into our context, as shown in Figure[l}

-+ Data gathering |~ — ~ -1 Clone detection |~ ~| Clone evolution + ~
’ \ ’ AY ’, AY ’, AY
1 1 1 1 1

1 .
1 Source 1 Data cleaning iintermediate 1

Extract data from
! code | Dpataintegration | formats !

. Cl /
Clone detection based : Clono:z:xirs :
on metrics, ASTs, !

3 Insights on clone
1
: PDGs, etc
'

source code

! 1 Data transformation ' ! evolution

repositories

1
1 ! Data reduction 1
1 1

Figure 1. Common activities in a code clone detection and evolution workflow

1. Data gathering: During this phase, historical data about software projects
are extracted from version control systems (e.g., CVS, SVN, GIT). Given
that one of the leading contributions of this research is to identify reusable
BBs in CCDE research, the other variant of data extractions such as gath-
ering data from binaries has not considered.

2. Pre-processing: Data pre-processing can be in different forms such as data
cleaning, data conversion or data integration. For example, data originating
from the version control repositories need to be converted to different for-
mats to facilitate various kinds of CCDE experiments. Furthermore, data
from a VCS has to tokenize before feeding it into a token-based clone de-
tection algorithm. The pre-processing steps can be carried out within the

Building Blocks of Code Clone Detection 699

clone detectors as well. However, separating it out from clone detectors has
several notable advantages. For instance, novice researchers can better un-
derstand the fine-grained details of the entire CCDE process. Besides, the
BBs in the pre-processing stage can be utilized in various software evolution
experiments.

3. Clone detection: During this step, how the different clone detection ap-
proaches function in different settings are described. For example, after
tokenizing the source code in the pre-processing stage, it has to be fed into
a token-based clone detection algorithm. Similarly, metrics-based clone de-
tectors depend on the metrics that generated in the pre-processing step.

4. Clone evolution: The primary goal of this step is to investigate how the
clone detection results can utilize in clone evolution. For example, code
clone genealogies provide useful insights to express how code clones change
over multiple versions of the software.

Building Blocks: Activities are implemented via Building Blocks (BBs). A build-
ing block noticeably represents a specific analysis task such as fetch data from
GIT, fetch data from SVN, generate snapshots or create ASTs. Figure [is
a graphical representation of such BBs. Each BB is responsible only for a small
fragment of functionality. Dependencies between BBs within a workflow de-
termined by a list of parameters such as input and output parameters, pre-
conditions and post-conditions. Input parameters and the pre-conditions are
directly associated with Predecessor BBs, whereas output parameters and the
post-conditions are directly associated with Follow-up BBs. Predecessor BBs
and Follow-up BBs are two properties used to represent a particular BB, which
explains in the next paragraph. For example, if an input parameter of an ac-
tivity B is connected to an output parameter of activity A, it means that ac-
tivity A must execute before activity B, and the data produced by activity A is
consumed by activity B. The connection logic is explained in Section [6.2) under
the implementation details of the proposed experimental testbed. Therefore,
more comprehensively, we can infer that CCDE experiments consist of activi-
ties (e.g., data gathering, pre-processing), which are implemented via building
blocks (e.g., SVN miner, AST generator).

Representing Building Blocks: A building block may consist of processes, data
sources, operators and relationships. A process is a concrete example of activity,
as mentioned earlier (e.g., mine version control repositories, mine bug reposito-
ries). The data source can be a source code repository such as Git, a bug
repository such as Bugzilla, or any other intermediate location that keeps data.
Operators are the basic operations that could perform on data (e.g., filter, sort).
Likewise, a set of well-defined building blocks will be created, offering the option
to use and combine such building blocks into a workflow to solve or to better
understand complex CCD tasks.The usefulness and reusability of BBs mainly
depend on the degree of expressiveness of such BBs. This expressiveness allows
easily identifying when and why to use specific BBs, as well as when and why not

700

Mined
source code

C. Wigesiriwardana, P. Wimalaratne

System
snapshots

A

Mine GIT

GIT miner

A

Snapshot
generator

Snapshot generator

Code clones

A

AST based clone
detector

Abstract
syntax
tree

Clone detector

Figure 2. Building blocks in a CCDE workflow

use them. As per our understanding, there is no universally accepted standard
for representing any sort of analysis tasks, in our case Building Blocks. However,
we consider the following properties are rich enough to effectively describe a BB.

experiments

Building block name: name of the BB
Activity name: high level activity of the BB

Problem(situation): why and when to apply the BB

Solution: how to apply the BB and what it exactly does

Alternatives: what other BBs could be used to replace this BB
Predecessors: what other BBs should be executed prior to this BB
Follow-up BBs: what other BBs could be executed after this BB
References: how other researchers have used this BBs in conducting CCD

4 BUILDING BLOCKS FOR CODE CLONE DETECTION

AND EVOLUTION

This section presents a catalog of BBs, which classified into four main activities: data
gathering, pre-processing, clone detection and post-processing. Such BBs further
described by using the properties mentioned in Section B.2} Individual BBs are
not represented graphically. However, an overall view of BBs and how they can
meaningfully interconnect with other BBs provided in Figure[3] This representation
goes beyond a simple classification, but provide insights to the researchers on how
to utilize and compose BBs to solve a particular analysis task.

Building Blocks for Data Gathering: Software evolution experiments typically
require information about software projects that are collected via repository

701

Building Blocks of Code Clone Detection

ABojeauab
auojo [euly

Buissasoad-}sod

ABojeauab
10N11SU008Y

sannsod

sauop
pireAul
anoway

(sag €)
uonn|one
Buo|o uo sjuswadxa
Jayuny wioped

uop99}ap Buo|)

Buissasoid-aid

Bunayieb ereq

Suay0}

uonoslep
auo
paseq 1xa 1

uonoalep

uonosjep EVENCIR
auo|d
paseq uso. A
ydesb
uonoalep AKouspuadap
auo weiboid
peseq Had

SEIENED)

ydesb

Jlopow
welboid

souew
alemyos

AKouspuadap
slesousn)

Kioysiy
uoISInaI
pue apod
20In0g

N

|opow
weiboud
joeNX3

saly
159} arowaY

sjoysdeus
dlelsusn)

SOA
ayelbin

Souew

auojo paseq
SoLB

Qa1]
uonosep Xeis
auo|d 1RISQY

SEIENED)

1sv

paseq |SY

(sag g)
ejyep passaooid-aid ayy
uo paseq anbiuyoa} uonoalep
2UOJO 9|GEIINS B JO UONEIIUSP)

(sag)
swuadxe [eal sy}
Buiwiopad o} soud eyep jo
uonesedaid pue Buiues|n

ajelauan

(sagd 2)
salo)sodal
|0}UOD UOISIA WO}
uonewlolul 10BIXT

Figure 3. Activities and building blocks in code clone detection and evolution

702 C. Wijesiriwardana, P. Wimalaratne

mining. For data gathering, two important BBs have identified and presented
to extract information from version control repositories namely VCS Miner and
VC Migrator (See Table . More specifically, VCS Miner is a more general term
that explicitly represents GIT Miner, SVN Miner, and CVS Miner.

Building Blocks for Pre-Processing: As with any dataset, there is certainly
a great deal of cleaning and pre-processing required before any real analysis
can perform. The pre-processing stage can often take the majority of the time
spent on a data analysis project. Having a proper understanding of the required
pre-processing steps allows a researcher to speed up the data preparation pro-
cess as well as to reduce the complexity of the mining process. In this work,
seven main BBs have identified for pre-processing: Snapshot Generator, Test
Files Remover, Program Model Generator, Dependency Graph Generator, AST
Generator, Metrics Generator and Token Generator (see Table [3)).

Building Blocks for Clone Detection: Several code clone detection approaches
and tools have proposed in the literature spanning from textual to semantic.
Designing a clone detection experiments requires identification of a suitable clone
detection technique based on the available data set and the output of the pre-
processing step. In this work, five central BBs have identified for clone detection:
String Based Clone Detector, AST Based Clone Detector, Metrics Based Clone
Detector, Graph-Based Clone Detector and Token-Based Clone Detector (see
Table Ié-_l[)

Building Blocks for Clone Evolution: Conducting a comprehensive analysis of
clone evolution can uncover the patterns and characteristics exhibited by clones
as they evolve within a system. Software practitioners can use the results of
this study to understand and to manage the clones more efficiently. In this
work, three BBs have identified for post-processing: Genealogy Generator 1,
Genealogy Generator 2 and Genealogy Reconstructor (see Table .

5 CONCEPTUAL FRAMEWORK
OF THE EXPERIMENTAL TESTBED

This section presents the conceptual foundation of a domain-specific framework to
support CCDE experiments. The framework adheres to an extensible multi-layered
abstraction mechanism that consists of the collection of BBs identified previously.
The BBs are systematically organized on top of a collection of basic operators derived
from relational algebra.

5.1 Stack of Building Blocks

As depicted in Figure [] the Building Blocks stack consists of several layers, that
are arranged based on the BBs identified in the previous section along with a newly
introduced collection of Operators.

