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Abstract. Edge detection is especially important for computer vision and gener-
ally for image processing and visual recognition. On the other hand, digital image
processing is widely used in multiple science fields such as medicine, X-ray analysis,
magnetic resonance tomography, computed tomography, and cosmology, i.e. infor-
mation collection from satellites, its transferring, and analysis. Any step of image
processing, from obtaining the image to its segmentation and object recognition is
followed by image noise. The processing speed is vital in popular fields that demand
image analysis in real time. In this work, we have proposed an approach of parallel
computing of the Canny algorithm using CUDA technology, the complexity of ob-
ject recognition is analyzed according to the type of the image noise and the level of
its density. The sequenced implementation on GPU and the parallel implementa-
tion on GPU was considered. The results were analyzed for efficiency and reliability.
Also, parallel acceleration is calculated according to the size of the incoming image.
The manipulations with the image showed the growth of processing speed of 68
times, whereas the manipulations with the size of the kernel showed the growth of
processing speed of 26 times. Another contribution of this work is the analysis of
the complexity of object recognition depending on the type of image noise and the
level of its density. Furthermore, the increase of Gaussian noise density linearly
increases the complexity of object recognition.
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1 INTRODUCTION

Digital image processing is widely used in various fields of science such as medicine [1]
and [2] – X-ray analysis, Magnetic Resonance Imaging, Computed Tomography scan,
cosmology [3] – satellite information gathering, transmission, and analysis. Noise on
the image accompanies any of the stages of image processing – from their reception
to segmentation and object recognition.

Pre-processing of images is an important step, as it affects the quality of the
image, the accuracy, and the efficiency of the results obtained during the medium
and high level of processing. It is important because the images are influenced
by noise of diverse nature. If left intact, it will have a negative impact on the
following levels. These noises (divided into additive Gaussian and impulse noises,
which can be a component of the object under investigation) are formed when the
image is transmitted via communication channels. In addition to image filtering,
the brightness correction is improved. This is needed to select individual micro-
objects. There are also modern image enhancement techniques such as alignment of
the histograms, contrast-adaptive alignment of histograms, and Multi-Scale Retinex.

In the works [4] and [5], the authors proposed a neural network and algebraic
approaches, respectively, to provide image superresolution to improve further intel-
lectual analysis.

The field of image processing, despite its importance, has some drawbacks. In
particular, when processing images, it is important to get the result in real time.
However, consistent algorithms for larger images do not allow us to obtain this
easily. Even when using the Canny edge detection in the field of contour detection,
which dramatically reduces the amount of data that needs to be processed compared
to other first-order algorithms, we need to optimize the computational process [6].
In addition, the presence of noise in images complicates their processing by both
humans and computer systems [7].

Thanks to the development of the image processing site, it is now possible to
use the acquired knowledge to improve it and remove interference. Noise in images
occurs at different stages of their formation and use, from digital recording to user-
to-user transmission. They arise for various reasons that are sometimes difficult to
eliminate. Image processing makes it possible to eliminate unwanted data from an
image and to increase the possibility of human perception of them in the course of
their activity. Image analysis has wide application to:

• analysis and processing of two-dimensional images (photographs) in compres-
sion, coding, object recognition, improvement of image quality;

• analysis and processing of moving images during video compression, automatic
quality control of vehicle tracking;

• biomedical applications – analysis and recognition of images from ultrasound
diagnostics (ultrasound), magnetic resonance imaging, computed tomography
scan, and other technologies.
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In this paper, the Canny edge detection algorithm is investigated. As is
known [8], it consists of five steps: applying a Gaussian filter, finding the inten-
sity gradient, finding local maxima, applying a double threshold, and then tracking
the edges with hysteresis. The size of the Gaussian filter and the double threshold
can be manipulated to affect both the computation time and the efficiency of the
algorithm. Based on the images being processed, different combinations of these
two parameters can give more “accurate” results.

Detecting contours using a sequential algorithm leads to slow operation, espe-
cially when the number of pixels increases because the amount of work is directly
proportional to the number of pixels in the image. For real-time image processing
analysis, sequential execution will be too slow. It is important to offer an approach
to parallelization of a sequential algorithm and to study how the computation time
changes with increasing image size. Parallelization in the work is carried out on the
basis of CUDA technology. It allows programmers to write thread-level code that
runs on many independent threads at the same time. This model is ideal for parallel
data processing. For example, it allows you to apply the same filter to many pixels
at once.

