
Computing and Informatics, Vol. 40, 2021, 1322–1344, doi: 10.31577/cai 2021 6 1322

EFFICIENT DENSITY-BASED PARTITIONAL
CLUSTERING ALGORITHM

Zareen Alamgir, Hina Naveed

Computer Science Department
National University of Computer and Emerging Sciences
Lahore, Pakistan
e-mail: zareen.alamgir@nu.edu.pk, naveedhina32@gmail.com

Abstract. Clustering is an important data mining technique that helps to detect
hidden structures and patterns in the data. K-means algorithm is one of the most
popular and widely used partitional clustering algorithms. It is a simple and efficient
method but has several shortcomings. One major drawback of traditional K-means
is that it selects initial centroids randomly, resulting in low-quality clusters. Various
K-means extensions are designed to solve the issue of the random initial centroid.
A novel density-based K-means (DK-means) algorithm is recently proposed that
uses density-parameters for selecting initial centroids. It outperforms K-means in
terms of accuracy at the cost of time. In this research, we present an efficient
density-based K-means algorithm (EDK-means) that uses advance data structures
and significantly reduces the DK-means algorithm’s execution time. Furthermore,
we rigorously evaluated the performance of density-based K-means on different chal-
lenging real-world datasets and compared it with traditional K-means. The exper-
imental results are promising and show that density-based K-means outperforms
K-means. It converges more rapidly than basic K-means, and it works well for the
datasets with different cluster sizes.

Keywords: Clustering, K-means, density-based K-means, EDK-means, partitional
clustering

Mathematics Subject Classification 2010: 91C20, 11Y16

https://doi.org/10.31577/cai_2021_6_1322


Efficient Density-Based Partitional Clustering Algorithm 1323

1 INTRODUCTION

The era of the dot com bubble is far gone, but it started a chain reaction leading
to the information age, and right now, the era of information is at its peak with
significant advancements in areas such as big data, IoT, and data mining. Now we
have devices collecting data 24/7, let alone the terra bytes of data uploaded on the
web every day in the form of research, social interactions, news, and entertainment.
The continuously growing sea of information is useless if not utilized properly. The
need of the hour is to process the massive data and extract useful patterns from
it. Almost 80% of this information is unstructured and unsupervised. This is
where clustering comes into place; it is an unsupervised technique that can extract
meaningful information from a massive pile of data.

Clustering is a subfield of data mining specialized in finding hidden structures in
data without external information. The clustering algorithms use heuristics to solve
the problem in a reasonable amount of time but do not ensure an optimal clustering
solution. Clustering has vast and diverse applications. It is extensively used in
data preprocessing, customer segmentation, data partitioning, outlier detection, and
data analyses. It is an unsupervised technique that groups data points with similar
traits and characteristics. To discover meaningful patterns and knowledge from
data is extremely challenging if the external information is not available. Many
clustering algorithms are designed to handle various types of datasets, and among
them, partitional clustering is the most widely deployed.

K-means is the most popular partitional clustering algorithm. The idea be-
hind the widely used clustering technique is to partition the given dataset D =
{x1, x2, . . . xn} with n data points into K clusters C = {c1, c2 . . . ck}, where C is
a set of cluster centers. However, finding K cluster centers in the data space is
an NP-hard problem [19]. The clustering algorithms use heuristics to solve the
problem in a reasonable amount of time but do not ensure an optimal clustering
solution. K-means is an optimization problem with the objective to minimize the
distances between the data points and their closest cluster centers, thus producing
compact clusters. The objective function can be formulated as follows:

F (C;D) =
k∑

j=1

∑
i∈clusterj

d2(xi, cj) (1)

where d(xi, cj) is the distance between the data point xi and the cluster center cj.
Algorithm 1 gives the basic pseudo-code of the K-means algorithm.

K-means is simple and efficient, but it has some flaws that question the algo-
rithm’s accuracy and make it unstable. There exist many variations of K-means
that try to overcome these shortcomings [4, 15]. The random selection of initial
cluster centers is one of the major drawbacks of the traditional K-means algorithm.
Different ideas and methods are adopted to randomly selecting the k initial centers.
Few most common approaches are:



1324 A. Zareen, H. Naveed

Algorithm 1 Basic K-means Algorithm

Input: Dataset D, Number of clusters K
Output: K cluster centers c1, c2, . . . , ck

Initialization Step:
1: Randomly initialize the C centers c1, c2, . . . , ck

Learning Loop:
2: repeat
3: for each data point x in D do
4: for j = 1, 2, . . . , K do
5: Calculate the distance between xi and cj
6: end for
7: Assign point xi to the closest centroid
8: end for
9: for j = 1, 2, . . . , K do

10: Update cj to the mean of all points assigned to it
11: end for
12: until none of the centroid changes its value

1. Select the first k elements in D as initial centers,

2. Pick k elements uniformly distributed over D, and

3. Randomly assign the n elements to the k clusters, then compute the mean of
each cluster and use it as its initial center.

Poor initialization of centroids can adversely affect the results of K-means and can
lead to slow convergence, empty clusters, low-quality clusters, and increase the like-
lihood of getting stuck in the local optima. Selecting K initial centroids randomly
at each run gives different clustering results [20]. Ideally, if an algorithm is re-
peated multiple times, it should give similar results. This is clearly not the case
with K-means when the objective function F (C;D) possesses multiple minima [21].
To select the best solution, we generally use one or more validity criteria in order to
assess and compare the quality of all these candidate solutions.

