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Abstract. This paper proposes a novel architecture that utilises an attention mech-
anism in conjunction with multi-stream convolutional neural networks (CNN) to
obtain high accuracy in human re-identification (Reid). The proposed architecture
consists of four blocks. First, the pre-processing block prepares the input data and
feeds it into a spatial-temporal two-stream CNN (STC) with two fusion points that
extract the spatial-temporal features. Next, the spatial-temporal attentional LSTM
block (STA) automatically fine-tunes the extracted features and assigns weight to
the more critical frames in the video sequence by using an attention mechanism.
Extensive experiments on four of the most popular datasets support our architec-
ture. Finally, the results are compared with the state of the art, which shows the
superiority of this approach.
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1 INTRODUCTION

Gait recognition addresses the problem of human re-identification (Reid) at a dis-
tance by identifying people based on their motions and movements and how they
walk using no overlapping cameras. Most human re-identification methods focus on
the biometric features, including iris and face and are image-based. The problem of
gait re-identification is better tackled through video analysis since it contains spatial
and temporal information. In recent years, the study of Gait Data attracted the at-
tention of scientists in different fields. Moreover, automated person re-identification
(Reid) from large quantities of video surveillance data from non-overlapping cam-
eras seems essential to the safety and security of our future generations. In past
years, several models have been suggested for person Reid [I] and even calculation
of the severity of diseases like Parkinson [2]. Gait recognition addresses the prob-
lem of human re-identification at a distance by identifying people based on their
motions and movements (the way they walk). The gait recognition system is an un-
obtrusive biometric feature, which has attracted many researchers in recent years.
Human motion analysis with visual tools is the attempt to 1. Detect, 2. Track and
3. Identify people, understand their behaviour and ideally predict their intentions
from a series of image sequences that usually come from the frames extracted from
a video [3 4].

Over the past few years, researchers tried to combine motion analysis concepts
and biometrics technology in surveillance systems. Recently computer vision com-
munity has shown immense interest in vision-based human re-identification at a dis-
tance. This interest is driven by the need to automate visual surveillance and mon-
itoring systems for security-sensitive areas like banks, tube stations, parking lots,
shopping centres and airports. The complexity of the gait recognition problem re-
sults from factors that can affect the accuracy of the recognition. These factors
include — but are not limited to — multiple camera views, clothes, physical condi-
tions, or even carrying a backpack. It is worth mentioning that the purpose of this
work is not to build a strong classifier that can detect people only in a closed dataset
but to build a system that can extract features from people outside of the dataset
and re-identify them using this method. This model should be applicable in different
situations and for different datasets, thus solving the problem of transfer learning
since the popular datasets are relatively small ones. There are three approaches to
gait feature extraction:

1. model-based features,

2. model-free features that are also called handcrafted features and

3. deep learned features.
Model-based approaches obtain a series of static or dynamic body parameters via
modelling or tracking body components such as limbs, legs, arms and thighs. Gait

signatures derived from these model parameters are employed to identify and recog-
nise an individual: [4, B, [6, [7] present some of the classic model-based approaches.
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In a model-free approach, different features are extracted, like the whole motion
of human bodies and silhouette width vector of Fourier descriptors. It also focuses
on silhouette shape and the dynamic information used for pattern matching. To
have an effective human re-identification model, we must identify discriminative
features at high and low semantic levels. Recent models either use one semantic
level feature representation or annotate these factors in the hardest possible way
and use it in a single CNN network [6]. Some even use a Multilevel Factorization
Net (MLFN), which uses no manual annotation [8]. A state-of-the-art approach
on the use of CNN models for gait recognition was introduced in [9], however. It
does not incorporate useful spatial features. We built on the work done in this
paper to boost accuracy and the training time achieved a little bit further. We
justify using optical flow maps by assuming that they hold all the crucial temporal
information about the gait, arm swing, leg swing and velocity of motion. The spatial
features include appearance characteristics such as colour, shape, size, and clothing.
Furthermore, in low-resolution videos with insufficient pixel information for other
biometric identification forms, gait recognition using optical flow shows excellent
promise [10] since only the movement of human body points is considered.

We propose a deep spatial-temporal architecture comprising a pre-processing
block, an STC block that contains a two-stream CNN with multiple fusions and an
STA block that incorporates long short-term memory to focus the features extracted
by the STC block. Our approach is not based on pose estimation or silhouette masks
to get a motion model. Instead, it is based on training a convolutional neural network
(CNN) and using the features extracted during the training of our network. Our
contributions in this paper are as follows:

e A STC block with a novel two-stream spatial-temporal convolutional neural
network with two concatenation fusions where we extracted the best spatial
and temporal features simultaneously and achieved a more efficient exploitation
of the available labelled data by proposing a new approach based on spatial-
temporal architecture with multiple modality fusion for gait feature extraction
which uses the best network modality combination for gait recognition.

e A novel STA block with a spatial-temporal attention mechanism with LSTM
comprised a spatial and a temporal network. Improving the efficiency of the
training stage for gait feature extraction which extracts the discriminative se-
quence-level features for representing the periodic motion cues of irregular gait
sequences. The designed dual spatial attention mechanism can concentrate
on the discriminative identity-related semantic regions from the spatial feature
maps. The proposed mechanism for temporal attention can automatically assign
adaptive weights (attention) to enhance the discriminative gait timesteps and
suppress the redundant ones.

e Use of velocity of movement in the attention mechanism by incorporating this
into the temporal attention weight.
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e Extensive comparison between twenty combinations of the proposed approach
and state of the art on four publicly available datasets, PRID 2011, iLIDS-VID,
TUM-GAIT and CASIA.