The paper also analyzes the complexity of object recognition depending on the
type of noise and the value of noise intensity. It is important to obtain information
about the dependence of the difficulty of detecting objects in the image on the noise
component of the image. Such information can be useful for assessing the feasibility
of using an image for a particular field of activity, given the nature of the noise in
the image.

The main contribution of this paper can be summarized as follows:

1. This paper designs a computationally efficient approach to edge detection of the
image based on a Canny algorithm and the CUDA parallel computing technol-
ogy. It provides the possibility of significantly optimizing the computing process
by its parallelization; the ability to solve the task for the case of large image
processing.

2. It analyzes the complexity of object recognition depending on the type of noise
and the value of noise intensity. A scale of complexity of recognition of objects
of this class on the image depending on noise is constructed for the first time.

3. It carries out the experimental investigation of the efficiency of work of all pro-
posed algorithms; it receives an acceleration about 68 times and 26 when chang-
ing the image size and kernel, respectively.

The rest of the paper is organized as follows: The analysis of literary sources is
presented in Section 2. Descriptions of Canny’s algorithm and designed approaches
are shown in Section 3. Section 4 comprises the results of numerical experiments
of the proposed algorithmic implementation of the developed method. Conclusions
and prospects for further research are presented in the last section.
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2 LITERATURE REVIEW

There are various methods for detecting the edges of images, among which include:

Sobel’s operator [9]. One way to find boundaries in an image is to implement
a Sobel filter or operator, which allows you to find an inaccurate approximation
of the brightness gradient of the image. Strictly speaking, the operator uses 3×3
cores, with which the original image is collapsed to calculate the approximate
values of the derivatives horizontally and vertically.

The Sobel edge detector uses two 3 × 3 cores, one estimates the gradient in
the x-direction, and the other estimates the gradient in the y-direction. The
kernel passes through the image, manipulating one square of pixels at a time.
The algorithm calculates the gradient of the image intensity at each point and
then gives the direction to increase the image intensity at each point from light
to dark. Areas of the edges represent contrasts of strong intensity, which are
darker or brighter. Sobel’s algorithms work using a mathematical procedure
called convolution, and usually analyze the derivatives or second derivatives of
digital numbers in space.

The Prewitt operator [10]. A method of selecting boundaries in image process-
ing that calculates the maximum response on a plurality of convolution cores
to find the local orientation of the border in each pixel. It was created by Dr.
Judith Prewitt to identify the boundaries of medical images. The operator uses
two 3×3 cores, collapsing the original image to calculate the approximate values
of the derivatives: one horizontally and one vertically.

Canny’s edge detection algorithm is considered to be a better contour detection
algorithm than the ones we mentioned above. This is mainly due to two steps:
finding local maxima and contour tracking hysteresis. These two steps reduce the
number of “false” edges and, therefore, create a better starting point for further
process [11].

Simulation of different types of noise allows you to get a distorted image, based
on which you can develop methods to prevent noise and improve image quality when
really needed. Among the most common noise models are the following: Gaussian,
Poisson models, pulse models, and others.

The research [12] proposed a model for crowd control with a focus on mask
detection and people counting for the specific usage of pandemic situations. It was
shown and verified that by using a deep artificial neural network, the system could
perform the assigned task successfully. However, the authors do not study the time
spent on identification and do not analyze the possibilities of optimizing calculations
in order to make real-time detection.

In the work [13], the authors have demonstrated a version of the complete Canny
edge detector under CUDA, including all stages of the algorithms. For testing, in
this paper authors compared GPU Canny implementation with an assembly op-
timized CPU implementation in the OpenCV library, as well as with the Matlab
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toolbox implementation. As a result, the authors managed to achieve a maximum
acceleration of only about 4. This result is significantly improved in this paper, it
received an acceleration of about 68 times and 26 when changing the image size and
kernel, respectively.

In the paper [6], the authors have implemented the Canny edge detection us-
ing CUDA. In this paper, there are no results on the change in acceleration when
manipulating the size of the image and the kernel. CUDA implementation achieved
approximately 50 times speedup. If the data transfer time is not included, CUDA
implementation achieved approximately 61 times speedup. In this paper, this result
has improved by 36%.