It is interesting to note that improved initialization techniques only reduce the
chances of K-means getting trapped in local optima. However, the main objective
of K-means is to minimize the intra-cluster variance, and it terminates when cen-
troids do not change. Hence, it can converge to local optima, regardless of the
initialization technique used, and may never reach global optima. K-means serves
as a heuristic and attempts to find an optimal solution that might be global or local.
In real-world applications, local minima of the objective function represent approx-
imate yet satisfactory solutions. Many efforts have been made to find better local
optimum solutions that include local search strategies (Hartigan-Wong method),
metaheuristics, and genetic algorithms.

The different variants of the K-means that strive to deal with the problem of
selecting initial centroids have stability issues and need to preset the values of input



Efficient Density-Based Partitional Clustering Algorithm 1325

parameters. Recently proposed the density-based K-means (DK-means) algorithm
seems quite promising [1]. It uses density parameters to find the initial centroids
effectively. The algorithm improves the accuracy of basic K-means and makes it
stable but at the cost of execution time. Hence, it is not feasible to apply the
DK-means algorithm on a huge dataset.

In this research work, we propose an EDK-means algorithm, an efficient version
of density-based K-means that employs advanced data structures to enhance the
speed of density-based K-means and reduce its time complexity while maintaining its
clustering quality. We rigorously evaluate the performance of the proposed algorithm
on various challenging datasets with many features. This paper makes the following
contributions:

• Introduce an efficient density-based K-means (EDK-means) algorithm that uses
advanced data structures to improves the time requirement of the density-based
K-means algorithm.

• Evaluate the performance of the EDK-means algorithm on different datasets
in-term of accuracy and time.

• Compare the EDK-means algorithm’s performance with traditional K-means
with different initializations.

• Examine the behavior of the EDK-means algorithm on challenging datasets
having different cluster sizes, shapes and densities.

The rest of the paper is organized as follows: Section 2 presents the discussion
on related work. Section 3 presents the efficient density-based K-means algorithm.
Section 4 includes the details of datasets, results, and analysis of the algorithm.
Section 5 concludes the paper and outlines the future work.

2 LITERATURE REVIEW

Clustering forms groups of similar and related data points to discover the underlying
pattern and hidden information in the data. There are various types of clustering
algorithms: partitional clustering, hierarchical clustering, density-based clustering,
model-based clustering, and grid-based clustering. The different clustering algo-
rithms are designed to identify clusters of varied shapes, sizes, and densities in the
presence of noise and outliers [6].

K-means, a primary partitional clustering algorithm, is the most popular choice
among researchers of different domains as it is a simple, easy, and efficient method.
However, the traditional K-means algorithm has various shortcomings and draw-
backs. It does not work well if the data has outliers or clusters with non-convex
shapes, varying sizes, and densities. One of the major shortcomings of traditional
K-means is that it randomly selects initial centroids; this can significantly degrade
the clustering quality. In the last decade or so, several variations and extensions
are proposed to K-means to handle numerous issues faced by K-means. Arthur and
Vassilvitskii [3] introduce a variation to the K-means algorithm called K-means++



1326 A. Zareen, H. Naveed

that caters to the initialization problem of basic K-means. K-means++ works on
the intuition that k initial centroids spread out and span the dataset. It selects
the first centroid randomly, and the next centroids are selected with probability
proportional to its squared distance from the closest previously selected centroid.
Later, Sohler et al. [11] combine the K-means++ algorithm with the local search
strategy. This variation starts with the K-means++ algorithm and generates k clus-
ters. Then it continues for another O(k log log k) rounds and generates few more
centers. The newly sampled centers are exchanged with old centers if the exchange
improves the cost; otherwise, they are discarded. Aggarwal and Singh [2] blend
K-means++ with techniques inspired by nature: Cuckoo, Bat, and Krill Herd al-
gorithms. These techniques enhance the quality of clusters and improve perfor-
mance. Li [13] introduces the more generalized form of the K-means++ algo-
rithm, which works by selecting the farthest data point from the nearest cluster
center and achieve results similar to K-means++. The K-means++ algorithm and
its variations suffer from instability and need to preset the values of the parame-
ters.

Tzortzis et al. develop a clustering algorithm called MinMax K-means [17] that
targets the problem of selecting the initial centroids. It chooses the initial cluster
centers randomly like basic K-means but assigns weights to clusters to minimize
the maximum intra-cluster distance. Fränti and Sieranoja [7] study the factors that
affect the performance of the K-means algorithm. They show that the MaxMin
strategy reduces the clustering error due to the poor initialization of K-means from
15% to 6% on average. However, it also suffers from the instability issue. Hou [8]
presents a K-means silhouette algorithm that uses silhouette index to measure the
cluster quality. The algorithm uses maximum and minimum distances to improve
the way of setting the initial centroids. This approach also helps in determining the
optimal number of clusters. Lakshmi et al. [10] present another approach to solve
the initialization problem of traditional K-means. The method starts by choosing
the first initial centroid using feature mean and then removes its k nearest neigh-
bors to find the next cluster center. Yu et al. [18] develop two improved versions
of the K-means algorithm, namely tri-level K-means, and bi-layer K-means. The
tri-level K-means algorithm uses three layers of clustering and data normalization
to deal with the noise and the issue of initial cluster centers. It also caters to
the situation in which data changes frequently and trained cluster centers can no
longer describe data in clusters. Bi-layer K-means is designed to handle the sce-
nario when data points in the cluster are substantially different, and the centroid
fails to define each point. It uses sub-clustering and data-matching techniques for
clustering.