This paper is structured in the following way. First, we reviewed the related
work in Section 2] Then, in Section 3] we describe our approach in details. Next,
Section [ shows how we designed and conducted the four datasets and introduces
the datasets. Finally, Section [f] discusses the conclusions made and possible future
work.

2 RELATED WORK

There are numerous different approaches to gait recognition, most of which focus
on extracting features from silhouettes, for example, based on Gait Energy Image
(GEI) or pose estimation. Some only use binary silhouettes like [I0]. Others like [1T]
propose a Patch Distribution Feature (PDF). They present each Gait Energy Image
(GEI) as a set of local augmented Gabor features in concatenation with Gabor fea-
tures extracted from different scales and orientations (40 D Gabor features extracted
from 5 different scales and eight different orientations) together with a 2D z-y co-
ordinate. The authors in [I2] proposed a combination of Enhanced Gabor (EG)
and representation of GEI and Regularised Locally Tensor Discriminant Analysis
(RLTDA).

Furthermore, some approaches use mixed measurements of a subject’s body like
relational joint distance similar to [I3], height, the shadow length in each stride,
or even skeletal data [I4] to generate an inner gait model based on computable
values such as their standard deviation and mean. These approaches then select
features and classify based on those nominated descriptors. Person re-identification
for images has been the area of study for years. The two main focuses are on
unsupervised learning (1), which employs methods that take invariant features to the
environment, background, and viewpoint changes [I5, [I6]. Supervised learning (2),
which learns to map the features into new spaces (feature maps) to increase the
accuracy of identification and use traditional classification [I7, [I8]. Moreover, the
deep learning techniques that fall into the category of supervised learning have the
disadvantage of being reliant on the training data but do not need handcrafted
features and also improve performance to a noticeable level [19, 20, 21]. After
feature extraction, the distance between two points in terms of standard deviation
(Mahalanobis distance) is learnt by the network and is used in the classification [22]
23]. Deep Neural Networks have been successfully applied to different problems in
the past years, but they usually benefit from the spatial features only and do not
focus on the temporal information [24] 25| 26] 27].

Especially in gait person re-identification, temporal information is a vast re-
source that should not be neglected. In recent years CNNs have been used to extract
and use temporal features in human re-identification. [28, 29, 30] show the power of
recurrent neural networks (RNNs) through feedback connections that allow an event
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to be repeated over a period and temporal pooling that take an average of the spatial
steps over a period of time. [3I] proposes a recurrent deep neural network, which
combines recurrence and temporal pooling with representation learning and learns
invariant representation for each person of interest. This network converts the data
from all time-steps into a feature vector which will help boost classification accuracy.
The output from the CNN is fed into the RNN using a fully connected layer where
the output of the RNN, o), is the feature vector at time ¢ and 7 is the state of
the network at time ¢. We will expand on this more in Section [3| of this paper. Also,
[32] presented an end-to-end architecture that combines CNNs with RNNs in a way
that features of each frame are extracted using CNN and then fed into the RNN to
get a complete spatial-temporal representation of the video.

Deep learning approaches based on CNNs have been used in image-based tasks
with great success [33]. In the past years, deep architectures for video have appeared,
and they are primarily focused on action recognition, where the inputs of the CNN
are sub-sequences of stacked frames. No handcrafted features are used in these
approaches, and all features are trained inside the neural network. [34] proposed to
use as input to a CNN a volume obtained as the concatenation of frames with two
channels that contain the optical flow in the x-axis and y-axis, respectively. They
broke the CNN into two parts, a spatial stream convNet that gets video frames
and a temporal stream convNet with optical flow maps as inputs. Each stream is
composed of five convolutional layers, two full layers and one SoftMax layer and
the output of these two are fed to an outside classification block. Other authors,
such as [9], built on the idea from [34] to feed optical flow into the CNN with great
results, but the performance was low for practical application. In the past, optical
flow proved a helpful tool only for facial expression recognition by making feature
point tracking easier [35]. However, their proposed pipeline computes the optical
flow for the entire sequence, then builds up a cuboid by cropping and stacking
the optical flow maps and feeds the cuboid into the CNN to output a unique gait
signature in the form of a vector. It then applies a classifier to identify the subject.
Our method is based on [34] and [9] fused with an attention network to boost the
accuracy and performance.

In recent years more approaches to gait recognition have been proposed using
millimetre wave sensing [36] or accelerometers [37] with hidden Markov models, but
these are out of the scope of this paper.