In the paper [14], the authors proposed to use OpenMP technology to parallelize
the sequential algorithm, which is especially relevant when using the multi-core
architecture of modern computers. However, significant benefits can be gained by
using GPUs and CUDA technology.

There is a brief discussion about the necessity of computing GPU CUDA in the
analysis of medical images in work [15]. The GPU performances of existing algo-
rithms are analyzed and the computational gain is discussed. But here, in contrast
to the proposed approach, there is no analysis of performance indicators when using
CUDA technology in the process of processing images of different dimensions on
GPUs.

There are some proposals for the implementation of several medical image seg-
mentation algorithms using CUDA-supported graphics processors, comparing their
performance and results with the previous implementation in the old version of the
GPU and CPU, that points to the advantages of using CUDA technology and how to
design algorithms for most powerful use in work [16]. In our work, the acceleration
has been obtained 10 times faster for processing images of the same size. How-
ever, the paper does not provide an algorithm for eliminating the noise of different
nature.

The work [17] defines a set of criteria for the effective use of graphics processors,
and each segmentation method is evaluated accordingly. In addition, links to rele-
vant GPU implementations and an understanding of GPU optimization are offered
and discussed. A review of this work suggests that most segmentation techniques
can benefit from the graphics processor processing through the parallel structure of
the techniques and a large number of threads. However, factors such as synchroniza-
tion, branch divergence, and memory usage may limit acceleration. But this work
does not provide quantitative indicators of the efficiency of parallel algorithms. The
proposed approach allowed to optimize the computational process by combining all
filters with threads so that no two filters were applied simultaneously. This allowed
us to ensure accuracy and consistency in all execution cycles.

There are many free and paid image processing software platforms that handle
image processing, which also includes processing noise. Such applications are effec-
tive precisely for image processing and reduction of the noise level. However, they
do not allow for analysis of the images provided and to assess the complexity of the
rosetopinated objects on it. The most popular solutions are:
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Adobe Photoshop – considered the most powerful tool for working with digital
images. It makes it possible to clean images from noise in various ways, including
using plugins. This software solution allows you to apply cleaning algorithms,
set your own parameters, and determine the level of noise and light. Adobe
Photoshop allows you to use a variety of technologies and tools for image pro-
cessing, including the processing of noise. However, it does not contain sufficient
information about the noise level and does not allow for the estimation of the
distortion. Therefore, this product is useful for image processing but is not
effective for their analysis.

ERDAS Imagine – raster graphics editor and software product, primarily in-
tended for remote sensing data processing. It allows to process, display, and
prepare raster images for further processing. This software solution allows the
processing of cartographic data. An example of image analysis is the develop-
ment of a spatial model for data processing, orthotransformation, the creation
of a mosaic from images, and the production of stereo images.

MacSADIE – an application for Macintosh, allows the process of both color, and
grayscale images for scientific, engineering and research work. It contains about
50 commands for image analysis, spatial filtration, multispectral processing, and
classification. MacSADIE offers a wide range of options for the analysis and
processing of digital images.

Described software solutions allow us to perform a wide range of image process-
ing operations and, in particular, control noise suppression. The research carried
out in the presented paper provides information about the image and the complex-
ity of human perception depending on the type and intensity of the noise. Such
information can be useful in various applications where people are confronted with
digital imaging.

It should also be noted that a system that analyzed the complexity of object
recognition according to noise intensity was not found.

3 MATERIALS AND METHODS

The following distribution density describes the Gaussian noise model:

ρ(x) =
1

σ
√
2π

e
−(x−µ)2

2σ2

where x – brightness value, µ – the average value of a random variable, σ – standard
deviation [18].

Gaussian noise most often appears on digital images during the image acquisition
phase. This may be sensor noise caused by low light or high temperatures.

Impulse noise is expressed in the form of black and white dots corresponding
to the places of loss of information in the transmission channels. If impulse noise
is bipolar, that is, elements of both maximum and minimum intensity are present,
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and especially if they have almost equal probability, it is similar to salt and pepper
grains scattered over the image. For this reason, impulse interference is also called
noise – “Salt and Pepper” [19].