703

Building Blocks of Code Clone Detection

‘ssouauoid 909Jop pue
Suruopo usemiaq drysuorjeor
sosATeue 1oded suyy, sse0
-oxd oY) dn peads 03 Iepio
ur]9 0% serrojsodar GAD
pue NAS PporeiSiur Loy,
:[99] (€9] ‘e 10 uewyey

Surroryes eyep 10j syoo[q SUIp[ng :g o[qrR],

10)eIOUST
ISy ‘101RI0
-e8 SOLIPOIN
‘107RISTUL

DA ‘107RI19
-8 [opowt
weIsord
‘103eI0U03
joysdeug ‘109
-eIOUSS UAYOJ,

(LD

01 NAS wor “8-9)
K1091s0da1 NSOA
0} Kroysodar NDS
[euonIpeI) woy
ejep sojeIStu 9]
103eISIN DA

‘A109150do1 DS © YHIM
I9139q wwrojred JUSTW S[00)
pue SWy)LIOZ[R UOIID9I9P
QuoD ‘eI0Jaley], SINDS
[RUOIYIPRI} 9} URY) SOLIO}
-SIY JU9JUOD IoYPLI opraoid
wed (IIH “89) suwosAs
JuowOSeURW OPOd 9OINOS
pozienuadd “(SAD ‘NAS
“89) SINDS [euOnIpRI} Ul
pol0)s oIk W)SAS orem
-)Jos reuuio o) A[ISON

‘Apnys

reoundwe pue jonpuoo 0)
(ereSNA Pue TINNOSTY
©9'T) SwPISAS oIRM)JOS OM)
jo seuojisodar GAD WOl
opoo pojoenyxe roded siyg,
‘gl ‘e 19 ouesieay
‘so11091s0dor NAS

Suturu Aq swa)sAS oIeM)Jos
20anos uado XIs pazATeur Tod
-ed sy, :[gZ] '1e 10 eyes
'sor1031s0dar N AS Sururua

Aq s9)sAs 91eMIJOS 991[} JO
K109s1y o8ueyp pozAeur tod
-ed sy, : [98] 18 30 eIx

10)eIOUST
ISV ‘107e10
-a8 SOLIPIN
‘107RI3TUL

DA ‘107RI19
-8 [opowt
weIsord
‘103eI0U03
joysdeug ‘109
-eI0US UANOJ,

‘SWIYSAS 9IRMIJOS

jo A10y1s0dor (013100
UOISIOA 9} SOUIWI §]
ISUIIN SDA

"LID Pue SAD ‘NAS
se pns sar1ojsodar [0Iyuod

UOISIOA WOIJ RJep IoIes 0}
pedu ® ST alay) ‘aI0Jolay],
'so8e)s SNoLleA B UOIjRW
-I0jul SUIUO[® 9p0d opraoxd
A[)001IpUT UOTJRULIOJUT [ONG
*A109s1] 93URYD § 11 pue 9pPOod
a9 Jo surdLIo 9y} moqe uor}
-RULIOJUT OpPNID oAI3 AotJ,
‘syoelo1d aremijos Jo A109s1y
UOISIOA TPII ' I9JJo A[[eor)
-s1010RIRYD (JNDS) SWOISAS
JUaUWIDGRURW 8POD 9DINOG

S90UDIRJOY

sdn-mor[oq

IOUIN SAD
‘U NAS QUON
DU LID
SIOUTN - SAD
PUON ‘IOUIN NAS
thmm@owﬁwhﬁm m®>5,m~:m‘:<

MOIAIBA() UOIIN[OG
pue sureN g

we[qoIg

C. Wigesiriwardana, P. Wimalaratne

704

' *o8ed)Xou UO panuIuo)

"$HAJ sunopdxe £q
9IeM}JOS JO SUOISIOA SNOLIRA
JO SOOUSISJIP OIJURWIAS puUR
O130RIUAS [0Q S9)eS1)SOAUL
teded styy, :[0€] zNmIOH

‘Mo eyep Surpuodsoriod
oY} yum Ioyjeso) urerdold v
JO 2INJONIYS OISk Y} SUIZI

"9l 90INOS UIAIS © JO
DAd oY) seyerausd 9]

‘sjuewt
-3y opoo Ie[IWIS AJIJULpPI 0
[B1A ST UOIRULIOJUL Yons Jut
-10RI)xy ‘sarouspuadep ejep
pue [019U00 Jussaidel sa8pa

-[oquids Aq ‘sH(Jd UO poseq I1030919p U0 103 oym ‘wrergoid e jo suoryp

yoeordde ue pojueserd eary peseq ydeid -eI9ULN) ydeir) -uod pue SjULUILIR]S ST} JUSS

sioymny Q%] aevjurayg Aouopuado(] Jourut §HA QUON Aouepuade -01dor HJ ® JO sopou 9y,

*90URUOIUIRTT DIRM

-1j0s ur Aousmige oy} aaoxd

-wit 0} I9pIo url HoIdxe sl

‘suory 070 ‘sasse[o £Jjue osey) Sumyeur I0j pesu e SI

-eoridde aremjjos Jjo so[nx ‘Spoyjemt JO SISISUOD oI ‘9I0JaIey T, Justudorea

Suruuwreidord pue ssoulsnq YoIym ‘Opod 90INOS -9p 9IBM)JOS JULIND PIjUO

oY) ozAeuR 0} pasn ST Jey[, oY) woly epow weid -noop Apredoxd jou uelo

"9P0d 90INOS A} WO [9pOU -oxd ot} spoeI)XO)] oI JeY) SO[NI Jurmuurerd

weidord ' sjoer)xe Ioded 1039930p SUOD Jojersuar) -oxd pue SSeUISN(AuRW

syl :fF9] ‘Te 39 werd) peseq IXag, LU §HA 9UON [@POIA wed301J [9AS1 UBD SOUO[D [edIS07]

*SoUO[d

"SUOIINIOXS [RULIOU Ul PIAJOA Awewr urejuod ued KoYy ‘osed

-Ul 90U aIe JeY) SSUO[D A} JUBISJJIP ® S99 0} PAyIpout

ploA® 07 SOl 1S9} SOAOWII pue perdod Apjuenbory ore

1oded sy, :[9R] ‘Te 30 oIX SOy 9$9) 9OUIG "SAIYI[RUOI}

‘suro) SWP) -OUNJ JUAISPIP 9y} 1591 0}

-sAs NV Pue TINNODUV -sAs 100[qns oY) woy wWe)sAs oy} Jo juswdoPrdp

woJ sa[y 1597 seaouwral Jeded 101 10)RI9USS SO[J 1591 SOAOWRI)] oY) SULINP PIsn oIr Jey) Sy

sty :fg] ‘e 1@ anoqaeg -09yep LU0l joysdeug OUON JI9AOWSY SO[I] 1S9, 159) AURW SUIRIUOD dIBMIJOS
*SUOISIAI A[UJUOUI UT $)OUS
-deus sexmber 1oded styT,

:[99 1¢9] ‘e 719 uewyey 10)RI0U03 ‘porx ‘syuomiLIodxe U0130939p

‘sases[al J1olew joysdeus -od oW} PLUOIIUSW SUO[D SPOD SNOLIBA JONPUOD

pue Jourw [e seanjdes rod [oA9] UOIS ® I0] WIO)SAS 0IemM)JOos 0} Ioplo ul porrad ouwr) polo

-ed sy, :[7Z] ‘TR 10 eyeg -1A01 ‘103 oyy Jo sjoysdeus Jo -pISUOD ® IO SWO)SAS oIeMm

"UOISIAI I2A0WDT -eIoUSS 19S ® 9JeIoUSl URD)] -1JOS JO SISES[DI pUR SUOISIA

yoeo e sjoysdeus sjoeI)XO SOy SO, ‘109 joysdeus 103 -01 onjded 01 podU SHUSWL

teded sy, :[9g] 'Te 3@ 8IX -0919p 8u0) IDUIW GHA [9A9] 9sespl -eiouax) joysdeug -11odxe UONN[OAD BIBRMIJOS

S90UDIRJOY

sdn-mor[oq

SI0SS909PAI] SOATRUIIY

MOIAIBA() UOIIN[OG
pue swreN g

we[qoIg

705

Building Blocks of Code Clone Detection

' *o8ed)xou uo ponuruo)

'STWO)SAS 9IRM)JOS
ur suorjouny (sjeordnp Iesu
10) oyeordnp 19A00STp A[[eor
-jewrojne 0} anbrurpay paseq
-sotewr © sesodoxd oded
sty], :[€g] ‘e 10 pueaken

*SOLIOW B[} JO SURI
Aq uoryeordnp opod Ajrquopt
0} [UISY XNUIT JO SISBI[
-o1 ue9jeuIu sozATeue Ioded

10%0949P QUO[D

*9pod
90INOS Y} WO SOLI
-19W 90D $IYRISUSS §]

SLSV 10
9poo 20anos oy} Surreduroo
A[300I1p URYY IOYjRI WD
aredwiod Way) puer SOLIjOW
JO IBqunu e d)R[NO[ed

sty T, :[%] ‘Te 7e [ouojeuy poseq-oLIe Jourat §OA OUON J0jeloudr) SOLIPJN soyoeordde poaseq-soLIIOIN

uony

-equosordor QY Suzim
Aq ASojoporjewr UOI}09}0P *9P0D 90INOS 1)
auop e sesodoxd reded siyf, Jo uoryejuasarder paseq SV
:[62] Aern pue searey, ue 99edId PNOYS WILIOS[R
‘¢ odAT, 07 dn seuod o) ‘deys Sursred e Sunm(y
9IeM)JOS SULIOAODSIP 10J UOT} *Op0O 90INOS 97} JO "SOUO[D dIRMIJOS JO UOIIRIYI)
-RULIOJUT [BOIXS] SB [[oMm S® uorpequesaidel [QY -USpI oY) djewoine o} pasod
SISV 01es1ysoaut yorym ‘30 ojerouad pue opod -oxd ueaq oaey soyprordde
-[opotjew ® sesodoid 1oded 1030999p oUO[D o0Inos oy} sosied 3] peseq o001, XeIUAS JORIIS
sty :[¥I] 'Te 10 ezzeroy peseq ISV JIourur §HA QUON IojeJoue) ISV -V [BIeAds ‘einjels)] up

MOTAIOA() UOIIN[OS

S90UBIRJoY sdn-Mo[[0 SI0SSe0ePald SPAIRUISIY we[qoIg

pue swreN g

ponuIjuo)) — ¢ o[qeL

C. Wigesiriwardana, P. Wimalaratne

706

*109
-0930p auopd ded-031e] paseq
uey0} e :IUSIYy) pesod
-o1g :[GR] ‘e 190 Suepp
070 ‘spiom

-Aoy ‘suorjouny ‘sjuR)ISuU0d
‘s107eI0dO ‘SO[qrRLIRA Se [ONS
‘syueuodurod s)1 SUIZIULY0)
151y Aq szoqumu 09 paddewr
oIe sjuewejels ‘yoeordde
sy up :fgg] re e 1
‘ST

-0y 19joureIed-uou pue Suoy
-0} 1ojourered ojur Jids uot}
oIe SUAYO) 9SO, 'SueYO)
OJUT S[IJ 92INOS JO SOUI[O}
OPIAIP 0} IozA[eu® [BIIXI] ©
sosn toIeaser Uy :[z] iexeqg