3 PROPOSED APPROACH

Our approach is based upon a two-stream network presented for the first time in [34],
which incorporates spatial and temporal networks and uses optical flow to attain
high accuracy with limited training data and also uses multitask learning. However,
their method has two significant disadvantages. Firstly, it uses only classification
scores to perform fusion on the spatial and temporal features, and, as a result,
it cannot learn some features, including pixel-wise correspondences. Secondly, it
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is restricted since the spatial CNN only works on one frame and the temporal on
limited optical flow frames. In our approach, we have developed the networks for
the spatial-temporal features, address the fusion problem, and then introduce RNN
to the mix to vectorise the results into one gait signature to boost the classification
accuracy. Our input to the network is almost the same as the one proposed in [9,
31]. The output represented raw images (some pre-processing or zero padding will
take place as part of the architecture for different datasets) combined with optical
flow information for getting encoded details of a person of interest like appearance,
gender and clothing, and their motion cues and gait details. Figure [I] represents our
proposed architecture, which was implemented in this work. It shows an input block
that crops and resizes images based on datasets used in the experiment to feed into
the spatial stream of the STC block and the optical flow generator to use in the
temporal stream of the STC block.
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Figure 1. The illustration of our proposed architecture

The use of optical flow in action recognition has been proven to be an effective
measure in [34], but it is possible to use optical flow to extract the well-defined and
local features from the human gait. Simply put, the cuboid is made by stacking
(concatenating) optical flow maps together to make a block fit for feeding to our
temporal CNN. This form of input makes the recognition easier since it allows for
the explicit motion description between two frames, so the temporal CNN will not
need to estimate the motion implicitly. Figure [2] shows the process of extracting
optical flow for two consecutive frames by using the Lucas-Kanade Algorithm [38].

However, we must consider contentious motion and not instantaneous, and
to this purpose, several consecutive optical flow maps are concatenated to make
a cuboid and fed to the CNN. The optical flow maps for every two frames could be
calculated using the following optical flow constraint equation [39]:

Lu+lov+1;=0 (1)

where I, I,, and I; are the spatial-temporal image brightness derivatives, u is the
horizontal optical flow, and v is the vertical optical flow [40]. To solve this problem,
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[38] breaks down an image into sections denoted by € and then performs a weighted
least-square fit of the Equation () to the model [uv]* shown in:

> W2Lu+ Loy + L) (2)

zeQ

where W is the window function which helps to minimise the below formula:
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A filter [I — 1] is used to compute I; between image 1 and image 2. First, using
% kernel and its transpose form, I, and I, are computed. Second, using
an isotropic element kernel, I, I,, I; will be smoothed down. Then, Equation (ED
is solved for each pixel and eigenvalues of A are computed. Lastly, the eigenvalues
(\;) are compared to the threshold (7) constant that is determined at the beginning
for noise reduction, and the results fall under the three conditions stated in @,
@, . Under Condition 1, Cramer’s rule [39] is used to solve the equations, for
Condition 2 to compute v and v, the gradient flow has to be normalised, and for
Condition 3, the optical flow u and v are zero. If we consider the video sequence as
I; where 1 <t < T with a subject figure on each frame of the sequence and T is the
number of frames in the video.

a b W22 S WAL
IFA_[ ]_[Z ;LWL

: 4
bl |SWLIL Y WL @

a+c 462 4 (a — ¢)?

M=k . i=1,2, (5)
Condition 1: Ay > 7 and Ay > T, (6)
Condition 2: Ay > 7 and Ay < T, (7)
Condition 3: A\ <7 and Ay < 7. (8)

After getting the output OF, the video sequence might have different duration
in the temporal plane, and since CNN needs a fixed-sized input, we use the method
shown in [9] to make a fixed size of 60pixels x 60pixels for the OF maps and
feed this size to the cropping and resizing block to crop and resize the raw image
frames before feeding the spatial-STC stream. We use 25 frames of the OF maps
and the processed images for the input of our STC block since in most of the
state-of-the-art datasets, including the ones used for accruing results in this paper,
25 frames cover a complete gait cycle [41} 42, 43]. To increase the training samples,
we use Equation (@ to compute spatial displacement of +5 in all directions and then
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Figure 2. Optical Flow Maps for two consecutive frames

compute the corresponding mirror sequences on both processed raw images and OF
maps:

(9)

If OF is an optical flow map with the height and width of H and W, respec-
tively, and we have N images (X) in total, a single feedable training data before
sending to the STC-Temporal stream is computed as FTD. A similar equation is
used to pre-process raw images to feed our STC-Spatial stream. This operation will
increase our data to around 540k samples with dimensions of 60 x 60 x 50 before
feeding into our STC block. Figure[3]shows the inner workings of our pre-processing
block.