The study of the complexity of recognizing objects of a given class in the image
is based on the following input data:

• kind of noise;

• noise intensity;

• the number of recognized objects in the image.

The type of noise may be subject to the Gaussian distribution law [20].

3.1 Review of Canny’s Algorithm

Before discussing how an algorithm can be optimized, it is important to understand
how the algorithm is applied to the image. The Canny edge detector contains five
filters that are applied sequentially to the pixel by pixel image. Because pixels have
red, green, and blue components, each field is manipulated independently. Some
filters require the exchange of information between pixels, while other filters are
applied only to each pixel separately. The exchange of information between pixels
can significantly reduce performance when implementing a parallel version of the
contour detection algorithm, so the transfer of information is extremely important [6,
8].

Gaussian erosion. The first filter needed in Canny’s edge detection algorithm is
Gaussian blur. The purpose of this filter is to slightly blur the image and reduce
the noise in it. Noise reduction in the image allows you to detect actual, clear
edges, avoiding false noise, which could be defined as a false edge. This filter
works by applying a square “convolution kernel” to each pixel of the image by
the formula:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

where (x, y) – the pixel coordinates of the image and σ – the noise mask.

After the kernel is applied, the sum of the scalars multiplied by the pixel values
inside the kernel is divided by the sum of the scalars in the convolution kernel,
and this becomes the new value for pixel blur. For example, if a 5x5 convolution
kernel is applied to a pixel in the center of the image, the new red, green, and blue
values for that pixel will be the sum of the red, green, and blue values multiplied
by the convolution kernel and divided by the sum of the convolution kernel
values, respectively. What makes this Gaussian filter is that the “convolution
kernel” does not follow the mean distribution, where all scalars make the same
contribution, the scalars in the matrix represent the Gaussian distribution, i.e.
the pixel values closer to the blurred pixel have a greater impact. The size of the
convolution kernel determines the blurring of the image. The larger the kernel,
the more the image is blurred.
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Intensity gradient. The input to the intensity gradient is a blurred image ob-
tained by the Gaussian blur described above. This filter takes the first deriva-
tive of the contrasts between the color channels throughout the image in the
horizontal and vertical directions to determine the magnitude and direction of
each possible contour. Horizontal and vertical gradients are known as “deltaX”
and “deltaY” arrays.

These derivatives are converted from a three-channel gradient of red, green, and
blue to a single single-channel gradient, by converting the gradients to shades of
gray. The contour gradient is determined by finding the hypotenuse deltaX and
deltaY. The size of the gradient can be determined using the following formula:
sqrt(deltaX2 + deltaY2). The direction of the contour is evaluated as “alpha”,
which is the ratio of deltaX and deltaY. “Alpha” is used in the following filter [8].

Search for local maxima. Because the image was blurred during the Gaussian
blur phase, the edges detected by the intensity gradient filter may appear thicker
than they actually are. The search for local maxima dilutes the edges that were
formed by the horizontal and vertical gradients formed by the intensity gradient
filter. Because the image was blurred, the pixel values to the outside of the
path are smaller than the pixels in the middle. The maximum search filter takes
pixels along the edge and “mutes” values that are not the maximum value to
smooth the edges. This is achieved by first determining the direction of the
edge using “alpha”. Pixels perpendicular to the edge marked with “alpha” are
compared, and all gradient values are reduced to 0, except for local maxima,
which indicates the location with the sharpest change in intensity.

Double threshold. The previous three filters have been applied to the image to
detect true contours, but there may still be noise or false contours at the edges.
The double threshold filter uses high and low thresholds throughout the image
to identify strong and weak contours. If the pixel value exceeds a high threshold,
it is denoted as a strong edge, if the pixel value is less than the high threshold
value, but lower than the lower threshold value, it is denoted as a weak edge, and
finally, if the pixel value is less than the low threshold, the pixel is completely
suppressed. This filter is used to eliminate the last bit of noise [6].