Researchers often combine different clustering techniques to handle challenging
and complicated datasets and situations: some blend partitional clustering tech-
niques with density-based algorithms to attain high-quality clustering. Density-
based clustering works by calculating the density of each sample point. DBSCAN [5]
is one of the most important density-based clustering algorithms. Singh and Mesh-
ram [16] examine the performance of DBSCAN and its variations such as DEN-



Efficient Density-Based Partitional Clustering Algorithm 1327

DIS [14], DBCURE [9] and others. Recently few authors have proposed the use of
the density concept for effectively finding the initial cluster centers. Li et al. [12]
propose an algorithm that uses M nearest neighbor, distance, and density to find
initial cluster centers. Zhu and Ma [1] propose DK-means, a density-based K-means
algorithm that uses density parameters to select the initial cluster centroids effec-
tively. The algorithm attains stability, however, at the cost of time. Zhu and Ma
also present a novel variance-based clustering validity index (VCVI) to detect the
number of clusters in the datasets.

The K-means algorithm is susceptible to initial cluster centers. The different
variations of K-means adopt different methods for choosing the initial cluster centers.
However, most of the proposed variations are not stable and get stuck at a local
optimum. Moreover, the few that handle the problem of stability like DK-means do
so at the cost of time and thus are not practical for massive datasets.

3 EFFICIENT DENSITY-BASED K-MEANS (EDK-MEANS)

In this section, we present EDK-means, an efficient version of density-based K-means
algorithm that employs advanced data structures like KD-trees and heaps to improve
the performance of the DK-means algorithm. Density-based K-means [1] is the new
variant of K-means that uses density parameters to choose initial cluster centroids
instead of choosing them randomly. It combines the idea of partitional and density-
based clustering algorithms. DK-means uses the average distance between the data
points to identify points with high density. The average distance is computed as
follows:

AvgDist =
2

n(n− 1)

n−1∑
i

n∑
j=i+1

d(xi, xj) (2)

where n is the number of data points and (d(xi, xj)) is the Euclidean distance be-
tween two data points xi and xj.

The neighborhood of a data point is a region with ϵ radius around the point. It
is defined in terms of AvgDist and α, where α is the influence factor.

ϵ = α× AvgDist , 0 < α ≤ 1. (3)

The influence factor α is set according to the characteristics of the underlying data
distribution. In order to cater data with dense clusters that are relatively far apart,
the α value should be in the interval [0.05, 0.2] [1]. On the other hand, if the clusters
in the data are not very dense, then the value of α is restricted to the interval of
[0.2, 0.5]. The density of a data point xi is defined as the number of points in
its ϵ neighborhood. However, in the absence of any prior information about the
cluster density and separation, one cannot set α according to these two unknown
characteristics of the data. Moreover, each element’s density is computed in terms
of ϵ, and ϵ is defined as a function of α. To get out of this dilemma, the solution
is quite simple: for each dataset repeat the algorithm for different α values, use



1328 A. Zareen, H. Naveed

some validity criteria to compare the resulting solutions, and select only the best
one. This methodology is adopted in the experiments. Note that clustering, like
any other NP-Hard problem, can only be tackled using non-deterministic algorithms
that provide approximate solutions, which can be acceptable and quite satisfactory.
Usually, these solutions depend not only on the data but also on the algorithmic
parameters, such as α and ϵ in our case. Therefore, it is the robustness of the
algorithm over different structures in the data that is important, not its stability for
limited structures.

The basic idea of DK-means is to select the point with maximum density, set
it as the first initial centroid, and remove the data points that lie in its ϵ neighbor-
hood. Repeat the process until k centroids are found and then apply the clustering
process of traditional K-means to cluster data. DK-means improves the stabil-
ity and accuracy of classic K-means but at the cost of execution time. The al-
gorithm 2 gives the pseudo-code of the DK-means algorithm. It is evident that
DK-means takes O(n2) time in the initialization step as it does not use any effi-
cient data structures or techniques to compute the neighborhood and density of
each data point [1]. Selection of k centroids and removal of high-density neigh-
bor points for each selected centroid have O(k ∗ n) time complexity. Overall, the
algorithm has O(n2) time complexity making it impractical for large real-world
datasets.

Algorithm 2 DK-means Algorithm

Input: Dataset D, number of clusters K, neighborhood ϵ
Output: K clustering partitions

Initialization Step:
1: Calculate the density of each data point using the following formula and add it

to set S.

ρ(xi, ϵ) =
n∑

j=1, j ̸=i

Sgn(ϵ, d(xi, xj)),

Sgn(x) =

{
1, x ≥ 0,

0, x < 0.

2: for j = 1, 2, . . . , K do
3: cj = max(S) ▷ Select a point with maximum density from S and make it

jth initial centroid
4: Remove all high density data points in the neighborhood of cj from S.
5: end for

Learning Loop:
6: same as K-means



Efficient Density-Based Partitional Clustering Algorithm 1329

3.1 EDK-Means Algorithm

Figure 1. Workflow of EDK-means

EDK-means algorithm extensively relies on two data structures: KD-trees and
max-heap to reduce the time complexity of DK-means. Figure 1 shows the work-
flow of the EDK-means algorithm. First, the data is pre-processed and the average
distance between the data points is computed. During the pre-processing phase,
the missing values, noise, and outliers are removed. Furthermore, the attributes
are normalized using min-max normalization. This is beneficial, specifically when
the attributes have very different ranges. Normalization ensures that no particular
attribute dominates the clustering. Algorithm 3 shows some of the basic prepro-
cessing steps. The neighborhood is defined as α times average distance. The value
of α is set according to the characteristics of the dataset. We can speed up the
preprocessing stage by calculating the average distance using a representative data
sample rather than all the data points.

The pre-processed data and the ϵ (the neighborhood) are fed as input to the
EDK-means algorithm. The neighborhood plays an essential role in discovering the
density of a dataset. EDK-means algorithm constructs a KD-tree, also called as
K-Dimensional Tree, on the given data. KD-tree is an advanced space partitioning
data structure for organizing data points in a multidimensional space. It deploys
the idea of a binary search tree to answer range queries efficiently. It is incredibly
beneficial in our scenario for efficiently computing the density of each data point.