3urssoooad-oxd 10§ syoo[q Surping :¢ d[qe],

*9POd 9IINOS Y} WOIJ
1039939p dUO[D suoy0} sojerouaS 9]
paseq-ua o], IouTw §OA QUON JI0JeIOUSY) UNOT,

*9p02 92INOS JY) WIOTJ ST O}
a1} JoeIIXe 0} pasn Afrrewrtid
ST sisA[eue [eorxo] ‘sonbru
29 8se) Uy °[Zg] seypjew
piomAoy orduils uey) 10}
-}9(POIOPISUOD dIe SI0Y
-0919p OUO[D Paseq-uayoJ,

S90UBIRJoY

sdn-mo[[o S1085000paI] ADIAAQ UORBIOS

SOATYRULINY pue owreN g4

we[qoIg

ponunuo) — ¢ o[qe],

707

Building Blocks of Code Clone Detection

**-o8ed 1Xeu UO panuruo))

*9p0d
pojeordnp woj Surmme)s
aIe Jey) seanjoniys ydeidqns
Tepruats Ajryuept 03 sydwe)e
toded sy, :[RF] ourLd]

'SOUO[D PO Y[} PUY
09 pasn 9q UL} P[NOD YOIYM
‘HIJ sH Sulsn apod 90Inos
oY) UI UOIIOUNJ [ORD SHUISAT
-dox raded sy, :[FH] zaim
-I0l] PpuUe JOOPUOWO3]

¢ 107R19
-ue8 A3oeau
-8 ouor) ‘1

I10jeroual A30
-[eoURS SUO)

I09e

-1ou08 ydeid
Aouapuadep
wreiso1J

*SUSY0) O]

SOUO[O 9POD $19939D 1]
1090939(J dUO[D

oUON paseqg ydern

‘wreidord ' Ul SOUO[D
9pod oY)} AJIpuepl 0} pasn
ore sonbruyoe) Suryojewr
deisqns uay], ‘opod 92IN0S
oY) Jo HJ O} 9y} uo A1
A[)seA UO110999D SUO[D SPOI
uo soyorordde orjuewag

'SoUO[D
9p0D 10918p 07 SOLIPW MOJ
®Jep PUR SOLIJOW MOJ [01}
-u0d 1o sIepisuod Ioded
sy, :[gg] Te 10 pueale

¢ 109e19
-we8 A3oresu
-8 ouol) ‘1

I101eIouad A30
-[eOURS OUO)

107eI19
-8 SOLIIN

*SOLIJOU OPOD

92INOS WIOI] SAUO[D

9pod §109%9p 1]
1099939(J 2Uo[D

SUON paseqg SOLIPdIN

"A71091Tp ST, I0 9p0d
90INOS oY) URY) IOYJRI SIO}
-00A soupw oredwiod WA
pue sjuswiSel) 9pod I0j SOLI
-19TW JO I9QUUNU ® 9)eNo[ed
sonbruyoa) paseq-soLIpeN

"SOUO[D SSTUI-TRoU
10930p 0} AS0[0pOYjoUl paseq
ISy ue sesodoid roded
sty G[TI Te 1e Jeyxeg

"SOUO[D dIeMIJOS AJIIULPI
0] UOIJRULIOJUT [RDIXO] pueR
LSV 1oyje80) syrojdxe roded
sy, :[FI] Te 1e ezzeio)

¢ 109e19
-we8 A3oresu
-8 ouor) ‘1

I101eIoUad A30
-[eOURS U0

10}
-eI10U0S TSV

‘SuoIye)

-usserdal QY woxj

SOUO[D 9POD §19939D 1]
RLLELE g}

9UON 2uo[) paseg ISV

‘po1ousl ore sawreu
a[qeLTRA SE [[oM St SaA)s Sur
-pOO> SNOLIEA JO SOOUAIOHIP
‘9sed SIY) U] "SOUO[d 9POd
Se POYIIUOPI 9 0} POIU $991)
-q0iS IRIUIS ‘9PO2 9DINOS A}
wolj ISV 9Y) SuIjeaid oy

‘sonbrutoe) Suryojewr JurLI)s
oiduits oo1y) Sururquiod Aq
poyjewr UWOID9)ep SUO[D
[Pad[-o[y & sesodoid 1oded

sy, :[g9] 1e 10 a9yssQ

"SOUO[O 9POD A}
10030p 09 PozZATeUR oIe SIUSUI
-noop Aem 91} 1 9zATeur pue
X0} Se 90INO0S O} SIOPISUOD
teded styy, :[zg] wosuyor

¢ 107R19
-ue8 A3oeau
-8 euor) ‘1

Jo0yerouad K30
-[eoUL8 QU0

10919

-e8 [opowt
wreiso1J
‘107010U03
joysdeug

‘Suryorewr Surrys Aq

S9UO[D 9POD §19919D 1]
1030939(J dUO[D

SUON pesedg 3utayg

‘[nyesn aq 03
Aoy1] st yoroadde peseq-1xo1
® 9IOUM SIDUIRIUIRW I0] Sons
-s1 Juejrodwt om) aIe sasea|
-0l U9PM)O(SISURYD oIem
-1JOs MmOy urpue)siopun pue
SOUO[D oIeM)JOS SUIAJIIUSPT

S90UDIRJOY

sdn-mor[oq

S10SS909PAIJ

SOATYRULINY

MOIAIBA() UOIIN[OG
pue sureN g

we[qoIg

C. Wigesiriwardana, P. Wimalaratne

708

*1010939p

QUO[D Paseq U0} & ST YOIYM
‘fegl TvOuop Suwsn sSnq
Ajryuept 0} A3o[opoyjowr ®
sesodoxd 1aded sy, :[Gg]
Aimqpeirg pue jiaqrer
"TOT109)9p dUO[D

9pOd I0] WISTURYDAOUW UOT)
-RZIUSYO) O[(RZIWOISND pUE

UOI12999p 2UO[D I0] SYoo[q Suip[mg : o[qe],

'sHJ 10
SISV 201IISU0D 01 Podul)
MOYIM ‘SUSY0) OJUT dPOD
90IN0S 91} WLIOJSURI) 0} PISU
A[uo Aoy) osnedoq sHMsal

oidurits e sosodoxd roded ¢ 1ojers Iese] seonpord 1 Ieyang
sty :foI] ‘TR 10 yseg -ue8 ASofeou ‘SUOY0) WOIJ "JS00-MO] SB POIOpISUOD
YoIedsal ST} -o8 euo[) ‘T SOUO[D 9POD §10939P 3] OS[e pue quopuadapur
JO WI0DINO U ST IOPULI)) Iojerousd A30 I0ye 10309)9(J @uUO[) -oSendue] A[einjeu oIe
for] 'Te 1@ eruiey] -[eoud3 ouo[) -10u03 USYO], QuoN paseg uaxoy, soyoeoidde poseq-uayoy,
SO0UDIRJOY sdn-moq[0] SIOSS0OPAIJ SOAIJRUIONY MITAIGAQ UOBIOS weqOI]

’ pue swreN gq

pauutjuo)) — j o[qyL,

709

Building Blocks of Code Clone Detection

‘A[[enueu SOATH
-sod os[ej] o) SuraowaI I9je
sor3o[eauad oY) ONIISU0AT
0} oW} PUOddS YY) 10J peHI
unt Koy, :[ZZ] ‘Te 1° eyes

TOTIN[OAD SUO[D 10J SDO[q SuIp[ing :G o[qe],

QUON

¢/1
I0)RISUSS
A3oreou

-03 2uo[) QUON

‘sea1yIsod as[e] oY)
9AOWISI PUR S)NSIT
91} JO SSAU)IDLI0D Y
SoULIA A[[enueut 9]

1030MN138
-uod9y A3o[eausar)

“juejrodut
PoapUI ST UOTROYLISA [RNURI
‘9I0JOI0Y], SINSAI SNOSUOI
-Io ap1aoId SewI}awWOoS PInod
S[001 Yong peDHS sk Yons
S[00} 3uisn ouop A[rensn st
uorjeIauad A30[eauss auo[)

"(poew oures oY) 01
3uofeq sjuew8es 9pod o'T)
pl[eAaul pue paguryoun oY)
e soaowdl Apnjs siy) ‘so1d
-O[eaUad |UO[D oY) FuIp[mnq

I070oNIISU0D
-01 A8oreouor)

1 I0jeIoUS3
109 A3oreou
-0990p duo[) -8 Quo[D)

*$o13

-o[eauad ouo[Julye
-19ua8 09 1o11d Seuo[d
PI[eAUT SOAOWOI)]
g 107

-1oua9r) ASo[eauar)

"SOUO[D 9POD
Jo suorjeordul vourUSIUTRUL
o) uo syydrsur juelrodurt
opraoxd pmoo 91 ‘VI0JoIdY T,
‘wrerdord oy} JO SUOISIOA
sdiynur IsA0 WLISAS orem
-1JOS ® JO UOIIN[OAD dY} [IM
aAJoAd sdnoxd suop Moy
MOTS $91301ROUDS DUO[D PO

0y toug :[98] ‘Te 30 Brx
'SOUO[D 9PODd
SuizAeue Areoryewrtueld

-oxd pue A[ensia Suimoqe
‘so1o[eola8 QUO[D 9)BAID
Loy, :[T] wusy pue xepy

"SUOISIOA QAT
-09su0d [[e Suowre sdrysuor)
-e[o1 3uruop oY) Jurpodxe
Aq A3o0[eous8 9UO[D ISAODSTP
0} yoeoxdde ue pojuosord
aaey Ioded siy) jo sioyny
fe¥] upj3oN pue wryg

QUON

¢ 10je1ousl
109 A3oreou
-0939p BUO[) -88 suo[)

*SOUO[D PAYIRIOP

9} wol serdo[eau
-08 ouOo[s91BOID 9]
1 J09e

-19uexr) AJo[eausar)

'SOUO[D P02
Jo suorjeordul soURUSIUTRUL
o) uo syydisur juelrodurt
apraoxd p[moo 1 ‘alojelay],
‘wreigord 9y} JO SUOISIOA
ordiynuu IoA0 WOISAS orem
-1JOS ® JO UOIIN[0AD 9 [IIM
oA[0A® sdnoid ouo moy
MOUS SSI30[RAUDS SUO[D SPO))

S90UDIRJOY

sdn-mor[oq

SI0SS929PaAI] SOATRUIIY

MOIAIBA() UOIIN[OG
pue sureN g

we[qoIg

710 C. Wijesiriwardana, P. Wimalaratne

Remover Generator Reconstructor

BBs for Post-
processing

| Genealogy || Genealogy

1

1

1 .

f Invalid Clone
1

1

1

Metrics Based Clone Detector

Text Based Clone Detector | | PDG Based Clone Detector

BBs for Clone
Detection

X~

[3}

o

n AST Based Clone Detector | | Token Based Clone Detector
g

o Koo
=T .
m

D

c . Program Model Snapshot

ie] st EEmerier Extractor Generator

=

m

Token Generator PDG Generator

BBs for Pre-
processing

| AST Generator

Operators
derived from
Relational
Algebra

Figure 4. Building blocks stack supported by the operators derived from relational algebra

These operators are directly derived from relational algebra. Relational algebra
is a procedural query language, which operates on input relations. It consists with
a set of fundamental operators such as select, project, union and cartesian
product. Though several relational algebra theorems do not strictly hold in query
languages such as SQL and LINQ, they are the native implementations of the un-
derline concept of relational algebra. Therefore, we borrowed some ideas from such
languages to identify basic operators supported by relational algebra. In this paper,
operators such as filter, select, join, sort, count, etc. has been categorized as
basic level operators. Such operators are useful in conducting CCDE experiments.