As shown in Figure [l our Spatial-Temporal Convolution (STC) block will pro-
duce a combination of features, and then the results will be sent to an STA block
to focus more spatial and temporal information. The STC layer outputs a feature
vector that eliminates some interference and encodes some features of the person’s
appearance and movement, and the STA will focus our attention on the specific ar-
eas and frames in which our subjects are walking. The STA is only used to refine and
improve the accuracy of the STC’s output. By performing two fusions (explained in
Section @, STC learns the best temporal and spatial features simultaneously and
then uses the attention layer to focus our attention to certain features by getting

FTD = (OF™W £5) — (m) :

N
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Figure 3. The proposed pre-processing block to prepare the datasets

the best regions automatically and assigning weights to each frame by employing

long short-term memory (LSTM) (this will be explained in Section [3.3)).
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Figure 4. Our proposed two stream convolutional neural network — the STC block

3.1 STC Block

Video analysis owes its advances to the research into image analysis methods, in-
cluding action recognition algorithms [44]. These methods typically take the local
spatial-temporal features and perform shallow and high dimensional encoding like
detecting interest points and pool them with the methods such as pyramid pool-
ing introduced in [5]. Video can be divided into spatial and temporal components
where the spatial will give information about appearances, actions and objects and
temporal will give the information about movements either in the objects or the cam-
era angle. To utilise both of these collections of information, we will divide these
two jobs into two streams much like [34] 6] and use multi-layer fusion techniques
to combine them. Where to fuse the networks is explained in Section 3.2
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Our two-stream network in the STC layer is illustrated in Figure [l The input
of the spatial stream consists of pre-processed RGB images (cropped and stacked
video frames). The temporal stream is fed by pre-processed optical flow. Illustrated
streams are entirely independent with two different inputs, but have the same struc-
ture, each of which has 4 convolutional layers accompanied by 4 max-pooling layers
after each convolutional layer and a single normalisation after the first convolutional
layer.

Since the size of our inputs for each stream are 60 x 60 x 50 obtained from
25 raw RGB and another 25 OF frames the CNN was composed in a way that the
first convolutional layer has 96 filters with size 7 x 7, with stride of 1 px, the second
one has 192 filters with size 5 x 5 and 2 px stride, the third layer has 512 filters
with size 3 x 3 and stride of 1px and convolutional layer 4 contains 4096 filters
with size 2 x 2 and stride of 1 px. The pooling layers after each convolutional layer
are 2 x 2. Both inputs of the networks have the same shape and dimensions as
mentioned above, but the input of the spatial stream is a stack of RGB images, and
the temporal stream is optical flow. Two fusion operations (explained in Scction
make the information ready for the attention block.

3.2 Fusion Operation

This section introduces different spatial and temporal fusion techniques and our pro-
posed architecture for this problem. There are several different methods to fuse two
CNNs. At first glance, the problem of inaccurate spatial pixel-wise correspondence
might not seem very important for gait human re-identification, but the differen-
tiation between the motions such as walking, running, jumping from one frame to
the next is very much dependent on action recognition. In other words, we want to
fuse our two individual CNNs at a convenient layer that the spatial and temporal
maps correspond on the same pixel. This problem can be solved by stacking the
layers between the two networks. However, the corresponding channels are still an
issue. Suppose that the special network channels are responsible for locating differ-
ent body parts, including hands, legs and torso, and some channels are responsible
for the periodic motion fields for each body part. Figure [ shows an instance where
temporal periodic motion was captured in correspondence with spatial by a webcam
using fusion.

If f is a fusion function that fuses X and X} which are two feature maps
at time ¢ then f has the output of y, € RT”>W"™<D" from X¢ € RH*W*D and
X! e REW'XD" by performing a fusion operation f : X& X! — y, where H, W,
and D, are Height, Width and the number of channels for corresponding feature
maps, respectively. The fusion operation f applies to different layers of two CNNs
in different ways, including multiple layers (multiple layer fusion), late and early
fusion using simple operations put into symbolic y = f(X2, X?).

To decide where to fuse the networks, we first go through a range of feasible
fusion methods introduced in the literature using mathematical operations. We
can first consider the sum operation, which will sum the feature maps at the same
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Figure 5. Captured Periodic Motion using a low-quality webcam

location in space indicated by (4, j) and channel d. So y = Xiia+ Xﬁj’d where i,
jand d > 1 and less than their respective height, width, and number of channels.
However, this method needs considerably more training since the number of channels
is chosen randomly. Hence, making the correspondence more accurate requires a lot
of training and optimisation. Max fusion denoted in the equation below has a similar
impact and consequently arbitrary correspondence.

In convolutional fusion, the feature maps will be stacked at first, and the output
would be calculated through a convolution operation with 1 x 1 x 2D filters fl €
RY1x2DxD and bias of b € RP. The output naturally will be calculated as follows,
where y° is the result of the concatenation operation explained above. In this case,
fl can learn the correspondences of X¢ and X! and improve the performance and
accuracy by minimising a loss function:

y =y *x fl+0. (10)

In bi-linear fusion, for each of the (4, ) locations, a matrix is calculated using
the outer products of the two feature vectors, and then all the locations are added
together. The output is shown in Equation . In simple words, the output is the
multiplicative interactions in corresponding (i, j) locations:

H w

y= > X oxi (11)

i=1 j=1

As a result of this fusion, channels of both CNNs are combined, but on the
other hand, we will lose all the spatial information at this point since they will be
outputted as a bi-linear vector, as shown in [47]. The vector is fed into a SoftMax
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layer for classification in this work. This method cannot be used in our approach
since the spatial information will be lost, and we need this information for use in
our STA block. In concatenation fusion, where the feature maps are stacked in
the (i,7) for channel d as such that the output will be in 2 dimensions ys, and
Ya2d_1, as shown below where X and X’ are two feature maps (with height, width
and channel number of H, W, D, respectively) produced by the layers and belong to
RIXWXD and the fused feature map is represented by y € RE*W>2D and 1 < i < H,
1 < j < W. This method will find the correspondence in the subsequent layers so
that the network learns suitable filters for the job:

de = ng.,d' (12)

Convolutional, max and sum fusion in the ReLU5 layers are employed as men-
tioned in [34]. Hence, we used the concatenation fusion on the second and fourth
pooling layers to fuse our STC block’s two spatial and temporal streams. To decide
where to fuse the CNNs, we can use the concept of ”upconvolutional” layers or zero-
padding the smaller feature map 48, 49] since X and X? have to have identical
dimensions. The intent is to fuse the network at layers to keep the correspondence
of temporal motion features and spatial features throughout the network. Which
method of fusion to use, and in which layer the fusion happens, it can seriously
impact the classification accuracy of the method. Later in Section [l we will show
different scenarios tested on different datasets, which will help us find the proper
fusion technique and layer.

3.3 STA Block

In the real world, when we look at a human being from afar and try to recog-
nise them, we usually focus on distinctive features in their movement as well as
distinguishing their characteristics. In other words, we divert our attention to cer-
tain regions in a scene to find our saliency points [50]. There were several pieces
of research on directing attention with saliency maps in the literature, including
but not limited to [51), (2, £3]. Furthermore, spatial-temporal attention networks
have recently been used for video and image analysis. [54] uses selective focus on
RGB videos. In [55] a method was proposed that labelled every frame according to
the actions performed in the scene and placed very dense labelling over the video
frames. The model would get several frames as input and then assign weights to each
frame. To our knowledge, only a few projects are working on person re-identification
using attention models [56] 57] and no research that uses it for fine-tuning gait fea-
tures.

In our approach, a recurrent Long-term, short-term (LSTM) was used much
like [54] to produce temporal attention based on the velocity of motion (walking
speed), a concept taken from [58] and produce spatial attention focusing on specific
regions in the frame. We considered using a simple RNN since it is a popular model
for feature extraction. Figure [f] shows a neuron used in RNN where h; is the output
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response at time step %, is based on the input X; and the recursive outputs of the
network itself denoted by h;—; (hidden state), is calculated as:

hy = G(WﬁXt + WhThht—l + by) (13)

where 6 is any nonlinear activation function, the connection vectors are Wy, and
W, and by, represents the bias [56]. However, research has proven that with using
RNN encoders alone, we might encounter the problem of vanishing gradient when
modelling long-term temporal features of information sequences (lose a lot of tem-
poral information). To rectify this issue, we use LSTM [59, [60] that is an advanced
RNN architecture. A typical LSTM neuron structure is shown in [56, 611, 54, 62]
where ¢; is a memory cell which has edges of weight 1 which are self-connected
and occur repeatedly. There are three gates denoted o, f;, and i¢; which are called
output gate, forget gate and input gate, respectively, and can decide to read, reset
or write to the ¢;. Also ¢; and h; are used as an input modulation gate. The hid-
den state, h; is calculated by element-wise multiplication of o; and the calculated
hyperbolic tangent of ¢;. Hyperbolic tangent is denoted by ¢(x) = Z:::Z in these
calculations.

Other gates are calculated as follows, where W is a learnable connection vector

and o(x) = H% is the sigmoid none-linear function between 0 and 1:
or = 0 (WoeXe + Wophi—1 + b,) , (14)
fo =0 Wp Xy + Wiephe oy +by) (15)
ir = 0 (Wi X + Winhi 1 +bi), (16)
G = ¢ (WeeXy + Wonhy—q1 + by) . (17)

In our method we introduce a Speed Gate, o;, which will be calculated with
attention to the velocity of movement (walking speed) of a subject in the leg area
and applies it to the LSTM architecture. Our LSTM neuron is depicted in Figure[7]
and formulated as follows:

velt = U(erlth + erlhht—l + bvel)~ (18)

Notice that vel; has no authority to decide when to read, reset or write to the
¢; and it is simply added and updated with the input gate. Now the memory cell
and hidden state can be calculated from the below formulas using the gates above.
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Where ® is the element-wise multiplication:

G =fiOa1 Qi O g+ i ©vely. (19)

ht-1[ Xt
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Figure 7. Neuron architecture for the LSTM used in the architecture

We take the output of the STC block, consider it as a feature map and insert it
into the Attention block. This feature map has all the spatial and temporal informa-
tion that we collected using the two-stream network from the input X7*W*P  The
recursive nature of the proposed model can focus the attention of the network to
different regions in the person of interest. Now assume that X7>*"W*2D is the input
of our attention block after the STC and that the spatial part of the model only
pays attention to the person of interest and ignores all the other spatial and tem-
poral information. In order to do that, the LSTM should predict specific SoftMax
locations and perform an operation and then perform a spatial pooling to combine
the feature slices.