1330 A. Zareen, H. Naveed

The density of a point is defined as the number of points in its ϵ neighborhood.
With KD-tree, we find the density of each point in a specified neighborhood and
store it in the set S. The algorithm constructs a max heap on the set S of densities
and creates a lookup array that stores the location of each data point’s density in
the max heap.

EDK-means algorithm selects a data point with maximum density using max
heap and sets it as an initial centroid. Then, it finds all points in ϵ neighborhood
of the centroid using the KD-tree and removes the density of these points from the
max heap using the lookup array. The algorithm repeats the above procedure till
K initial centroids are found. After selecting the initial K-centroids, clusters are
formed by assigning the data points to the nearest centroid according to the nearest
distance formula, such as Euclidean distance. Update the cluster centers by taking
the average of all points in the cluster. Repeat the clustering process until there is
no change in any centroid.

Algorithm 4 outlines the pseudo-code of EDK-means algorithm. The algorithm
gets the pre-processed data D, the number of clusters K, and neighborhood ϵ as
input. It builds a KD-tree on given data in O(n log n), where n is the number of
data points, and calculates the density of a data point using KD-tree. With KD-
tree, we can count the data points in the ϵ radius of a specific point in O(log n)
time. Thus, for loop in step 2 of Algorithm 4 takes O(n log n) time to compute
densities of all points. In step 5 of the algorithm, a max heap on set S of densities
is created along with the lookup array to store the location of each point’s density
in the max heap. This step takes O(n) time. The algorithm extracts a maximum
density point from the heap in O(log n) time and searches its neighborhood points
using KD-trees in O(log n) time. Next, it removes density of the neighboring points
from the heap and maintains heap order in O(n) time. Thus, for loop on line 6-10
takes at most O(Kn) time to identify K initial cluster centers. The overall time
complexity of determining K centroid using EDK-means algorithm is O(n log n),
while the DK-means takes O(n2) time for the same task. Algorithm 4 executes the
basic K-means algorithm after determining the K-initial centroid to cluster the given
dataset.

Algorithm 3 Data-Preprocessing

Input: Dataset, α the influence factor
Output: Preprocessed Dataset D, neighborhood ϵ

1: Handle missing and null values in data set
2: Remove noise and outliers
3: Normalize the data
4: Calculate AvgDist , the average distance between data points using Equation (2)
5: Set ϵ = α× AvgDist



Efficient Density-Based Partitional Clustering Algorithm 1331

Algorithm 4 EDK-means Algorithm

Input: Preprocessed dataset D, number of clusters K, neighborhood ϵ
Output: K clustering partitions

1: KDtree = Build-KDtree(D)
▷ Calculate the density (no. of points in ϵ radius) of each data point using the
KD-tree and store in set S

2: for each data point x in D do
3: S(densityx) = KDtree.countPointsRadius(x, ϵ)
4: end for
5: Heap, L = Build-MaxHeap(S) ▷ Create a Max-Heap on set S and an lookup

array L to store the location of each data-point’s density in the Heap
6: for j = 1, 2, . . . , K do
7: cj = extractMax (H)
8: R = KDtree.findPointsRadius(cj, ϵ) ▷ Find data points in ϵ radius of

centroid cj using KD-tree
9: Heap.Remove(R,L) ▷ Remove data points in R from Heap with help of

lookup array L
10: end for
11: Get K initial centroids
12: repeat
13: for each data point x in D do
14: for j = 1, 2, . . . , K do
15: Compute distance between x and cj
16: end for
17: Assign x to nearest centroid
18: end for
19: for j = 1, 2, . . . , K do
20: Update cj to the average of all points assigned to it
21: end for
22: until none of the centroid changes its value

4 EXPERIMENTS, RESULTS AND ANALYSIS

EDK-means provides a substantial speedup in time while maintaining the same clus-
tering quality as the DK-means algorithm. The contribution of this study is two-fold:
it significantly reduces the time taken by the recently proposed DK-means algorithm
and rigorously evaluates the clustering quality of the density-based K-mean algo-
rithm. We conducted computational experiments to compare the running time of
EDK-means and DK-means algorithms on various real-world datasets. The ex-
periments are performed on a machine with Intel dualCore™ i5 CPU, and code is
developed in Python 3.6. We also carried out experiments to analyze the clustering
quality generated by EDK-means and compare it with traditional K-means.



1332 A. Zareen, H. Naveed

4.1 Data

The datasets are carefully selected from various sources [22, 23] to examine the time
performance and accuracy of the EDK-means on the data with different specifica-
tions and properties. The details of the 22 selected datasets are given in Table 1.
The selected datasets have a different number of sample points, attributes, and clus-
ters. Some are chosen to observe the behavior of the algorithm on different cluster
sizes and varying densities. Five datasets, namely, Unbalance, G2, S1, A3, and D15,
are unsupervised and benchmark clustering datasets [22]. The rest of the datasets
are supervised and obtained from UCI repository [23] except the dataset CC, which
is acquired from Kaggle [24].

4.2 Evaluation Measure

Evaluating the quality of the clustering is a tough job and requires thorough investi-
gation. It is quite a cumbersome task as compared to analyzing the results of a clas-
sifier. Different clustering indices exist to assess the clustering quality of supervised
and unsupervised datasets. The indices like Adjusted Rand Index, Normalized Mu-
tual Information, and Fowlkes-Mallows Index are used when class labels are known.
On the other hand, measures such as Silhouette Coefficient, Calinski-Harabasz In-
dex, and Davies-Bouldin Index are devised to assess the clustering results when no
information regarding the ground truth is available. The evaluation measures used
in this research work are briefly discussed below.