5.2 Architectural Overview of the Experimental Testbed

Figure [5| presents the architectural overview of the experimental testbed to con-
duct CCDE experiments. It consists of two main components: BBs repository, and
workflow composition and execution engine. BBs repository contains all the BBs
(i.e., BBs for data extraction, pre-processing, clone detection, and clone evolution)
and a useful collection of Operators that are described previously. The purpose of

Building Blocks of Code Clone Detection 711

Operators is to facilitate the basic functionalities such as counting or filtering. Once
the BBs and Operators are defined, CCDE experiments can be accomplished by
pipelining the required BBs and operators. Workflow composition and execution
engine is responsible for translating the CCDE workflow defined by a user into an
executable process. Finally, the analysis results will be presented to the user.

For the workflow generation, all BBs and Operators are defined directly on
an underlying logical representation, a static grammar. Static grammar consists of
the production rules to combine BBs and Operators into a meaningful workflow,
which strictly follows the connections in Figure [J] For example, AST based clone
detector can be directly composed with the AST generator. However, it cannot be
composed with PDG generator. Static grammar has to be defined manually and
should be evolved with the introduction of new BBs and Operators.

—X

User

- _| Building Blocks Repository |_ -

)

BBs for Data
Extraction

\ 4

BBs for Pre-
processing

BBs for Clone
Detection

Y

Execution

Operators derived from
Relational Algebra

BBs for Clone
Evolution

__{__________________
|

1
1
1
1
1
1
1
Workflow :
1
1
1
1
1
1
1
1

Figure 5. Architectural overview of the experimental testbed

6 VALIDATION

Our vision is to introduce a collection of reusable BBs that are derived from the
state-of-the-art code clone detection and evolution research and efficiently utilize
them in developing an experimental testbed to conduct CCDE experiments system-
atically and conveniently. In this section, we sought to validate the two research
questions. RQ1 mainly focuses on identifying building blocks from existing CCDE
experiments, which could reuse in new ventures. For that, a case study based eval-
uation is employed to show how a particular CCDE experiment can represent by
utilizing the identified BBs. To validate RQ2, a simple prototype was implemented
to demonstrate how to develop an experimental testbed to utilize BBs effectively.
The prototype was validated with a usage scenarios for three open source projects.
Finally, the extensibility of the proposed approach in conducting a diverse range of
software analytics experiments is examined.

712 C. Wigesiriwardana, P. Wimalaratne

6.1 Reusability of BBs in CCDE Experiments

As described previously, the BBs have identified by the literature survey conducted
on the papers published in ICSE, ICSM, MSR and FSE conferences for the last
eight years. Therefore, for the validation purpose, four journal papers on code
clone detection have selected as case studies. Then, each experimental procedures
were represented as a workflow by utilizing the identified BBs. For the selected
case studies, it was evident that one experiment can be fully expressed and three
experiments can be partially represented using BBs.

Case Study 1 — Kontogiannis et al. [45]

Summary: Authors of this paper have presented a number of pattern matching
techniques by using ASTs as the code representation scheme that could use
for both code-to-code as well as concept-to-code matching. Metric-based clone
detection technique has used in the study by taking three medium-sized C pro-
grams (i.e., tesh, bash and CLIPs) as the subject systems. First, the source
code is parsed to create the Abstract Syntax Tree (AST). Five different metrics
have calculated for every statement, block, function, and file stored as annota-
tions in the nodes of the AST. As the next step, a reference table was main-
tained, which consists of source code entities sorted by their associated metric
values.

Representation Using BBs: In this experiment, VCS miner considered the BB
for data gathering. Pre-processing step is covered with two BBs namely AST
generator and Metrics generator. Metrics based clone detector is the respon-
sible BB in the clone detection phase. Thus, the experimental design of the
above paper can be fully represented using four main BBs, as shown in Fig-
ure @

Source
code and
revision
history

Metrics based
clone detector

Code
clones

Abstract
syntax tree

Software
metrics

Metrics
generator

GIT miner

Figure 6. Kontogiannis’s [45] approach using BBs

Building Blocks of Code Clone Detection 713

Case Study 2 — Anatoniol et al. [4]

Summary: This paper studies the evolution of code duplications in the Linux ker-
nel. The paper followed a functional level metric-based approach to analyze
nineteen releases to identify code duplication among Linux subsystems.

Representation Using BBs: Figure [7] is an example how BBs can be used to
partially representing a previously conducted experimental design. Authors of
this paper have described mechanisms to handle preprocessor directives as well
as to handle the functions in the C code of the Linux kernel. Such tasks come
under the above mentioned Pre-processing activity. However, at the moment,
the exact BB to perform this task is not available in our BBs catalog. As stated
before, our approach will evolve with time and build its BBs catalog. Therefore,
one can define a new BB and add to our BBs catalog. However, the above
experiment can partially represent by utilizing VCS miner, Metrics generator
and Metrics based clone detector.

AN

Code
clones

-
Linux
code

repository

Source
code and
revision
history

Metrics based
clone detector

]

Software
metrics

b i enerzio

Figure 7. Anatoniol’s H] approach using BBs

Case Study 3 — Geiger et al. [25]

Summary: In this paper, the authors examined whether a correlation exists be-
tween code clones and code change. The steps of this research include code clone
detection, categorization into clone types, extraction of change couplings, and
computing a relation metric. The proposed framework has validated with the
Mozilla project. The results show that a reasonable number of cases can found
where such a relation exists.

Representation Using BBs: Part of the experiment of this research can represent
using BBs, as shown in Figure [§] In this paper, authors have used CCFinder as
the clone detection tool. In Figure [§, we further describe the tasks in CCFinder
as a BPMN 2.0 subprocess. VCS miner, Token generator, and Token-based clone
detector have used in this expanded representation.

Case Study 4 — Kanwal et al. [41]

Summary: This paper investigates the evolution of structural clones by conducting
a longitudinal analysis of several versions of Java systems. The authors have
defined structural clones and their evolution patterns in a formal notation. The
trends in the patterns reveal that evolutionary characteristics of structural clones
can facilitate better clone management systems.

714 C. Wigesiriwardana, P. Wimalaratne

Pre-processing PrS%cue"s;ed CC Finder Code
code clones

l
Mozilla
code
repository

Source
code and
revision
history

-

Token Token
generator Tokens generator

.

Figure 8. Geiger’s [25] approach using BBs

Representation Using BBs: As depicted in Figure 0] the experiment can be ef-
fectively represent with the identified BBs. The above experiment can be par-
tially represented using VCS Miner, Token generator, Token based clone detec-
tor, and Genealogy generator.

5 Source
“ code and

revision
history

Tokens Token based
clone detector

Token
generator

Genealogy
generator

Change
information

Figure 9. Kanwal’s [41] approach using BBs

Summary of the evaluation results is shown in Table [f] Based on the case
studies, the RQ1 can be addressed, and we claim that it is a serious first proof
of the usefulness of the proposed BBs. The selection of case studies is based on
the clone detection and evolution experiments spanning from the year 1996 to 2019
denoting the applicability of the proposed approach in the future clone detection
and evolution experiments.

6.2 Usage Scenario in the Experimental Testbed

Clone analysis over multiple versions and releases is a major component in many
CCDE experiments [75, B6]. Such studies would reveal the trends over time as well
as the relationship between code size and the number of code clones for large-scale
software projects [I3]. Below we show how to use the experimental testbed to find
the code clone percentage over multiple versions of a software project.

In order to find code clones over multiple versions, the following tasks have to
perform in the given order. First, project history for a given version/release needs

Building Blocks of Code Clone Detection

Title of the journal pa- Used BBs Graphical
per Representa-
tion

Pattern matching for clone VCS Miner Figure @
and concept detection. AST Generator
Kontogiannis et al. [45] Metrics Generator

Metrics Based Clone Detector
Analyzing cloning evolu- VCS Miner Figure |§|
tion in the Linux kernel. Metrics Generator
Anatoniol et al. [4] Metrics based Clone Detector
Relation of code clones and ~ VCS Miner Figure |§|
change couplings Token Generator
Geiger et al. [25] Token Based Clone Detector
Evolutionary Perspective ~VCS Miner Figure |Z|

of Structural Clones in
Software

Kanwal et al. [41]

Token Generator
Token Based Clone Detector
Genealogy generator

Table 6. Summary of the case study based validation

to be extracted from the version control repository using VCS Miner. Second, it
is converted to an intermediate data-model using one of the pre-processing BBs.
Then the results are fed to a Clone Detector to detect the duplicates. Finally, the
steps mentioned above are repeated for several versions of the software system. In
the prototype implementation, the BBs can be pipelined as a workflow and run the
analysis. Additional BBs (i.e., filter, loop) can be implemented to facilitate rich
analyses based on complex conditions. As such, a user needs to drag the BBs to
the canvas and combine them using linkers and run it. Three Apache projects have
been selected for the experiment; Apache Commons Lan, Apache Tomcatﬁ and
Apache Winkﬂ Figure [10] presents the cloning behavior for the years 2014-2016.