Edge tracking hysteresis. In addition to edge detection, all four previous filters
filter out the noise present in the image. Because there may be some contours
that have been over-filtered (for example, edge information may be blurred in
the image due to Gaussian blur), the contour tracking hysteresis filter makes
one final pass over the image and connects the edges that should have been
with unity. Using the strong edges that have been identified by the double
threshold filter, the hysteresis contour tracking filter passes through the image
using a 3×3 matrix that connects the weak contours adjacent to the strong ones.
This restores the edges that should have been detected but were discarded by
aggressive filtering. At the end of this filter, the edges of the image are detected
properly.
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3.2 Implementation of a Sequential Algorithm

To implement the algorithms CUDA platform was installed and used along with the
Nvidia GeForce GTX 1050 TI graphic card. Image-processing library Magick++
was used to manipulate pixels, the library lets you import and arrange common file
formats images such as .jpg, .png, or .bmp into a flat buffer of pixels.

Sequential implementation of each filter used one for loop to iterate the pixel
buffer obtained with Magick++. Each Canny algorithm filter was implemented in
a separate function, each function used a nested for loop to sequentially iterate
through the pixel buffer and convert the pixels one by one.

Sequential implementation of these filters has made debugging algorithms much
easier because it is much easier than parallel. However, this is a rather limited
implementation, in terms of image size, because the processing time is linearly scaled
with its size. A faster approach to image processing was required to model the
analysis in real time.

3.3 Implementation of a Parallel Algorithm

A lot of tools (libraries, devices, etc.) for parallel computing that Canny edge de-
tector consist of exist, however, API CUDA NVIDIA was used for this project.
Graphics processing units are a great choice for image processing and filtration.
CUDA provides the ability to write threaded code which compiles in multiple inde-
pendent threads simultaneously. This technique is perfectly suitable for data parallel
computing, for instance, it lets you use the same filter on multiple pixels at the same
time.

The source code is written in C++ with CUDA extension and compiled with
NVIDIA NVCC. To achieve API CUDA data parallelism every filter should be imple-
mented in CUDA constructions. NVIDIA graphic cards have numerous abstraction
levels which can be used for achieving better parallel computing. Any task, that
should be parallely computed, can be divided into a combination of grids, blocks
and threads.

The CUDA software model is presented in Figure 1. CUDA C++ extends C++,
allowing the programmer to define C++ functions called kernels, which are executed
N times in parallel with N different CUDA threads when called, as opposed to only
once, like regular C++ functions. The kernel is determined by the global ad
specifier, and the number of CUDA threads that execute that kernel for a given
kernel call is determined by the new runtime configuration syntax <<< . . . >>>.
Each thread that executes the kernel is assigned a unique thread identifier. which
is available in the kernel through built-in variables (threadIdx).

Concurrency in CUDA allows you to “unwind” for loops by matching pixels to
threads [13]. If the thread can be mapped to each individual pixel, it works as if
the for-loop applies the same filters to each pixel; the difference is that all pixels are
calculated in parallel. The threads work together exchanging data with each other
through shared memory also synchronizing their work for coordinated access to the
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Figure 1. CUDA software model.

memory. To be more accurate, you are able to set specific points of synchronization
in the kernel by calling an internal function syncthreads(); syncthreads() acts like
a barrier that holds all the threads in the blocks until it is allowed to continue the
operation. Additionally, atomic functions are used in syncthreads().

The Canny edge detection algorithm problem can use domain decomposition
into groups of pixels for each thread. As you know, CUDA abstracts GPU hard-
ware resources into a grid of threading blocks, each of which can be referenced
using a global thread identifier. Thread identifiers consist of one-, two-, or three-
dimensional coordinates. The version of CUDA used provided a maximum of 1 024
threads in the block. The image size was divided by 1024 to get the number of
blocks in the thread, and all these blocks were within one grid. One thread per pixel
was efficiently started during each kernel execution, each performing the work of an
internal sequential implementation cycle. A separate kernel was created for each
step of the algorithm, except for the hysteresis step.

To allow parallelization of the loop tracking hysteresis filter by CUDA, the se-
quential implementation was divided into two parts (due to data dependency), each
of which was implemented as a separate CUDA core. The first CUDA kernel passes
through the image and pushes any pixel that exceeds a high threshold to its maxi-
mum value (the strong edge is equivalent to the maximum pixel value or “white”).
This step also creates a bit mask of these strong edges that need to be reviewed for
further processing. The second CUDA core examines each pixel that was previously
a strong edge and applies a low threshold to its eight immediate neighbors. If any
of these neighbors are above a low threshold, they are also referred to as strong
edges (effectively connecting weak edges). This led to a slightly different contour
detection, which can be seen in Section 4.