If the SoftMax locations have the size H® x W?* the locations at time t are
calculated by T, as follows where w is the weight:

eWrixhi—1

Tt’i = ZH‘“’XWS Wy i xhi—1 .
im1 eWt.j

(20)
The spatial pooling operation naturally will be performed using Equation
where X ; is the it feature slice at time t:
HexWs

X{ = Z Tei Xt (21)
i=1

For the temporal information to be taken into account we can take all the spatial
information from the spatial pooling and import it into temporal pooling layer much
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like [31] where v, is vector characteristics in a video:

1 T

In gait re-identification, we must focus on the global temporal structure instead of
exploiting the local structure. Some papers exploit both [63]. Like them, instead of
a simple averaging strategy, we will take the dynamic weighted some of the temporal
feature vectors such that:

T
v = Z Oétht (23)
t=1

where Zthl T; =1 and o4 is computed at each ¢ inside of the LSTM encoder. The
attention weight, Y, at time step ¢, shows the relevance of the i*" temporal feature.
Thus, we devised an equation that takes the input and gives us a relevance score e;:

€ = O'(WXXt + Whht,1 + b) (24)

At the end we normalise ¢; to obtain for all frames where 1 < ¢ < T to obtain «:

et

Q= ——. 25
t Z?zl ot ( )

4 PERFORMANCE EVALUATION

To be able to test our architecture, we designed our experiment based on [31]. We
then validate our approach based on the results obtained on four selected datasets
suitable for gait re-identification. These datasets are introduced in this section, along
with our experimental results presented against other states of the art. To present
the results, first we have to introduce the four benchmark datasets we used for
this experiment namely CASIA [64], and TUM Gait from Audio, Image and Depth
(GAID) [42], PRID2011 [43], and iLIDS Video re-Identification (iLIDS-VID) [65, [T,
60, 67).

4.1 CASIA

The Institute of Automation Chinese Academy of Sciences has provided CASIA’s
A, B and C datasets. Dataset A contains 20 subjects with 12 image sequences
(4 sequences for each of the three directions to the image plane). The length of
each sequence is not identical for the variation of the walker’s speed, but it must
range from 37 to 127. The CASIA dataset includes 19139 images and has size
2.2GB [12]. Dataset B is a large multi-view gait database created in January 2005.
There are 124 subjects, and the gait data was captured from 11 views. Three vari-
ations, namely view angle, clothing and carrying condition changes, are separately
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considered. An infrared (thermal) camera collected dataset C in July and August
2005. It contains 153 subjects and considers four walking conditions (normal walk-
ing, slow walking, fast walking, and normal walking with a bag). The videos were
all captured at night.

For testing, we chose to use CASIA Dataset B. The 124 subjects were videoed
for 3 to 5 seconds in the same location and with the resolution of 320 px by 240 px
from 0 degrees to 180 degrees with 18 steps. The video frame rate is around 25 fps,
and subjects are either with no extra condition, carrying a bag/backpack or wearing
a coat/jacket. Ten videos were captured from each view: six with normal conditions,
two with a jacket/coat and two carrying a bag or backpack. It is important to
mention that we are not using all the viewpoints included in this dataset. Only 90
degree angle videos were used with a split of 48.3 % (60) for the training and dev set
and 51.7% (64) for the test set. Other research with high accuracy does not split the
subjects into training and testing sets. In [68] the split the videos for each person
that gave them a high accuracy level within the dataset, but it does not apply to
practical situations.

4.2 TUM-GAID

The TUM Gait from Audio, Image and Depth (GAID) dataset consists of 3370
sequences of 305 individuals recorded with a Microsoft Kinect sensor in two sessions
in a 3.5m wide hallway. Therefore, three streams are available: depth, audio and
video (colour). The resolution for audio and depth are 640 x 480 pixels with an
approximately 30 fps frame rate. So, to use the dataset with the same method, we
resized the frames to the exact resolution as the CASIA dataset, which is 320 x 240
pixels. The database was completed with each subject’s gender, age, height and
shoe type. A variety of walking conditions has been implemented for each subject
in TUM-GAID, including six with normal conditions, two with covered shoes and
two with a backpack. This dataset makes the feature extraction easy as it has been
tested with the following algorithms with great results:

. The Gait Energy Image (GEI),
. GEI on Depth data (depth-GEI),

1

2

3. Gait Energy Volume (GEV) and

4. Depth Gradient Histogram Energy Image (DGHEI).

4.3 iLIDS-VID

UK Home Office has developed the Imagery Library for Intelligent Detection Sys-
tems (i-LIDS) from pedestrians passing an airport arrival hall using two cameras,
which aims to stimulate the development of VA systems. Through the i-LIDS ini-
tiative, the Home Office assesses and promotes VA development for Event Detection
scenarios (e.g. illegally parked vehicles) and Object Tracking scenarios (e.g. people
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in airports) that are key to UK Government requirements. The i-LIDS datasets are
widely regarded as the most comprehensive of their kind and have achieved sub-
stantial recognition since their launch in 2006. The iLIDS-VID has 600 images of
300 people and has one pair of camera views from the two cameras per individual. It
is particularly challenging and needs more pre-processing time since various image
frames are in each sequence. Also, there are similarities in clothes and lousy lighting
to be considered.