However, by no means, this is a complex CCDE experiment. But, still, it answers
RQ2 by evidently demonstrating how BBs can be used in the proposed experimental
testbed to produce useful insights to the researchers.

6.3 Extensibility of Experiment Testbed
for Software Engineering Experiments

The core idea behind BBs and the conceptual framework of the experimental testbed
is not strictly limited to CCDE research. The proposed architecture of the testbed
along with the composition logic of BBs provide versatility for extending the ex-
perimental testbed for other types of software engineering experiments. However,

5 https://commons.apache.org/proper/commons-lang/
6 http://tomcat.apache.org/
" https://wink.apache.org/

716 C. Wijesiriwardana, P. Wimalaratne

5.4
5.3

_‘“\14.3
\ Apache Wink
5.1 —Apache Tomcat
\ ====Apache Commons
31

g 27

Clone Percentage (%)

Jan-14 Jan-15 Jan-16

Figure 10. Clone percentage for 2014-2016

it requires a formal arrangement of BBs into several layers. Figure [L1] presents the
proposed extended stack of BBs that could be used in different software engineering
experiments. The extended BBs stack for software analytics has multiple layers:
Primary BBs, Secondary BBs, and Advanced BBs.

Below we demonstrate how to build the logic to perform a software analysis task
by utilizing the BBs from the BBs Stack.

Analysis Task: Finding critical issues resolved by most frequent committer in
a project.

Background: Measuring the performance of the developers who work in a project
is a challenging task for the project managers when the team size is large and
the nature of the project is complex. However, it is notable that total lines of
codes, the number of bugs fixed, the total number of commits, or a combination
of them could produce useful insights into performance.

Implementation Using BBs: Figure [I2) presents how to utilize the BBs to per-
form the above analysis task. It demonstrates how the data is integrated from
both version control and bug tracking repositories to find how many critical bugs
have been fixed by the most frequent committer.

We further tested the above scenario with three open source projects by using
the prototype implementation. The prototype allows users to utilize the BBs to
perform the tasks directly. Therefore, it provides a great level of convenience to the
users. Summary of the experimental results present in Table []

As shown in the Figure [[2] FindMax, which is a Secondary BB, is formulated

by utilizing three Primary BBs. Thus, Secondary BBs, on the ohter hand, can be
considered as composite BBs.

Building Blocks of Code Clone Detection

Extended Building Blocks Stack for Software Analytics Experiments

Email-Source Code Linking

Issue-Revision Linking

File Ownership Changes

Change Request Mapping

Code Clone Detection

Code Smell Detection

Commit-Build Mapping

Email Normalization

S
1
1 oy
Bug-fixing Change Type
1
1 Commits Detection i ConEEe?
:
: Tree Compare AST Generation Tokenization
1
: Metrics Find Commit Find OWASP
: Calculation Complexity Vulnerabilities
1
: FindMin FindMax String Compare
1
1
Fmmmmmm e e e e e e e mmmmm e mm o
1
i))
i | Select | | Union | | Join | | Sort
1
: | GetFirst | | Group | | Filter | | Count

Advanced
Building Blocks

Secondary
Building Blocks

Primary

Building
Blocks

Figure 11. Extended building blocks stack for software analytics

7 DISCUSSION

717

In this paper, we provide a catalog of Building Blocks on which the clone detection
research can be carried out. A particular BB represents a specific analysis task in any
CCDE experiment. Based on that, we demonstrated that such distinctive BBs could
properly arrange as workflows to perform a wide range of CCDE experiments. From
the selected case studies for the validation, it was evident that CCDE experiments
can either wholly or partially represent by means of BBs. Therefore, this approach
is a step towards standardization of CCDE research by providing a structured way
to conduct experiments. Our approach has multifold benefits and is worth further

exploration.

718 C. Wijesiriwardana, P. Wimalaratne

- TTTTEEEEEESS \ ’ \
1 1 1 1
Version 1 1 1 1
Control : Extract commit details : : Extract bug repository :
Repo 1 1 1 1
|] ______ 4 N e e e e e - ————— 4
commit info bug info s
e
o e
— Z)
8 SR) A ; ige
> 1+ Find the developer with 1 = g 1 zs
2] . developer Find the bugs assigned | z o
g : Blohest ”“K“ber of 1 name _>: the developer 1 \ 4
= ! commits : 1 1 | Joi
g N e] N [o - y nner Join
® @
T % .
% @ . . c %
< > Group E list of bugs assigned the developer e _
2 £ 842
@ 8 52
* PR S 23
Sort g ' \ s
e E 1) 1 \ 44
ot , Filter the fixed bugs | -
4 1 with type = "critical" 1 Filter
FindMax is \ 4 ! 1 o)
composed M it bl ’ E .o
of tFr)wee GetFirst g3 §
Primary list of critical bugs fixed by the :c]u') =
BBs FindMax developer S 'q', 2
253
/T TTTEEEEEEESS \ ‘r\“;
] 1
1Find the number of critical 1
' bugs fixed by the : Count
: developer 3 GES
N e e e - - - 4 g
JLeeend e e
P 1 : 28
P4 Wordow petatow—> | Secondary 883 | | =
| 1 components 1 Yy atario ry 1 \ &
RS 7 1 J
4

Figure 12. Finding the number of critical issues resolved by the most frequent committer
in a project

Guideline for Novice Researchers. This paper does not target providing a com-
prehensive literature review in the area of CCDE. Most importantly, it presents
some useful conceptual and practical insights to novice researchers by allow-
ing them to use BBs as a guide to carrying out CCDE experiments. Novice
researchers can make use of BBs to conduct experiments in a quick and com-
munity accepted way. Having a prior understanding of the BBs will help them
comprehend the published CCDE research approaches and recognize the essen-
tial background requirements; hence, can better plan their experiments. Further
analyzing the usages of those BBs in different analysis scenarios will help them
in running successful experiments.

Helping Overcome Common Problems in CCDE Experiments. Conducting
CCDE experiments presents a number of common difficulties and challenges to

Building Blocks of Code Clone Detection 719

Apache Project No. of Commits Frequent Developer No. of Bug Fixes

Gora 1053 Developer A 52
Commons-lang 5171 Developer B 4
10 2091 Developer C 0
Winx 1312 Developer D 2

Table 7. Summary of the experimental results

researchers such as:

mechanism to locate the repositories to gather accurate and timely data,
filtering or converting such data to different formats,
exploring various analysis to be performed on such data, and

Ll

effectively running such analyses.

The concept of Activities and Building Blocks is beneficial to overcome such ex-
ertions. For example, BBs for data gathering facilitates a mechanism to locate
and extract data from repositories. Similarly, BBs for pre-processing provide
ways to convert and filter data. BBs for clone detection solves the difficulty in
exploring distinctive analysis on such data. In that way, our approach simpli-
fies the challenges mentioned above and provides a structured way to conduct
software analysis experiments.

Facilitating Comparison. Several imperative systematic literature reviews have
published on software clones in general and software clone detection in particu-
lar. These approaches typically focus on only some traits of categorization, and
most of them do not rely on an explicit high level meta-model. Therefore, there
is a need of a model, which facilitates the comparison of different clone detection
approaches at the experimental level. In this paper, we present a meta-model
infrastructure for representing, combining and comparing such experiments in
a structured way.

Fostering the Replication of Studies. The replication of such studies is just as
fundamental and is one of the main threats to validity that empirical software
engineering suffers. Such threats are manifold and range from lack of indepen-
dent validation of the results, unavailability of the tools and methodologies used,
to no impossibility to generalize the gained knowledge. Though this paper does
not provide a fully functional framework for replication, still it presents ways
to better plan the replication studies and reveal the imprecise descriptions in
Methodology sections of research publications.

Based on the nature of the BBs, it is important to realize that the proposed ap-
proach works only with syntactically similar code clones.For example, as described
in the BBs for pre-processing, the entire detection process is facilitated by ASTs,
PDGs, tokens, metrics, program models, and snapshots. Thus the BBs for clone
detection facilitates only the syntactically similar code clones. However, the detec-

720 C. Wijesiriwardana, P. Wimalaratne

tion of semantically similar code clones requires a new set of BBs that are capable
of inferring the associations across functionally similar code clones.

Several recent studies have reported on cross-language code clone detection [58,
88, [59]. For example, LICCA, a tool for cross-language clone detection [82] is based
on a tree-based intermediate representation of the source code. Thus, the proposed
BBs for pre-processing can be used for this purpose. However, this direction has
to further investigate to identify a useful set of BBs for cross-language clone detec-
tion.

Besides, visualization of the results produced by software analytics is considered
important nowadays [8T], [19]. Also, recent studies have highlighted the importance
of visualizing the differences between the versions of software models [61]. Thus,
the proposed BBs stack for software analytics has provisions to augment with new
BBs that could be used to facilitate the visualization aspects of software analytics
experiments.

8 CONCLUSIONS

This paper introduced a concrete set of formal constructs, which we refer to as
Building Blocks, which can be used to conduct various CCDE experiments. These
Building Blocks provide a structured way to conduct experiments, hence it offers di-
rect solutions to everyday challenges in code clone detection, such as accurate data
collection, data cleaning, and selecting proper CCD algorithms. Our goal is not
to introduce novel CCD algorithms or report the loopholes in the existing CCDE
research, but to provide a systematic understanding of how CCDE experiments are
conducted in practice by utilizing the identified Building Blocks. Building Blocks are
represented using both textual and graphical representation, which provide means
to software researchers to conduct or replicate CCDE experiments in an unambigu-
ous manner. The conceptual framework of the experimental testbed indicates the
usefulness and the replication capabilities of Building Blocks and is proven useful
in conducting CCDE experiments. Besides, this paper presents how the stack of
Building Blocks can be extended to facilitate a wide range of software analytics
experiments beyond CCDE.

Future work of this research will focus on enhancing the experimental testbed to
a point where we can conduct a field study with professional software practitioners
in the industry. By doing that it is expected to obtain the future potentials and
the limitations of the experimental testbed in practice. In that way, useful insights
can be gained to convert our testbed to a full-fledged software evolution analysis
testbed.