Within the NVIDIA video card memory hierarchy, Shared Memory can be used
to quickly transfer information between threads [21, 22]. This memory is local to
each block, so Shared Memory cannot be shared between blocks without explicitly
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reading and writing to global memory (which is available to all threads, blocks,
and grids). The convolution kernel used in Gaussian blur, and any other kernels
or variables applied to the entire image, have also been moved to Shared Memory
because it is much faster than using global memory [23, 24].

The last optimization that was used in the parallel implementation of the Canny
edge detection algorithm was flows. Threads allow you to synchronize the task
layer, forcing each CUDA kernel to perform tasks (kernels and memory operations)
sequentially in the thread. All filters used in the algorithm were linked together
by a stream, so that no two filters were applied simultaneously. This allowed us to
ensure correctness and consistency in all execution cycles.

4 RESEARCH RESULTS

Figure 2 shows the original image and the results after sequential and parallel edge
detection algorithms, respectively. Similarly, Figure 3 presents a reference image.
Figures 4 and 5 are the results of our sequential and parallel edge detection algo-
rithms, respectively.

Figure 2. Original image, the results of the sequential and parallel edge detection algo-
rithms, respectively

Based on Figures 2, 3, 4, 5 we can conclude about the reliability of the results.
To test the effectiveness of parallelization, two analyzes were performed: image
size manipulation and kernel size manipulation. The number of threads was not
manipulated, because we coupled each thread with each pixel of the image, so as the
image size increased, the number of threads increased. For image size experiments,
a very small image (70× 70), a medium image (640× 480), a 1 080p image (1 920×
1 080), a 4k image (4 096×2 160), an 8k image (7 680×4 320) and an image (10 240×
10 240) were used to process the code sequentially and in parallel.
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Figure 3. The original image

The time and relative acceleration [22] between sequential and parallel imple-
mentations were recorded and calculated, respectively. For experiments with convo-
lution kernel size, the kernel size was changed from 3× 3, 5× 5, 7× 7, 15× 15, and
31× 31. The 15 × 15 and 31× 31 convolution kernels are too large to provide any
proper edge detection because they blur the image too much, but the acceleration
when calculating this data was still worth checking out.

Figure 4. Images after performing a sequential algorithm
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Figure 5. Image after performing a parallel algorithm

Table 1 and Figure 6 show the execution time of sequential and parallel algo-
rithms for different image sizes. Also, the paper calculates one of the indicators of
the effectiveness of the proposed approach – acceleration Sp =

ts(s)
tp(s)

, where ts(s) and

tp(s) – execution time of sequential and parallel algorithms, respectively. The values
of which for different image sizes are given in Table 2.

Image Extension ts(s) tp(s)

70× 70 0.003811 0.086464

640× 480 0.270741 0.10651

1 920× 1 080 1.642513 0.16379

4 096× 2 160 7.332309 0.405638

7 680× 4 320 26.205247 1.233142

10 240× 10 240 111.740554 1.643233

Table 1. Execution time of sequential and parallel algorithms at different image sizes

As you can see from the results, when increasing the image size there is a need
to parallelize the sequential algorithm in order to obtain the result in real time.
When the image size is 1 920 × 1 080, an acceleration of about 10 is achieved, at
4 096× 2 160 – 18, at 7 680× 4 320 – 21 and at 10 240× 10 240 – 68. As a result, we
improved the result presented in [6] by 36%.

Table 3 and Figure 7 show the execution time of sequential and parallel al-
gorithms at different sizes of the convolution core. The obtained acceleration is
presented in Table 2 and visualized in Figure 8.
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Figure 6. Comparison of execution time of sequential and parallel algorithms depending
on the image size

Image Extension Sp

70× 70 0.044076147

640× 480 2.541930335

1 920× 1 080 10.02816411

4 096× 2 160 18.0759914

7 680× 4 320 21.25079431

10 240× 10 240 68.0004321

Table 2. Acceleration when manipulating the image size

The Size of the Kernel ts(s) tp(s)

3 0.439012 0.118802

5 0.937175 0.136428

7 1.642513 0.16379

15 8.013535 0.418164

31 33.578706 1.28104

Table 3. Execution time of sequential and parallel algorithms at different kernel sizes

Figure 7. Comparison of execution time of sequential and parallel algorithm depending
on the size of the convolution kernel
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The Size of the Core Sp

3 3.695324995

5 6.869374322

7 10.02816411

15 19.16361762

31 26.21206676

Table 4. Acceleration when manipulating the size of the convolution kernel

Figure 8. Dependence of parallel acceleration on the size of the kernels

As we can see, when the core size is 3, we get an acceleration of about 3.7;
and with a core size of 31 – 26. This indicates the relevance of the proposed ap-
proach.