4.4 Prid2011 Dataset

This dataset was created in the co-operation with the Austrian Institute of Tech-
nology to test person re-identification approaches. The dataset consists of images
extracted from multiple person trajectories recorded from two static surveillance
cameras. Images from these cameras contain a viewpoint change and a stark dif-
ference in illumination, background and camera characteristics. It has 749 people
videoed with two camera views in an outdoor scene with few people.

4.5 Experiment Design

In order to train the network and predict the identity of the subjects, we needed to
define a simple SoftMax function used in various works [34, BT]. If we have k number
of subjects, x is the feature vector, and ¢ is the person’s identity, the function is as

follows:
exp(W.x)

Sopexp(Wix)
We define a W matrix for the SoftMax weights in which W, and W), are the ¢
and k™" columns, respectively, for the loss function to be defined as follows:

I(x) = P(q = clr) = (26)

_ WL,EuW(VY) + W,Eu(V™)
B W + W,

L(z®, 2") + I(z%) + I(z"). (27)

W, are the temporal weights, and W, are the spatial weights taken from our
STC. This equation will take into account the Siamese loss based on Euclidian
distance between two characteristic vectors V = (22, 2°) [19, [69]. We treated the
data through the pre-processing block for each dataset individually to train the
model. The pre-processing block randomised the data and broke them into 80 %,
20 % proportion training and test sets, respectively. We used gradient descent to
train the model with 1000 epochs and a learning rate of 0.001.

We conduct our experiment based on the work of [31] which sends RGB images
as the input of a single stream CNN and adds the optical flow using an RNN
network. As mentioned before, we divided our architecture into several blocks in our
experiment. We focus on the variations of the STC and STA and use a combination
of these blocks with different methods to conduct the experiment. The experiment
was run based on a single stream CNN or STC-1, a two-stream CNN (STC-2) with
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[Index | Method I iLIDS-VID [ PRID2011 [TUM-GAID [ CASIA |

|R1]R5 [R10]R20| RI[R5 [R10[R20| R1 [ R20 [R1[R20]
Mi_ [STC-1 57.8[82.6] 83 | 89 | 70 [82.8[94.9 [93.4 ] 80 95 35 | 62.2
M2 |STC-1-STA 62.5[86.6 | 84.1 [ 90.5 | 72 [78.5| 91.8 [ 95.4 | 85 98 42 432
M3 | STC-2-SF-4 53.2] 90 |88.6 | 70.1 | 52 [88.2|91.2[90.8 ] 82 | 973 | 48 | 44
M4 | STC-2-SF-4-1 52 [84.9(89.2|72.2| 43 [83.2]89.4 [948 | 75 | 926 | 50 | 55
M5 | STC-2-SF-4-2 43 [91.4[89.5 | 69 [53.2[87.1|94.7 [95.4 [732| 952 [52.3]50.3
M6 | STC-2-SF-4-STA 45 [88.8[90.1 [77.4| 54 [87.2]90.5 | 95.6 | 77 98 68 | 52
M7 | STC-2-SF-4-1-STA 68 [90.9]928 | 75.2| 68 [83.6]88.9 951 75 | 953 | 54 | 86
M8 | STC-2-SF-4-2-STA  [[65.8[91.4|80.4 | 70 |65.8] 84 | 93 [93.6 | 76 86 64 | 73
M9 |[STC-2-CVF-4 64 [90.8[80.9| 82 | 64 [88.5]92.3[95.1 | 68 88 56 | 75
Mi0 |STC-2-CVF-4-1 44 |89 [81.2 852 56 |84.5| 93 [96.9 ] 69 96 [45.5] 70
M1l |STC-2-CVF-4-2 45.587.2[ 79.9 | 87.6 [45.5 |81.8| 94.7 [ 98.5 | 83 86 48 | 86

M12 | STC-2-CVF-4-STA 48 | 84 | 93.8 | 87.4 | 48 |91.7|97.1 | 94.9 | 82.5 98 49.9| 63
M13 |STC-2-CVF-4-1-STA || 36 | 83 | 94.2 | 89.4 | 49.9 |83.2 | 94.6 | 90.8 | 49.9 84.1 35 | 63.5

M14 |STC-2-CVF-4-2-STA || 35 |87.9| 84 93 35 [85.9]88.9 929 | 35 90 71.5] 62.2
M15 |STC-2-CF-4 51.5| 90 |92.1]90.1 |71.5]94.9|91.9|79.9 |71.5 86 68.6 | 83.2
M16 |STC-2-CF-4-1 55.6 | 91.1 | 89.2 | 89.2 | 68.6 | 96.4 | 90.8 | 93.8 | 68.6 92 66 | 85.2
M17 | STC-2-CF-4-2 57 | 92 | 94.5|89.9 | 66 |83.6|97.6 | 96.6 | 66 97 69.9 | 80
M18 |STC-2-CF-4-STA 62.9| 89 | 94.2 | 97.6 |69.9]91.5|90.4 | 94.4 | 69.9 86 68.2 | 86.8