Acknowledgements

The authors of this paper gratefully acknowledge the financial support provided by
the National Research Council of Sri Lanka (Grant No. NRC 15-74). We thankfully

Building Blocks of Code Clone Detection 721

acknowledge the insights and expertise provided by the colleagues at SEAL Lab at
the University of Zurich.

REFERENCES

1]

2]

3]

[4]

[5]

(6]

(7]

8]

[9]

[10]

[11]

[12]

ADAR, E.—KiM, M.: SoftGUESS: Visualization and Exploration of Code Clones
in Context. 29" International Conference on Software Engineering (ICSE’07), 2007,
pp. 762-766, doi: 10.1109/ICSE.2007.76.

AGRAWAL, A.—YADpAv, S.K.: A Hybrid-Token and Textual Based Approach to
Find Similar Code Segments. 2013 Fourth International Conference on Comput-
ing, Communications and Networking Technologies (ICCCNT), 2013, pp. 1-4, doi:
10.1109/ICCCNT.2013.6726700.

AN, Q.U.—Burt, W.H.—ANwWAR, M.W.—AzaMm, F.—MaQBoOL, B.:
A Systematic Review on Code Clone Detection. IEEE Access, 2019, Vol. 7,
pp. 86121-86144, doi: 10.1109/ACCESS.2019.2918202.

ANTONIOL, G.—VILLANO, U.—MERLO, E.—D1 PENTA, M.: Analyzing Cloning
Evolution in the Linux Kernel. Information and Software Technology. Vol. 44, 2002,
No. 13, pp. 755-765, doi: 10.1016/S0950-5849(02)00123-4.

AVERSANO, L.—CERuULO, L.—D1 PENTA, M.: How Clones Are Maintained:

An Empirical Study. 11*" European Conference on Software Maintenance and Reengi-
neering (CSMR ’07), 2007, pp. 81-90, doi: 10.1109/CSMR..2007.26.

BAKER, B.S.: A Program for Identifying Duplicated Code. Computing Science and
Statistics, 1993, pp. 49-49.

BAKER, B.S.: On Finding Duplication and Near-Duplication in Large Software
Systems. Proceedings of 2°¢ Working Conference on Reverse Engineering, 1995,
pp. 86-95, doi: 10.1109/WCRE.1995.514697.

BARBOUR, L.—K#HOMH, F.—Zo0U, Y.: An Empirical Study of Faults in Late Propa-
gation Clone Genealogies. Journal of Software: Evolution and Process, Vol. 25, 2013,
No. 11, pp. 1139-1165, doi: 10.1002/smr.1597.

BARBOUR, L.—KuHowMmH, F.—Zou, Y.: Late Propagation in Software Clones.
2011 27" TEEE International Conference on Software Maintenance (ICSM), 2011,
pp. 273282, doi: [10.1109/ICSM.2011.6080794.

BasiT, H. A.—JARZABEK, S.: Efficient Token Based Clone Detection with Flexible
Tokenization. Proceedings of the 6 Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (ESEC-FSE '07), 2007, pp. 513-516, doi: 10.1145/1287624.1287698|.
BAXTER, I. D.—YAHIN, A.—MOURA, L.—SANT’ANNA, M.—BIER, L.: Clone De-
tection Using Abstract Syntax Trees. International Conference on Software Mainte-
nance, 1998, pp. 368-377, doi: 10.1109/ICSM.1998.738528.

BUEHRER, G.—WEIDE, B. W.—S1viLoTTI, P. A. G.: Using Parse Tree Validation

to Prevent SQL Injection Attacks. 5™ International Workshop on Software Engineer-
ing and Middleware (SEM05), 2005, pp. 106-113, doi: 10.1145/1108473.1108496.

https://doi.org/10.1109/ICSE.2007.76
https://doi.org/10.1109/ICCCNT.2013.6726700
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1016/S0950-5849(02)00123-4
https://doi.org/10.1109/CSMR.2007.26
https://doi.org/10.1109/WCRE.1995.514697
https://doi.org/10.1002/smr.1597
https://doi.org/10.1109/ICSM.2011.6080794
https://doi.org/10.1145/1287624.1287698
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1145/1108473.1108496

722

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

C. Wigesiriwardana, P. Wimalaratne

CHEN, X.—WANG, A.Y.—TEMPERO, E.: A Replication and Reproduction of Code
Clone Detection Studies. Proceedings of the Thirty-Seventh Australasian Computer
Science Conference (ACSC 2014), Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, 2014, pp. 105-114.

CorAzzA, A.—D1 MARTINO, S.—MAGGIO, V.—SCANNIELLO, G.: A Tree Kernel
Based Approach for Clone Detection. IEEE International Conference on Software
Maintenance (ICSM), 2010, pp. 1-5, doi: [10.1109/ICSM.2010.5609715.

CoRrDY, J. R.: Comprehending Reality — Practical Barriers to Industrial Adoption of
Software Maintenance Automation. 11" IEEE International Workshop on Program
Comprehension, 2003, pp. 196205, doi: [10.1109/WPC.2003.1199203.

COSENTINO, V.—IzQUIERDO, J.L.C.—CaABoOT, J.: Gitana: A SQL-Based Git
Repository Inspector. In: Johannesson, P., Lee, M., Liddle, S., Opdahl, A., Pastor
Lépez, O. (Eds.): Conceptual Modeling (ER 2015). Springer, Cham, Lecture Notes in
Computer Science, Vol. 9381, 2015, pp. 329-343, doi: [10.1007/978-3-319-25264-3_24.

D’AMBROS, M.: Supporting Software Evolution Analysis with Historical Depen-
dencies and Defect Information. IEEE International Conference on Software Mainte-
nance, 2008, pp. 412-415, doi: [10.1109/ICSM.2008.4658092.

DEELMAN, E.—GIL, Y.: Managing Large-Scale Scientific Workflows in Distributed
Environments: Experiences and Challenges. 2006 Second IEEE International Confer-
ence on e-Science and Grid Computing (e-Science ’06), 2006, p. 144, doi: 10.1109/E-
SCIENCE.2006.261077.

Dowminic, J.—TuUBRE, B.—HOUSERr, J.—RiITTER, C.—KUNKEL, D.—
RODEGHERO, P.: Program Comprehension in Virtual Reality. Proceedings of the 28"
International Conference on Program Comprehension (ICPC 20), 2020, pp. 391-395,
doi: 10.1145/3387904.3389287.

Dou, W.—CHEUNG, S. C.—Gao0, C.—Xu, C.—Xu, L.—WEI, J.: Detecting Ta-
ble Clones and Smells in Spreadsheets. Proceedings of the 2016 24" ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016), 2016,
pp. 787-798, doi: [10.1145/2950290.2950359.

Ducassg, S.—RIEGER, M.—DEMEYER, S.: A Language Independent Approach for
Detecting Duplicated Code. IEEE International Conference on Software Maintenance
(ICSM ’99), 1999, pp. 109-118, doi: 10.1109/ICSM.1999.792593.

DYER, R.—NGUYEN, H. A.—RAJAN, H—NGUYEN, T. N.: Boa: A Language and
Infrastructure for Analyzing Ultra-Large-Scale Software Repositories. Proceedings
of the 2013 35" International Conference on Software Engineering (ICSE), 2013,
pp. 422-431, doi: [10.1109/ICSE.2013.6606588.

FERRANTE, J.—OTTENSTEIN, K.J.—WARREN, J.D.: The Program Dependence
Graph and Its Use in Optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), Vol. 9, 1987, No. 3, pp. 319-349, doi: [10.1145/24039.24041.

FOwLER, M.: Refactoring: Improving the Design of Existing Code. Pearson Educa-
tion India, 1999.

https://doi.org/10.1109/ICSM.2010.5609715
https://doi.org/10.1109/WPC.2003.1199203
https://doi.org/10.1007/978-3-319-25264-3_24
https://doi.org/10.1109/ICSM.2008.4658092
https://doi.org/10.1109/E-SCIENCE.2006.261077
https://doi.org/10.1109/E-SCIENCE.2006.261077
https://doi.org/10.1145/3387904.3389287
https://doi.org/10.1145/2950290.2950359
https://doi.org/10.1109/ICSM.1999.792593
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/24039.24041

Building Blocks of Code Clone Detection 723

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

GEICER, R.—FLURI, B.—GALL, H. C.—PINZGER, M.: Relation of Code Clones
and Change Couplings. In: Baresi, L., Heckel, R. (Eds.): Fundamental Approaches
to Software Engineering (FASE 2006). Springer, Berlin, Heidelberg, Lecture Notes in
Computer Science, Vol. 3922, 2006, pp. 411-425, doi: 10.1007/11693017_31.

GODE, N.—HARDER, J.: Clone Stability. 2011 15 European Conference
on Software Maintenance and Reengineering (CSMR), 2011, pp. 65-74, doi:
10.1109/CSMR.2011.11.

Gousios, G.—SPINELLIS, D.: Conducting Quantitative Software Engineering Stud-
ies with Alitheia Core. Empirical Software Engineering, Vol. 19, 2014, No. 4,
pp. 885-925, doi: [10.1007/s10664-013-9242-3).

GUSFIELD, D.: Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997, doi:
10.1017/CBO9780511574931.

Hico, Y.—KusumoTo, S.: Code Clone Detection on Specialized PDGs with Heuris-
tics. 2011 15 European Conference on Software Maintenance and Reengineering
(CSMR), 2011, pp. 75-84, doi: [10.1109/CSMR.2011.12.

Horwitz, S.: Identifying the Semantic and Textual Differences Between Two Ver-
sions of a Program. ACM SIGPLAN Notices, Vol. 25, 1990, No. 6, pp. 234-245, doi:
10.1145/93542.93574.

Hu, Y.—WanNag, H.—ZHANG, Y.—L1, B.—Gu, D.: A Semantics-Based Hybrid
Approach on Binary Code Similarity Comparison. IEEE Transactions on Software
Engineering, Vol. 47, 2021, No. 6, pp. 1241-1258, doi: 10.1109/TSE.2019.2918326.