The paper also forms the methods of collecting information. For this purpose,
a graphical user interface has been developed, which will allow to accumulate infor-
mation for further analysis by passing tests. This information includes the number
of objects detected in the image over the duration of the test using the selected noise
type and intensity.

The study of the complexity of recognizing objects of a given class in the image
is based on the following input data: the type of noise; noise intensity; the number
of recognized objects in the image. The type of noise can be subject to the Gaussian
distribution law or impulse noise. Noise intensity depends on the type of noise. If
the noise obeys the Gaussian distribution law, the intensity is determined by the
standard deviation – the greater the standard deviation, the denser the noise in the
image. The value of the number of recognized objects in the image is determined by
a human test. During the test, a person looks for objects in the image. This value
is used to calculate numerical complexity as the average of the number of objects
found.
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Implemented user interface when starting the program has the following form:

1. Setting noise parameters:

• choice of noise type (see Figure 9);

Figure 9. Noise type setting

• choice of noise intensity (see Figure 10).

Figure 10. Setting the noise intensity

2. Passing the test with the image of the test duration and the number of recognized
objects (see Figure 11);

3. Display the accumulated results through Microsoft Excel.

As a result of adding Gaussian noise to the image with a mean of 0 and a devi-
ation of 100, the following result was obtained (see Figure 12).

Gaussian noise in the images is manifested in the form of points of random
intensity, located over the entire area.

After analyzing the obtained histograms, we can draw the following conclusions.
Gaussian noise shifts the histogram of the image in accordance with the distribution
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Figure 11. Passing the test

law. All three image channels were processed independently, resulting in interference
of different colors. The intensity of most pixels in the original image was close to
zero, and in the case of adding noise according to Gauss’s law – increased for all
channels.

Applying pulsed noise to the original image, we obtain the following distribution
of pixel intensities (see Figure13).

Based on the analysis of the received histograms, the following conclusions can be
drawn. Impulse noise leaves the same type of histogram, but adds random peaks to
the image. The value of some points becomes either maximum intensity or minimal,
which can be easily seen on the histogram.

Consider the initial data generated based on the tests for Gaussian noise. Ta-
ble 5 shows the calculated relative complexity for each intensity level, where K –
the average number of recognized objects. To calculate this value, the average num-
ber of recognized objects is first calculated and then this value is normalized by
dividing by the maximum. After that, the relative complexity is calculated by the
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Figure 12. Histogram image with superimposed Gaussian noise

formula:
Relative complexity = (1− Normalized value) ∗ 100%.

According to the results of the study, it can be concluded that the image with
the highest value of Gaussian noise intensity has a recognition difficulty of 55.21%,
i.e., objects in such an image are the most difficult to detect by the human eye. For
Gaussian noise, the intensity of 100% corresponds to the standard deviation value

Figure 13. Histogram of the image with superimposed impulse noise
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Intensity (%) K Normalized Value Relative Complexity (%)

0 21.1 1.00 0.00

25 17.8 0.84 15.64

50 15.26 0.72 27.66

75 11.2 0.53 46.92

100 9.45 0.45 55.21

Table 5. The results of the assessment of complexity for Gaussian noise

of 200. From the given table it can be seen that the number of recognized objects
decreases with the increasing noise intensity.

Based on the data presented in the table, you can build a scale of difficulty in rec-
ognizing objects of a given class on the image depending on the noise. Constructed
scale given in Figure 14.

Figure 14. Recognition difficulty scale (Gaussian noise)

The results of the study on the noise model “Salt and Pepper” are presented in
Table 6.