Adjusted Rand Index (ARI) calculates the similarity between predicted labels
and actual labels, ignoring permutations and with chance normalization. ARI
is computed as follows:

ARI =
RI − E[RI]

max(RI)− E[RI]
(4)

where RI is the rand index and E[RI] is the expected rand index of clusters. The
value of ARI ranges between −1 and 1 and 1 is the perfect match score.

Fowlkes-Mallows Index (FMI) is the geometric means of pairwise precision and
recall. FMI is computed as follows:

FMI =
TP√

(TP + FP )(TP + FN))
(5)

where TP, FP and FN stands for true positive, false positive and false negative,
respectively. FMI values close to one indicate good clustering.

Normalized Mutual Information (NMI) measures the agreement between the
predicted clusters X and actual classes Y . It ignores permutations but is not
adjusted against chance. It uses mutual information (MI) and entropy (E)



Efficient Density-Based Partitional Clustering Algorithm 1333

to detect good quality of clusters. Values close to one indicate good cluster-
ing.

NMI (N, Y )) =
MI (X, Y )

meanE(X)E(Y )
. (6)

Silhouette Coefficient (SCoff) is used when cluster labels are unknown. This
measure calculates how well the clusters are defined, the formula is as fol-
lows:

s =
b− a

max(a, b)
(7)

where a is the mean distance between a data point and all other points in the
same class and b is the mean distance between a data point and all other points
in the nearest cluster. A higher Silhouette Coefficient score relates to a model
with better-defined clusters.

Calinski-Harabasz Index (C-HI) is the ratio of the sum of between-clusters dis-
persion and of inter-cluster dispersion for all clusters. C-HI uses scatter matrix
to assess the quality of cluster. It is defined as

CH index =

(
matrix (Sx)

matrix (Si)

)
n− 1

n− k
(8)

where n is the number of data points, k is the number of clusters, thematrix (S i)
is the scatter matrix of an inter-cluster, and matrix (S x) is the scatter matrix
of between-the-clusters. The higher score indicates good cluster quality, and the
score is higher when clusters are dense and well separated.

Davies-Bouldin Index is used when cluster labels are unknown. It computes the
average similarity of each cluster with respect to their centroids. It is defined as
follows:

DB index =
1

k

k∑
i=1

max
i ̸=j

{
d(ci) + d(cj)

d(Ci, Cj)

}
(9)

where k is the number of clusters, d(ci) is the average distance of all the points
from the centroid in cluster ci and d(Ci, Cj) is the distance between the centroids
of the clusters. Zero is the lowest possible score. Values closer to zero indicate
high quality clustering.

4.3 Time Performance of EDK-Means

Section 3, proves theoretically that the EDK-means algorithm significantly reduces
the time taken by DK-means while maintaining the same cluster quality. This
section presents the execution time comparison of DK-means and EDK-means algo-
rithms for different datasets on a machine with Intel dualCore™ i5 CPU, and code
is developed in Python 3.6. Table 1 shows the time taken by both the algorithms
(in seconds) for different datasets.



1334 A. Zareen, H. Naveed

Dataset Size Dimension Optimal DK-Means EDK-Means
K Time Time

Iris 150 4 3 0.25 0.11

Wine 178 13 2 1.15 0.40

Sonar 208 60 2 3.62 1.24

Flame 240 2 2 0.37 0.15

Ionosphere 351 34 2 9.87 2.51

Jain 373 2 2 0.96 0.35

Compound 399 2 6 1.45 0.85

Arrhythmia 452 278 16 354.00 66.68

Dress 500 13 2 10.51 2.48

Energy 768 9 12 23.39 9.04

Biodeg 1 055 41 2 122.23 15.64

Unbalance 1 281 2 8 42.53 3.90

G2 2 048 256 2 3286.36 1 048.21

D31 3 100 2 31 60.47 41.23

Abalone 4 177 8 3 929.30 257.90

S1 5 000 2 15 528.58 56.63

A3 7 500 2 50 975.27 133.67

CC 8 950 16 7 1 950.26 462.63

D15 10 126 15 9 4 810.79 1 570.01

Online 12 330 17 2 9 456.64 3 452.90

HTRU 17 898 8 2 12 980.45 4 164.74

TV 17 918 204 2 31 862.73 7 943.49

Table 1. Datasets and running time in seconds of DK-means and EDK-means

We compare the running time performance of EDK-means and DK-means on
datasets with different sizes and dimensions. Figure 2 and Figure 3 compare the
time taken (in seconds) by two algorithms on small and large datasets with many
instances and dimensions. EDK-means algorithm has reduced the running time of
DK-means almost by half in both scenarios. It is evident from Table 1 that EDK-
means outperforms the DK-means algorithm on small as well as large and high
dimensional datasets. As the number of dimensions increases, the time taken by
both algorithms also increases. Consider the dataset Arrhythmia that consists of 452
instances and 279 attributes. DK-means algorithm takes a lot more time to cluster
Arrhythmia than dataset Dress with 500 data points and 14 attributes. However,
the time taken by the EDK-means algorithm for Arrhythmia is significantly less
as compared to the DK-means. Similar behavior is observed for large datasets G2
and TV. Hence, we can conclude that advancement introduced in the EDK-means
algorithm has made it practical for real-world datasets with many instances and
attributes.