Hu, Y.—Zuanc, Y.—Li, J.—Wang, H.—Li, B.—Gu, D.: BinMatch:
A Semantics-Based Hybrid Approach on Binary Code Clone Analysis. 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2018,
pp. 104-114, doi: [10.1109/ICSME.2018.00019.

HumMEL, B.—JUERGENS, E.—HEINEMANN, L.—CoONRADT, M.: Index-
Based Code Clone Detection: Incremental, Distributed, Scalable. 2010 IEEE
International Conference on Software Maintenance, 2010, pp. 1-9, doi:
10.1109/ICSM.2010.5609665.

IsLam, J.F.—MonpAL, M.—Roy, C.K.—SCHNEIDER, K. A.: Comparing Bug
Replication in Regular and Micro Code Clones. 2019 IEEE/ACM 27t Inter-
national Conference on Program Comprehension (ICPC), 2019, pp. 81-92, doi:
10.1109/ICPC.2019.00022.

JALBERT, K.—BRADBURY, J. S.: Using Clone Detection to Identify Bugs in Concur-
rent Software. 2010 IEEE International Conference on Software Maintenance (ICSM),
2010, pp. 1-5, doi: 10.1109/ICSM.2010.5609529.

JounsoN, J. H.: Identifying Redundancy in Source Code Using Fingerprints. Pro-
ceedings of the 1993 Conference of the Centre for Advanced Studies on Collaborative
Research: Software Engineering (CASCON "93), Vol. 1, 1993, pp. 171-183.

JounsoN, J.H.: Substring Matching for Clone Detection and Change Tracking.
1994 International Conference on Software Maintenance, 1994, pp. 120-126, doi:
10.1109/ICSM.1994.336783.

https://doi.org/10.1007/11693017_31
https://doi.org/10.1109/CSMR.2011.11
https://doi.org/10.1007/s10664-013-9242-3
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1109/CSMR.2011.12
https://doi.org/10.1145/93542.93574
https://doi.org/10.1109/TSE.2019.2918326
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/ICSM.2010.5609665
https://doi.org/10.1109/ICPC.2019.00022
https://doi.org/10.1109/ICSM.2010.5609529
https://doi.org/10.1109/ICSM.1994.336783

724

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

C. Wigesiriwardana, P. Wimalaratne

JOHNSON, J.: Visualizing Textual Redundancy in Legacy Source. Proceedings of
the 1994 Conference of the Centre for Advanced Studies on Collaborative Research:
Software Engineering (CASCON '94), 1994, pp. 32-41.

JUERGENS, E.—DEISSENBOECK, F.—HUMMEL, B.: CloneDetective — A Workbench
for Clone Detection Research. Proceedings of the IEEE 315 International Conference
on Software Engineering, 2009, pp. 603-606, doi: [10.1109/ICSE.2009.5070566.

Kamivya, T.—KusuMmoTo, S.—INOUE, K.: CCFinder: A Multilinguistic Token-
Based Code Clone Detection System for Large Scale Source Code. IEEE Trans-
actions on Software Engineering, Vol. 28, 2002, No. 7, pp. 654-670, doi:
10.1109/TSE.2002.1019480.

KanwaL, J.—MaqBooL, O.—BaAsIiT, H. A.—SINDHU, M. A.: Evolutionary Per-
spective of Structural Clones in Software. IEEE Access, Vol. 7, 2019, pp. 58720-58739,
doi: 10.1109/ACCESS.2019.2913043.

Kim, M.—NoOTKIN, D.: Using a Clone Genealogy Extractor for Understanding and
Supporting Evolution of Code Clone. ACM SIGSOFT Software Engineering Notes,
Vol. 30, 2005, No. 4, pp. 1-5, doi: [10.1145/1083142.1083146.

Kim, M.—SAzAWAL, V.-—NOTKIN, D.—MUuRrpPHY, G.: An Empirical Study of Code
Clone Genealogies. ACM SIGSOFT Software Engineering Notes, Vol. 30, 2005, No. 5,
pp. 187-196, doi: [10.1145/1095430.1081737.

KoMONDOOR, R.—HORWITZ, S.: Using Slicing to Identify Duplication in Source
Code. In: Cousot, P. (Ed.): Static Analysis (SAS 2001). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2126, 2001, pp. 40-56, doi: |10.1007/3-540-
47764-0_3.

Konrtociannis, K.A.—DEMori, R.—MEgRLO, E.—GALLER, M.—BERN-
STEIN, M.: Pattern Matching for Clone and Concept Detection. Automated Software
Engineering, Vol. 3, 1996, No. 1-2, pp. 77-108, doi: [10.1007/BF00126960.

KoscHKE, R.: Survey of Research on Software Clones. In: Koschke, R., Merlo, E.,
Walenstein, A. (Eds.): Duplication, Redundancy, and Similarity in Software. In-
ternationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Dagstuhl
Seminar Proceedings, 2007, pp. 368-377.

KRINKE, J.: A Study of Consistent and Inconsistent Changes to Code Clones. 14th
Working Conference on Reverse Engineering (WCRE 2007), 2007, pp. 170178, doi:
10.1109/WCRE.2007.7.

KRINKE, J.: Identifying Similar Code with Program Dependence Graphs.
Eighth Working Conference on Reverse Engineering, 2001, pp. 301-309, doi:
10.1109/WCRE.2001.957835.

LEE, S.—JEONG, I.: SDD: High Performance Code Clone Detection System for
Large Scale Source Code. Companion to the 20 Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA "05), 2005, pp. 140-141, doi: [10.1145/1094855.1094903.

LEITAO, A.: Detection of Redundant Code Using R2D?. Software Quality Journal,
Vol. 12, 2004, No. 4, pp. 361-382, doi: [10.1023/B:SQJ0.0000039793.31052.72.

L1, L.—FENG, H.—ZHuanG, W.—MENG, N.-—RYDER, B.: CCLearner: A Deep
Learning-Based Clone Detection Approach. 2017 IEEE International Conference on

https://doi.org/10.1109/ICSE.2009.5070566
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ACCESS.2019.2913043
https://doi.org/10.1145/1083142.1083146
https://doi.org/10.1145/1095430.1081737
https://doi.org/10.1007/3-540-47764-0_3
https://doi.org/10.1007/3-540-47764-0_3
https://doi.org/10.1007/BF00126960
https://doi.org/10.1109/WCRE.2007.7
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1145/1094855.1094903
https://doi.org/10.1023/B:SQJO.0000039793.31052.72

Building Blocks of Code Clone Detection 725

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Software Maintenance and Evolution (ICSME), 2017, pp. 249-260, doi: 10.1109/IC-
SME.2017.46.

L1, Z.—Lu, S.—MYAGMAR, S.—ZHOU, Y.: CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code. IEEE Transactions on Software Engi-
neering, Vol. 32, 2006, No. 3, pp. 176-192, doi: [10.1109/TSE.2006.28.

Lu, S.—ZHANG, J.: Collaborative Scientific Workflows Supporting Collaborative
Science. International Journal of Business Process Integration and Management
(IJBPIM), Vol. 5, 2011, No. 2, pp. 185-199, doi: 10.1504/IJBPIM.2011.040209.

MANBER, U.—MYERS, G.: Suffix Arrays: A New Method for On-Line String
Searches. STAM Journal on Computing, Vol. 22, 1993, No. 5, pp. 935-948, doi:
10.1137/0222058.

MAYRAND, J.—LEBLANC, C.—MERLO, E.M.: Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics. Proceedings
of the 1996 International Conference on Software Maintenance (ICSM’96), 1996,
pp. 244-253, doi: 10.1109/ICSM.1996.565012.

Muri, H. H.—ZAIDMAN, A.—PINZGER, M.: Studying Late Propagations in Code
Clone Evolution Using Software Repository Mining. Electronic Communications of
the EASST, Vol. 63, 2014, doi: 10.14279/tuj.eceasst.63.916.

Nar1, K.W.—Kar, T.S.—Roy, B.—Rovy, C.K.—SCHNEIDER, K.A.:
CLCDSA: Cross Language Code Clone Detection Using Syntactical Features and
API Documentation. 2019 34*® IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 1026-1037, doi: 10.1109/ASE.2019.00099.

Nar1, K. W.—Rovy, B.—Roy, C.K.—ScHNEIDER, K.A.: A Universal Cross
Language Software Similarity Detector for Open Source Software Categoriza-
tion. Journal of Systems and Software, Vol. 162, 2020, Art.No. 110491, doi:
10.1016/j.jss.2019.110491..

NicuoLs, L.—EMRE, M.—HARDEKOPF, B.: Structural and Nominal Cross-
Language Clone Detection. In: Hahnle, R., van der Aalst, W. (Eds.): Fundamental
Approaches to Software Engineering (FASE 2019). Springer, Cham, Lecture Notes in
Computer Science, Vol. 11424, 2019, pp. 247263, doi: [10.1007/978-3-030-16722-6_14.

NoonaN, R.E.: An Algorithm for Generating Abstract Syntax Trees. Computer
Languages, Vol. 10, 1985, No. 3-4, pp. 225-236, doi: 10.1016,/0096-0551(85)90018-9.

ONDIK, J.—RASTOCNY, K.: Interactive Visualization of Differences Between Soft-
ware Model Versions. Proceedings of the 7" International Conference on Model-
Driven Engineering and Software Development (MODELSWARD 2019), 2019,
pp. 264-271, doi: [10.5220/0007345502640271.

OSSHER, J.—SAJNANI, H.—LoPES, C.: File Cloning in Open Source Java Projects:
The Good, the Bad, and the Ugly. 2011 27" IEEE International Conference on
Software Maintenance (ICSM), 2011, pp. 283-292, doi: [10.1109/ICSM.2011.6080795.
PaTE, J. R.—TAI1rAS, R.—KRAFT, N. A.: Clone Evolution: A Systematic Review.
Journal of Software: Evolution and Process, Vol. 25, 2013, No. 3, pp. 261-283, doi:
10.1002/smr.579.