Intensity (%) K Normalized Value Relative Complexity (%)

0 21.1 1.00 0.00

25 20.4 0.97 3.32

50 14.43 0.68 31.62

75 14.70588235 0.70 30.30

100 11.92857143 0.57 43.47

Table 6. Results of the assessment of complexity for noise “Salt and Pepper”

The research carried out on the noise model “Salt and Pepper” shows that for
the highest intensity with the value (100%) the relative complexity is 43.47%. The
most difficult image to recognize is one with high noise intensity. A slight variation
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in the relative complexity was observed for noise intensity with a value (60% and
80%), which may be due to different numbers of tests passed.

According to the results of the study, a scale was constructed, which is presented
in Figure 15.

Figure 15. Recognition scale for noise “Salt and Pepper”

Comparison of the relative complexity between different types of noise (Gaussian
and “Salt and Pepper”) are presented in Table 7.

Intensity (%) Gaussian Noise (%) Noise “Salt and Pepper” (%)

0 0 0

25 15.64 3.32

50 27.66 31.62

75 46.92 30.30

100 55.21 43.47

Table 7. Comparison of Gaussian noise and noise “Salt and Pepper”

For Gaussian noise, we can see a more straight growth of relative intensity
than for the “Salt and Pepper” noise. According to the largest noise intensity
Gaussian model shows a high complexity of object recognition than the noise “Salt
and Pepper”. This result can be justified by the specificity of the noise model itself:
Gaussian noise is applied to all 3 channels of the image, causing “mashing” (decrease
of brightness) of the recognized object, while the noise model “Salt and Pepper” does
not affect the brightness of the object recognized, but it can only show “drop-out”
pixels.

The above results may be relevant to areas of direct human interaction with dig-
ital images, such as medical fields that use digital images. The obtained conclusions
can be used to calculate the possibility of error and the relationship between image
noise and the magnitude of the error.
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5 CONCLUSIONS

From the above series of numerical experiments, it can be concluded that the speed
of the parallel algorithm is impressive. Thus, Table 3 and Table 4 show that, at least,
the proposed parallel algorithm allowed to obtain an acceleration of approximately
2.5 times in terms of image size; and almost 4 times when changing the size of the
convolution kernel. At best, image size manipulation showed a 68-fold increase in
speed, while manipulation of the convolution kernel size showed a speed increase
of up to 26 times. As can be seen in Figure 6 and Figure 7, if larger images and
kernel sizes are used, this trend also persists as the sequential implementation time
increases linearly with the image/kernel size, while the parallel implementation time
increases much more slowly.

The only time this did not happen was when processing the smallest image of
70 × 70 pixels. This image was small enough to make sequential implementation
faster, at the expense of additional device memory allocation, data transfer, and bus
transfer between the CPU and GPU.

The execution time of the parallel implementation remained relatively constant
compared to the sequential implementation, the time of which increased linearly
with the number of pixels to be processed. This is the best scenario for parallel
acceleration: the execution time is almost independent of the number of iterations
of processing that need to be performed on pixels. This suggests that Canny’s edge
detection algorithm parallels extremely well.

Noise in the image can be damaging in various industries because the image is
a widely used means of transmission. This is why an analysis of possible errors in
image processing is useful. The work compared the difficulty of recognizing objects
in an image depending on the type of noise and its intensity. Thus, the Gaussian
noise model is the most similar to the images distorted at the registration stage in
case of sensor failures (for example, overheating), and the impulse model “Salt and
Pepper” – to errors at the data transmission stage.

A system was built for the study to store data for analysis. The data acquisition
process consists of passing tests lasting 30 seconds with the chosen type of noise and
its intensity. Once the data have been accumulated, they can be analyzed to form
conclusions.

As a result of the research, the following was obtained: Gaussian noise causes
a high complexity of object recognition in the image then the noise “Salt and Pep-
per”; also with the increase of noise intensity of Gauss linearly increases recog-
nition complexity. This result may be due to the fact that when the image is
distorted by noise, the object to be recognized is also exposed to a blurring ef-
fect, as all three channels of the image are spoiled. If there is noise “Salt and
Pepper” only falling pixels are visible, and the contour of the object will not be
distorted.

The results of the research are relevant for use in the medical industry, as there
the image is widely used for the diagnosis of patients. Digital images are also used in
astronomy for cosmology to study celestial bodies. The results of the study can be
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used to assess errors in the processing of digital images, in particular the recognition
of objects on them, which emphasizes the relevance of the experiments.
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