We examine the convergence rate of the EDK-means algorithm. It is the same
as DK-means as both algorithms work on a similar principle to select initial cen-



Efficient Density-Based Partitional Clustering Algorithm 1335

Figure 2. Time comparison for small datasets

Figure 3. Time comparison for large datasets

troids. We recorded the number of iterations the EDK-means algorithm takes to
converge to an optimal solution and compare it with traditional K-means. It is
observed that mostly the EDK-means algorithm converges to the optimal solution
quite fast as compared to K-means. The K-means algorithm randomly selects initial
centroids, so it takes many iterations to converge in most runs. Moreover, K-means
is not stable and takes a different number of iterations to converge for different
runs. However, this is not the case for the EDK-means algorithm. We executed the
K-means algorithm 100 times for each dataset and used the average number of iter-
ations for comparison. Figure 4 shows the number of iterations taken by K-means
and EDK-means for different datasets. In most cases, the EDK-means algorithm
takes much fewer iterations to converge as compare to K-means. However, for some
datasets like Iris and Abalone, K-means converges faster than EDK-means.



1336 A. Zareen, H. Naveed

Figure 4. Convergence comparison between EDK-means and K-means

4.4 Clustering Quality Comparison of EDK-Means
with Different Initialization Techniques

EDK-means maintains the same clustering quality as that of DK-means. In this sec-
tion, we present the results of rigorous experiments performed on different datasets
to examine the performance of EDK-means and compare it with the traditional
K-means. The traditional K-means algorithm is executed 100 times and the average
of all runs is used. For EDK-means different values of α are tried, and the best
results are reported. Note that repeating the execution of K-means can be viewed
as an alternative to using different initialization techniques and similarly using dif-
ferent alpha values in EDK-means gives us different initalizations. We compared
the best result of EDK-means to the best result of K-means.

Different evaluation measures are used to evaluate the clustering quality for
supervised and unsupervised datasets, as mentioned in Section 4.2. Table 2 shows
the values of the α required in EDK-means for various datasets. The value of the
alpha depends on the characteristics of the dataset at hand. In case we do not have
much information about the dataset distribution, we can experiment with different
values and select the best one.

Table 3 shows the results of the experiments on supervised datasets. It reports
the values of three evaluation measures: FMI, ARI, and NMI. The results show that
the EDK-means algorithm has outperformed the K-means for most of the datasets.
For datasets such as Flame, Compound, Arrhythmia, Dress, and Online, the differ-
ence is enormous. For smaller datasets Iris, Wine, and Sonar, the performance of the
algorithms is comparable. We analyzed the dataset D31 with two dimensions using
plots to get insights. This dataset consists of the small dense clusters with small
inter-cluster dispersion. Figures 5 a) and 5 b) show clusters generated by K-means



Efficient Density-Based Partitional Clustering Algorithm 1337

and EDK-means algorithms. It is clear from the figure that the K-means algorithm
has merged few clusters with less separation and divided few other clusters into
two. EDK-means, on the other hand, has recognized the clusters quite well. The
datasets Flame, Sonar, Energy, and S1 have noise. From Table 3, it is observed that
EDK-means is less susceptible to noise as compared to the K-means. In the Abalone
and CC dataset, EDK-means achieves low-quality clusters compared to K-means,
indicating that the EDK-means algorithm does not work well with datasets with
sparse data points or maximum inter-cluster variance.

We conclude that EDK-means is stable and performs well for the datasets that
have dense clusters or have clusters that are dense at the center. EDK-means merges
the density concept with basic K-means to achieve the best of both worlds.

Datasets EDK-Means α

Iris 0.15

Wine 0.27

Sonar 0.20

Flame 0.47

Ionosphere 0.04

Jain 0.08

Compound 0.15

Arrhythmia 0.28

Dress 0.01

Energy 0.05

Biodeg 0.01

D31 0.09

Abalone 0.03

CC 0.16

Online 0.03

HTRU 0.01

TV 0.15

Table 2. The best values of α for different supervised datasets

Analyzing the clustering quality of an unsupervised dataset is a tricky task as
no prior information regarding class labels is available. We have used three mea-
sures: Silhouette Coefficient, Calinski-Harabasz Index (C-HI), and Davies-Bouldin
Index (D-BI) to examine the cluster quality. Table 5 shows the values of the above
three measures for five different unsupervised datasets. For a good clustering, the
Silhouette Coefficient should be closer to 1. The higher values of C-HI and lower
values of D-BI indicate better clustering performance. To determine the number
of clusters in the unsupervised datasets, we have used VCVI, Variance-based clus-
ter validity index [1]. VCVI uses the concept of variance to measure the disper-
sion of the data. It calculates the inter and intra cluster variance. The within-
cluster compactness and between-cluster separation show the dispersion degree of
clusters.



1338 A. Zareen, H. Naveed

a) K-means

b) DK-means

Figure 5. Clustering of D31 dataset



Efficient Density-Based Partitional Clustering Algorithm 1339

Datasets K-Means EDK K-Means EDK K-Means EDK
FMI FMI ARI ARI NMI NMI

Iris 0.82 0.86 0.73 0.75 0.76 0.78

Wine 0.58 0.61 0.37 0.40 0.43 0.47

Sonar 0.46 0.50 0.00 0.00 0.01 0.01

Flame 0.45 0.76 0.68 0.70 0.40 0.44

Ionosphere 0.61 0.64 0.14 0.17 0.13 0.15

Jain 0.70 0.70 0.32 0.32 0.37 0.35

Compound 0.64 0.81 0.74 0.88 0.72 0.80

Arrhythmia 0.25 0.43 0.07 0.10 0.24 0.20

Dress 0.52 0.65 0.00 0.01 0.00 0.01

Energy 0.90 0.97 0.89 0.97 0.96 0.97

Biodeg 0.59 0.64 0.00 0.00 0.00 0.00

D31 0.87 0.94 0.87 0.94 0.94 0.95

Abalone 0.45 0.43 0.12 0.09 0.11 0.11

CC 0.53 0.50 −0.05 −0.05 0.02 0.02

Online 0.70 0.81 0.08 0.08 0.02 0.02

HTRU 0.71 0.77 −0.08 −0.08 0.03 0.03

TV 0.58 0.64 0.02 0.54 0.03 0.62

Table 3. ARI, FMI and NMI values for K-means and EDK-means

Table 5 shows that EDK-means outperforms K-means for all the datasets. We
plot graphs to examine the clusters generated by K-means and EDK-means for the
S1 dataset (S1 has two dimensions). It is observed that the clustering of the K-means
algorithm is not good as it merges two separate clusters and breaks a cluster into
two parts. However, DK-means efficiently find all clusters as shown by Figure 6 a)
and Figure 6 b).