M19 |STC-2-CF-4-1-STA 70.2190.6 | 92.8 | 95 |71.2]93.5|91.6 | 96.6 | 95.5 98.9 71.2| 87
M20 |STC-2-CF-4-2-STA 70.4(92.8| 96 | 97.8 |87.3]97.1]98.2 | 99.7 | 99.2 99.5 78.3 | 88.3

Table 1. Methods used in our experiment — 20 variations of our architecture were used in
the experiment

a single fusion of the fourth pooling layers or two fusions on pooling layers one and
four or pooling layers two and four. Three different fusion techniques were also taken
into account. Namely, sum fusion is denoted as SF, convolution fusion is denoted
as CVF, and concatenation fusion is denoted as CF. These make twenty variations
explained in Table[I}] The results were presented on four datasets introduced above
based on the ranking system in [31].

State of the Art Method | R1 R5 | R10 | R20
CNN + XQDA 53 81.4 - 95.1
RNN + OF 58 84 91 96

TSMRRNN 59.4 | 89.8 | 97.3 | 99.1
JSTRNN 55.2 | 86.5 - 97

STA-LSTM 64.8 | 90.7 | 96.4 | 98.3
Ours (M20) 70.4 | 92.8 | 96 | 97.8

Table 2. Comparison of our proposed approach with iLIDS-VID dataset

We keep the training length at 25-time steps when introducing the probe and
gallery sequences. We just took the whole sequence for some cases where the gallery
and probe length were more than the actual sequence. Probe sequences of length k
are taken from the first k frames of the sequence recorded by the first camera, and
the gallery sequences of length k are taken from the last k& frames of the sequence
recorded by the second camera since those are the farther temporal instants respec-
tively, and in some cases, probe and gallery sets were taken from the same camera.
Table [I] shows Rank 1, Rank 5, Rank 10 and Rank 20 performances evaluation of
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State of the Art Method | R1 [ R5 | R10 [ R20 |

CNN + XQDA 7731935 | — | 993
RNN + OF 70 | 90 | 95 | 97

TSMRRNN 787 | 952 | 97.6 | 99.2
JSTRNN 794 | 944 | — | 99.2
STA-LSTM 783 | 96.7 | 99.3 | 99.7
Ours(M20) 87.3 | 97.1 | 98.2 | 99.7

Table 3. Comparison of our proposed approach with Prid2011 dataset

State of the Art Method | R1 [ R5 | R10 | R20 |

CNN + XQDA 90.4 | - — [ 921
RNN + OF BT | - — 1975
TSMRRNN 975 | — — 982
JSTRNN 9% | - — o1
STA-LSTM 99.3 | — — 992
Ours(M20) 992 | — | — |99.5

Table 4. Comparison of our proposed approach with TUM-GAIT dataset

our 20 variations over the four datasets.

We used the Cumulative Mach Scoring (CMS) for evaluation, considering the
classification problem M classes and N inputs. The output would be an M x N
array of distances from N to M. Ordering and decoding the indexes of this gives
the actual classification. An M by N matrix of class labels where the first column is
the closest label and the M*™ column is the furthest label. Taking the first column
of this matrix, we will have a 1 x N matrix. The cumulative match score is a correct
result within the first m columns for each row. The cumulative match characteristic
is the sum of these rows.

So, we use the correct quantity of their subjects and introduce it as Rank m. In
this paper, several state-of-the-art methods for person re-identification were com-
pared with our method. These results are provided we simulated almost every
method and showed our experiment results in Table [ Tables [2] B ] and [5] show
these results compared with the state of the art and correspond to Table [T}

State of the Art Method | R1 | R5 | R10 | R20
CNN + XQDA 70 - - 85

RNN + OF 72.2 - - 85.2
TSMRRNN 65 - - 79.9
JSTRNN 71.6 - - 83.2
STA-LSTM 79.1 - - 88

Ours(M20) 783 | - - 88.3

Table 5. Comparison of our proposed approach with CASIA dataset
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5 CONCLUSIONS

In real-world scenarios, the subjects passing through an elaborate surveillance net-
work cannot be expected to act predictably. We might not even get a complete
gait cycle from a person of interest in most cases — as demonstrated in the paper.
Clothing variation or carry bags considerably impact the system’s performance in
re-identification problems. Other abnormalities, including the camera angle, sig-
nificantly aggravate the intra-class variation. Moreover, the similarity between
gait appearances of different people extracted from low-level information introduces
inter-class variations, resulting in similar gait signatures in more complex cases.
Therefore, irregular gait recognition concerning viewpoint variations still needs the
particular attention.

In this paper, the problem of video-based person re-identification was studied
extensively. Most of the possible methods were simulated, and new and improved
architecture with three blocks was introduced, using pre-processing block, a two-
stream spatial-temporal CNN with two fusions, and a spatial-temporal LSTM at-
tention network. We used the STC to extract the special and temporal features and
the STA to make a weighted sequence of frames with specific weight assignments
for each frame. A wide range of experiments has been conducted in this paper to
achieve the best combination of these methods on four of the most popular public
datasets. The outcome of our proposed end to end architecture was reflected against
several state-of-the-art models with excellent results.
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