QiaN, W.—PEeNG, X.—XING, Z.—JARZABEK, S.—ZHAO, W.: Mining Logical
Clones in Software: Revealing High-Level Business and Programming Rules. 2013

https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1504/IJBPIM.2011.040209
https://doi.org/10.1137/0222058
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.14279/tuj.eceasst.63.916
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1016/j.jss.2019.110491
https://doi.org/10.1007/978-3-030-16722-6_14
https://doi.org/10.1016/0096-0551(85)90018-9
https://doi.org/10.5220/0007345502640271
https://doi.org/10.1109/ICSM.2011.6080795
https://doi.org/10.1002/smr.579

726

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

C. Wigesiriwardana, P. Wimalaratne

29'h TEEE International Conference on Software Maintenance, 2013, pp. 40-49, doi:
10.1109/ICSM.2013.15|

RAHMAN, F.—BIrD, C.—DEvVANBU, P.: Clones: What is that Smell? 2010
7th IEEE Working Conference on Mining Software Repositories (MSR 2010), 2010,
pp. 72-81, doi: 10.1109/MSR.2010.5463343.

RAHMAN, F.—BIRD, C.—DEVANBU, P.: Clones: What is that Smell? Empirical
Software Engineering, Vol. 17, 2012, No. 4-5, pp. 503-530, doi: 10.1007/s10664-011-
9195-3.

RATTAN, D.—BHATIA, R.—SINGH, M.: Software Clone Detection: A Systematic
Review. Information and Software Technology, Vol. 55, 2013, No. 7, pp. 1165-1199,
doi: 10.1016/j.infsof.2013.01.008.

Roy, C. K.—CorbDY, J. R.: A Survey on Software Clone Detection Research. Tech-
nical Report No. 2007-541, School of Computing, Queen’s University at Kingston,
Ontario, Canada, 2007, pp. 64-68.

Roy, C.K.—Corbpy, J.R.: NICAD: Accurate Detection of Near-Miss Inten-
tional Clones Using Flexible Pretty-Printing and Code Normalization. 2008 16"
IEEE International Conference on Program Comprehension, 2008, pp. 172-181, doi:
10.1109/ICPC.2008.41.

Roy, C.K.—Corbpy, J. R.—Ko0sCHKE, R.: Comparison and Evaluation of Code
Clone Detection Techniques and Tools: A Qualitative Approach. Science of Computer
Programming, Vol. 74, 2009, No. 7, pp. 470-495, doi: 10.1016/j.scico.2009.02.007.

SAHA, R.K.—ASADUZZAMAN, M.—Z1BRAN, M. F.—Royvy, C.K.

SCHNEIDER, K.A.: Evaluating Code Clone Genealogies at Release Level:
An Empirical Study. 2010 10** IEEE Working Conference on Source Code
Analysis and Manipulation (SCAM), 2010, pp. 87-96, doi: 10.1109/SCAM.2010.32.

SanA, R.K.—Roy, C.K.—SCHNEIDER, K.A.—PERRY, D.E.: Understanding
the Evolution of Type-3 Clones: An Exploratory Study. 2013 10" IEEE Work-
ing Conference on Mining Software Repositories (MSR), 2013, pp. 139-148, doi:
10.1109/MSR.2013.6624021.

SAINI, V.—FARMAHINIFARAHANI, F.—Lu, Y.—BALDI, P.—LoPEs, C.V.: Oreo:
Detection of Clones in the Twilight Zone. Proceedings of the 2018 26 ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2018), 2018, pp. 354-365, doi:
10.1145/3236024.3236026.

SAJNANI, H.—SAINI, V.—SvAJLENKO, J.—Roy, C. K.—LorEs, C. V.: Sourcer-
erCC: Scaling Code Clone Detection to Big-Code. Proceedings of the 38" Inter-
national Conference on Software Engineering (ICSE’16), 2016, pp. 1157-1168, doi:
10.1145/2884781.2884877.

ScawaRrz, N.—Luncu, M.—R0BBES, R.: On How Often Code is Cloned Across

Repositories. Proceedings of the 34" International Conference on Software Engineer-
ing (ICSE), 2012, pp. 1289-1292, doi: 10.1109/ICSE.2012.6227097.

SHENEAMER, A.—KALITA, J.: A Survey of Software Clone Detection Techniques.
International Journal of Computer Applications, Vol. 137, 2016, No. 10, pp. 1-21,
doi: 10.5120/I1JCA2016908896.

https://doi.org/10.1109/ICSM.2013.15
https://doi.org/10.1109/MSR.2010.5463343
https://doi.org/10.1007/s10664-011-9195-3
https://doi.org/10.1007/s10664-011-9195-3
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1109/ICPC.2008.41
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1109/SCAM.2010.32
https://doi.org/10.1109/MSR.2013.6624021
https://doi.org/10.1145/3236024.3236026
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1109/ICSE.2012.6227097
https://doi.org/10.5120/IJCA2016908896

Building Blocks of Code Clone Detection 727

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

(86]

[87]

(3]

SokoL, F.Z.—ANICHE, M. F.—GEROSA, M. A.: MetricMiner: Supporting Re-
searchers in Mining Software Repositories. 2013 IEEE 13" International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2013, pp. 142-146,
doi: 10.1109/SCAM.2013.6648195.

STEVENS, R.—DE ROOVER, C.: Querying the History of Software Projects Using
QWALKEKO. 2014 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2014, pp. 585-588, doi: 10.1109/ICSME.2014.101.

TAirRAS, R.—GRAY, J.: Phoenix-Based Clone Detection Using Suffix Trees. Pro-
ceedings of the 44" Annual Southeast Regional Conference (ACM-SE 44), 2006,
pp. 679-684, doi: [10.1145/1185448.1185597.

TAYLOR, I.J.—DEELMAN, E.—GANNON, D. B.—SHIELDS, M. (Eds.): Workflows
for e-Science: Scientific Workflows for Grids. Springer Publishing Company, Incorpo-
rated, 2014, doi: |10.1007/978-1-84628-757-2.

VINCUR, J.—NAVRAT, P.—PoOLASEK, [.: VR City: Software Analysis in Virtual
Reality Environment. 2017 IEEE International Conference on Software Quality, Re-
liability and Security Companion (QRS-C), 2017, pp. 509-516, doi: [10.1109/QRS-
C.2017.88.

VisLavski, T.—RaAKkI¢, G.—CARDOzO, N.—BUDIMAC, Z.: LICCA: A Tool for
Cross-Language Clone Detection. 2018 IEEE 25 International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), 2018, pp. 512-516, doi:
10.1109/SANER.2018.8330250.

WAHLER, V.—SEIPEL, D.—WOLFF, J.—FISCHER, G.: Clone Detection in
Source Code by Frequent Itemset Techniques. Fourth IEEE International Work-
shop on Source Code Analysis and Manipulation, 2004, pp. 128-135, doi:
10.1109/SCAM.2004.6.

WALKER, A.—CERNY, T.—SoNG, E.: Open-Source Tools and Benchmarks for
Code-Clone Detection: Past, Present, and Future Trends. ACM SIGAPP Applied
Computing Review, Vol. 19, 2019, No. 4, pp. 28-39, doi: 10.1145/3381307.3381310.

WanNG, P.—SvAJLENKO, J.—Wu, Y.—Xu, Y.—Roy, C.K.: CCAligner:
A Token Based Large-Gap Clone Detector. Proceedings of the 40" Interna-
tional Conference on Software Engineering (ICSE’18), 2018, pp. 1066-1077, doi:
10.1145/3180155.3180179.

Xig, S.—KuooMmH, F.—Zou, Y.: An Empirical Study of the Fault-Proneness
of Clone Mutation and Clone Migration. Proceedings of the Tenth Working
Conference on Mining Software Repositories (MSR), 2013, pp. 149-158, doi:
10.1109/MSR.2013.6624022.

XUE, Y.—XING, Z.—JARZABEK, S.: CloneDiff: Semantic Differencing of Clones.
Proceedings of the 5 International Workshop on Software Clones (IWSC’11), 2011,
pp. 83-84, doi: 10.1145/1985404.1985428.

XUYANG, Y.—CHIBA, S.: Attempts on Applying Graph Neural Network to Cross-
Language Code-Clone Detection. Graduate School of Information Science and Tech-
nology, University of Tokyo, 2020. http://jssst.or.jp/files/user/taikai/2020/
FOSE/fose1-3.pdfl

https://doi.org/10.1109/SCAM.2013.6648195
https://doi.org/10.1109/ICSME.2014.101
https://doi.org/10.1145/1185448.1185597
https://doi.org/10.1007/978-1-84628-757-2
https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1109/SCAM.2004.6
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1109/MSR.2013.6624022
https://doi.org/10.1145/1985404.1985428
http://jssst.or.jp/files/user/taikai/2020/FOSE/fose1-3.pdf
http://jssst.or.jp/files/user/taikai/2020/FOSE/fose1-3.pdf

728 C. Wijesiriwardana, P. Wimalaratne

[89] YANG, W.: Identifying Syntactic Differences Between Two Programs. Soft-
ware: Practice and Experience, Vol. 21, 1991, No. 7, pp. 739-755, doi:
10.1002 /spe.4380210706.

Chaman WIJESIRIWARDANA received his B.Sc. (Hons) special
degree in computer science from the University of Peradeniya,
Sri Lanka and obtained his M.Sc. in information and commu-
nications technology from the Asian Institute of Technology,
Thailand and his Ph.D. degree in software engineering from the
University of Colombo School of Computing. He worked as Re-
search Assistant in the Software Evolution and Architecture Lab
at the University of Zurich for 3 years. His research interests in-
clude software evolution analysis, mining software repositories
and software security.

Prasad WIMALARATNE obtained his B.Sc. special degree in
computer science from the University of Colombo and his Ph.D.
in virtual environments from the University of Salford, United
Kingdom, in 2002. He is Senior Member of IEEE and Member
of Computer Society of Sri Lanka (CSSL). He has won several
awards including the Presidential Award, University of Colombo
Vice Chancellor’s Award for Research Excellence, University of
Colombo Senate (Open) Awards and CSSL’s ICT Researcher
of the Year award for research excellence. His research inter-
ests include interactive 3D interfaces, unmanned aerial vehicles
(UAVs), virtual environments, assistive technology and code analysis. He joined the aca-
demic staff of the University of Colombo in 1995 and is currently the Head of the Depart-
ment of Communication and Media Technologies at the University of Colombo School of
Computing.

https://doi.org/10.1002/spe.4380210706