Datasets EDK-Means α

Unbalance 0.05

G2 0.15

S1 0.05

A3 0.1

D15 0.05

Table 4. The best value of α for Unsupervised Datasets

We examine the behavior of the EDK-means algorithm on datasets with different
cluster sizes and densities. The datasets, namely, TV, HTRU, and Dress have
clusters of varying sizes. Table 3 shows that EDK-means outperforms K-means
for these datasets. Some of the supervised datasets given in Table 1 such as Jain,
Compound, and Arrhythmia, have clusters of varying densities. The FMI value of
EDK-means for Compound dataset is 0.81 while FMI of the K-means clustering
for compound is just 0.64. Figure 7 a) and Figure 7 b) show the clustering of the



1340 A. Zareen, H. Naveed

Datasets K-Means EDK K-Means EDK K-Means EDK
Scoff. Scoff. C-HI C-HI D-BI D-BI

Unbal. 0.28 0.32 755 757 0.82 0.85

G2 0.19 0.21 634 637 1.76 1.79

S1 0.66 0.71 15 125 22 784 0.49 0.37

A3 0.54 0.58 16 937 19 907 0.68 0.59

D15 0.73 0.92 19 398 302 834 1.32 0.12

Table 5. Silhouette Coefficient (Scoff), C-HI and D-BI values for K-means and EDK-
means

a) K-means

b) EDK-means

Figure 6. Clustering of S1 dataset



Efficient Density-Based Partitional Clustering Algorithm 1341

a) K-means

b) EDK-means

Figure 7. Clustering of Compound dataset



1342 A. Zareen, H. Naveed

Compound dataset by K-means and EDK-means. It is observed that EDK-means
cannot properly handle clusters of concave shapes and varying densities. However,
it performs better than the traditional K-means.

5 CONCLUSION AND FUTURE WORKS

The clustering quality of the K-means clustering algorithm depends significantly
on the selection of initial centroids. In this, we present an EDK-means algorithm
that employs the concept of density to effectively find the initial centroids and used
advanced data structures to reduce the computational time. The use of advanced
techniques enhances the algorithm’s speed and makes it feasible for large datasets
with various features and instances.

We theoretically show that our algorithm is fast compared to the DK-means
algorithm. We conducted computational experiments to evaluate our algorithm’s
runtime performance, convergence rate, and clustering quality on different datasets.
It is observed that EDK-means have achieved higher accuracy compared to tradi-
tional K-means with different initializations. It can handle the dataset with different
cluster sizes and is robust in the presence of noise. However, it cannot deal with the
datasets with varying densities. As future work, we aim to modify the density pa-
rameters to handle datasets with varied densities. Furthermore, we aim to compare
the EDK-means algorithm’s performance with different variations of K-means such
as K-means++, Min-Max K-means, and others on diverse and challenging datasets.

REFERENCES

[1] Zhu, E.—Ma, R.: An Effective Partitional Clustering Algorithm Based on New
Clustering Validity Index. Applied Soft Computing, Vol. 71, 2018, No. 7, pp. 608–621,
doi: 10.1016/j.asoc.2018.07.026.

[2] Aggarwal, S.—Singh, P.: Cuckoo, Bat and Krill Herd Based K-Means++ Clus-
tering Algorithms. Cluster Computing, Vol. 22, 2019, No. 6, pp. 14169–14180, doi:
10.1007/s10586-018-2262-4.

[3] Arthur, D.—Vassilvitskii, S.: K-Means++: The Advantages of Careful Seeding.
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’07), 2007, pp. 1027–1035.

[4] Boudane, F.—Berrichi, A.: Gabriel Graph-Based Connectivity and Density for
Internal Validity of Clustering. Progress in Artificial Intelligence, Vol. 9, 2020, No. 3,
pp. 221–238, doi: 10.1007/s13748-020-00209-z.

[5] Ester, M.—Kriegel, H.-P.—Sander, J.—Xu, X.: A Density-Based Algo-
rithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining
(KDD ’96), 1996, pp. 226–231.

[6] Fahad, A.—Alshatri, N.—Tari, Z.—Alamri, A.—Khalil, I.—
Zomaya, A.Y.—Foufou, S.—Bouras, A.: A Survey of Clustering Algorithms for

https://doi.org/10.1016/j.asoc.2018.07.026
https://doi.org/10.1007/s10586-018-2262-4
https://doi.org/10.1007/s13748-020-00209-z


Efficient Density-Based Partitional Clustering Algorithm 1343

Big Data: Taxonomy and Empirical Analysis. IEEE Transactions on Emerging Topics
in Computing, Vol. 2, 2014, No. 3, pp. 267–279, doi: 10.1109/TETC.2014.2330519.

[7] Fränti, P.—Sieranoja, S.: HowMuch Can K-Means Be Improved by Using Better
Initialization and Repeats? Pattern Recognition, Vol. 93, 2019, pp. 95–112, doi:
10.1016/j.patcog.2019.04.014.

[8] Hou, X.: A New Clustering Validity Index Based on K-Means Algorithm. Jour-
nal of Physics: Conference Series, Vol. 1187, 2019, No. 4, Art. No. 042040, doi:
10.1088/1742-6596/1187/4/042040.

[9] Kim, Y.—Shim, K.—Kim, M. S.—Lee, J. S.: DBCURE-MR: An Efficient Density-
Based Clustering Algorithm for Large Data Using MapReduce. Information Systems,
Vol. 42, 2014, pp. 15–35, doi: 10.1016/j.is.2013.11.002.

[10] Lakshmi, M.A.—Victor Daniel, G.—Rao, S.D.: Initial Centroids for K-Means
Using Nearest Neighbors and Feature Means. In: Wang, J., Reddy, G., Prasad, V.,
Reddy, V. (Eds.): Soft Computing and Signal Processing. Springer, Singapore,
Advances in Intelligent Systems and Computing, Vol. 900, 2019, pp. 27–34, doi:
10.1007/978-981-13-3600-3 3.

[11] Lattanzi, S.—Sohler, C.: A Better K-Means++ Algorithm via Local Search.
Proceedings of Machine Learning Research (PMLR), Vol. 97, 2019, pp. 3662–3671.

[12] Li, Y.—Cai, J.—Yang, H.—Zhang, J.—Zhao, X.: A Novel Algorithm for
Initial Cluster Center Selection. IEEE Access, Vol. 7, 2019, pp. 74683–74693, doi:
10.1109/ACCESS.2019.2921320.

[13] Li, Y.: Generalization of K-Means Related Algorithms. 2019, arXiv: 1903.10025.

[14] Ros, F.—Guillaume, S.: DENDIS: A New Density-Based Sampling for Cluster-
ing Algorithm. Expert Systems with Applications, Vol. 56, 2016 pp. 349–359, doi:
10.1016/j.eswa.2016.03.008.

[15] Saha, J.—Mukherjee, J.: CNAK: Cluster Number Assisted K-Means. Pattern
Recognition, Vol. 110, 2021, Art. No. 107625, doi: 10.1016/j.patcog.2020.107625.

[16] Singh, P.—Meshram, P.A.: Survey of Density Based Clustering Algorithms and
Its Variants. 2017 International Conference on Inventive Computing and Informatics
(ICICI), IEEE, 2017, pp. 920–926, doi: 10.1109/ICICI.2017.8365272.

[17] Tzortzis, G.—Likas, A.: The MinMax K-Means Clustering Algorithm. Pattern
Recognition, Vol. 47, 2014, No. 7, pp. 2505–2516, doi: 10.1016/j.patcog.2014.01.015.

[18] Yu, S. S.—Chu, S.W.—Wang, C.M.—Chan, Y.K.—Chang, T.C.: Two Im-
proved K-Means Algorithms. Applied Soft Computing, Vol. 68, 2018, pp. 747–755,
doi: 10.1016/j.asoc.2017.08.032.

[19] Mahajan, M.—Nimbhorkar, P.—Varadarajan, K.: The Planar K-Means
Problem is NP-Hard. Theoretical Computer Science, Vol. 442, 2012, pp. 13–21, doi:
10.1016/j.tcs.2010.05.034.

[20] Ben-David, S.—Pál, D.—Simon, H.U.: Stability of K-Means Clustering. In:
Bshouty, N.H., Gentile, C. (Eds.): Learning Theory (COLT 2007). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 4539, 2007, pp. 20–34, doi:
10.1007/978-3-540-72927-3 4.

https://doi.org/10.1109/TETC.2014.2330519
https://doi.org/10.1016/j.patcog.2019.04.014
https://doi.org/10.1088/1742-6596/1187/4/042040
https://doi.org/10.1016/j.is.2013.11.002
https://doi.org/10.1007/978-981-13-3600-3_3
https://doi.org/10.1109/ACCESS.2019.2921320
http://arxiv.org/abs/1903.10025
https://doi.org/10.1016/j.eswa.2016.03.008
https://doi.org/10.1016/j.patcog.2020.107625
https://doi.org/10.1109/ICICI.2017.8365272
https://doi.org/10.1016/j.patcog.2014.01.015
https://doi.org/10.1016/j.asoc.2017.08.032
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1007/978-3-540-72927-3_4


1344 A. Zareen, H. Naveed

[21] Bubeck, S.—Meilă, M.—von Luxburg, U.: How the Initialization Affects the
Stability of the K-Means Algorithm. ESAIM: Probability and Statistics, Vol. 16, 2012,
pp. 436–452, doi: 10.1051/ps/2012013.

[22] Fränti, P.—Sieranoja, S.: K-Means Properties on Six Clustering Benchmark
Datasets. Applied Intelligence, Vol. 48, 2018, pp. 4743–4759, doi: 10.1007/s10489-
018-1238-7.

[23] Dua, D.—Graff, C.: UCI – Machine Learning Repository. University of California,
Irvine, School of Information and Computer Science. Available at: http://archive.
ics.uci.edu/ml, 2020.

[24] Bhasin, A.: Credit Card Dataset for Clustering. Available at: http://www.kaggle.
com/plutosenthil/credit-card-dataset-for-clustering, 2019.

Zareen Alamgir is Associate Professor at the Department of
Computer Science, NUCES Lahore, Pakistan. Her research in-
terests include data science, blockchain, data analysis, recom-
mendation systems, and algorithms. She has written many ar-
ticles in the field of data analysis and algorithms.

Hina Naveed has recently completed her Master degree in com-
puter science and she is currently pursuing her Ph.D. Her re-
search interests include data mining, machine learning and data
science.

https://doi.org/10.1051/ps/2012013
https://doi.org/10.1007/s10489-018-1238-7
https://doi.org/10.1007/s10489-018-1238-7
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.kaggle.com/plutosenthil/credit-card-dataset-for-clustering
http://www.kaggle.com/plutosenthil/credit-card-dataset-for-clustering

