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Abstract. Aiming at the problem of “dynamic” accurate determination of rates in
UBI auto insurance pricing, this paper proposes a UBI auto insurance pricing model
based on fuzzy controller and optimizes it with a parameter adaptive SASPO. On
the basis of the SASPO algorithm, the movement direction of the particles can be
mutated and the direction can be dynamically controlled, the inertia weight value
is given by the distance between the particle and the global optimal particle, and
the learning factor is calculated according to the change of the fitness value, which
realizes the parameter in the running process. Effective self-adjustment. A five-
dimensional fuzzy controller is constructed by selecting the monthly driving mileage,
the number of violations, and the driving time at night in the UBI auto insurance
data. The weights are used to form fuzzy rules, and a variety of algorithms are
used to optimize the membership function and fuzzy rules and compare them. The
research results show that, compared with other algorithms, the parameter adap-
tive SAPAO algorithm can calculate more reasonable, accurate and high-quality
fuzzy rules and membership functions when processing UBI auto insurance data.
The accuracy and robustness of UBI auto insurance rate determination can realize
dynamic and accurate determination of UBI auto insurance rates.

Keywords: Parameter adaptive SAPSO, fuzzy controller, fuzzy rule, membership
function

1 INTRODUCTION

In recent years, China has become the world’s second largest insurance market.
According to the China 2019 statistical yearbook, the total revenue of property in-
surance in China was 1077 billion yuan in 2018. The premium of auto insurance
is 783.4 billion yuan, accounting for 72.7% of the total premium of property in-
surance, which is still the largest type of property insurance in China. However,
according to the 2019 annual reports of insurance companies, only 14 of 58 auto
insurance companies are profitable, and more than 90 % of property and casualty
insurance companies underwrite losses. China’s auto insurance market as a whole
showed a comprehensive profit loss. In addition to the sharp increase in claims, the
reasonable pricing of auto insurance products and the unsatisfied consumer demand
are also important reasons of the phenomenon.

Faced with the above problems, the key to solve is to find a new pricing model
to accurately price according to the customer’s risk level. In recent years, the inde-
pendent pricing model of usage-based insurance UBI in foreign countries has gained
huge benefits for foreign insurance companies. It has been put into the market for
many years and has been widely used in European and American countries. For the
definition of UBI, there are usually two interpretations. One is Usage Based Insur-
ance, which is insurance based on usage and represents insurance based on driving
mileage. The other is User Behavior Insurance, which is an insurance designed ac-
cording to driver behavior. In contrast, the current interpretation of Usage-Based
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Insurance is more widely used. Although the two explanations are completely dif-
ferent, they are essentially the same. They both upload vehicle-related information
to a remote server, and then the insurance company redesigns the product based
on a large amount of data. Obviously, in the two definitions of UBI, the model of
designing insurance based on driving behavior is superior. The UBI pricing model
in this article is constructed following the concept of charging premiums based on
driving behavior.

The first part of this paper introduces the background and significance of auto in-
surance pricing model. The second part summarizes some literatures about UBI auto
insurance and particle swarm optimization, and leads to the SAPSO optimization
fuzzy controller algorithm. The third part describes the principle of fuzzy controller,
parameter adaptive PSO and parameter adaptive SASPO algorithm, and explains
how particle swarm optimization algorithm optimizes fuzzy rules and membership
functions. In the fourth part, the optimized fuzzy controller based on parameter
adaptive SASPO algorithm is empirically studied and the results are analyzed. The
last part is the conclusion.

2 LITERATURE REVIEW
2.1 UBI Auto Insurance Domestic and Foreign Literature

Research abroad on UBI has been relatively mature. Arbabzadeh and Jafari con-
structed a real-time driver risk prediction algorithm through multiple logistic regres-
sion model, proving that this algorithm can be applied to driver assistance systems
and help reduce the risk of accidents [I]. Ma et al. made risk measurements based on
the same situation based on GPS data, compared the driving behaviors of drivers on
the same road segment, and found indicators such as hard braking that are highly
correlated with accident rate [2]. Ayuso et al. proposed to use remote technology
to record drivers’ behaviors and driving mileage. Based on the frequency-based re-
gression model with counting data to calculate the premium or compensation, the
calculation of auto insurance rate is improved [3]. Yan et al. proposed to build
a fuzzy controller to calculate the autonomous underwriting coefficient based on the
driver’s driving mileage and the number of violations, so as to realize the “dynamic”
pricing of premiums H]. After decades of development, foreign UBI theories have
formed a relatively complete system. It has abundant research achievements in dy-
namic determination of auto insurance premium, feedback of bad driving behavior
and prediction of real-time risk.

Foreign UBI studies have pointed out the direction for the development of auto
insurance in China. Although the foreign UBI model is not suitable for “copying”
to China, Chinese scholars can absorb the theoretical research results of foreign UBI
auto insurance and conduct research on UBI in combination with China’s national
conditions. In the aspect of rate determination, scholars have tried many methods
and models to quantify risk factors. Zhu proposed a driving behavior rating model
based on UBI. The index system was established and the weight was determined
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by entropy weight-analytic hierarchy process, and it quantifies driving behavior to
assess risk [B]. On the basis of UBI, Gao proposed to use classification technology
of data mining to classify each customer’s driving behavior and score each clas-
sification result, and the result was more ideal than the driving behavior scoring
model [6]. Li and Meng proposed to construct a reward and punishment system for
auto insurance, in which a generalized linear model is used to determine the prior
fee rate based on the characteristic information of the policy. Then the prior fee rate
was adjusted based on historical claim information, which improved the accuracy
and rationality of the rate determination result [7]. Zhang and Wang established
the zero-expansion negative binomial model and the gamma model for the claim
frequency and the claim in tensity respectively under the condition of large claims,
which showed that the auto insurance rate is relatively accurate [8]. Some scholars
proposed to combine data collection equipment. On the basis of a large amount
of data support, the risk factors are extracted, the risks are quantified objectively,
and differentiated pricing is provided. Peng et al. pointed out the establishment of
an intelligent UBI system based on 3C (pipe-cloud-end) architecture. For driving
behavior data collection, transmission, processing, analysis and mining, the differ-
entiation of premium is realized through system [9]. Wang extracted major risk
factors from a large amount of original data in their study of UBI pricing model.
The Poisson regression model was used to construct the vehicle accident frequency
prediction [I0]. Pang analyzed the driving behavior of users according to the data
records, and then comprehensively scored the driving behavior. Through multiple
data record scores, the driving behavior was quantified, combined with big data, and
a differentiated pricing strategy was implemented to conduct research [I1]. Wang
and Kuang proposed that with the growth of car ownership in China, the demand
of the auto insurance industry has become more and more diversified, and UBI auto
insurance as an innovative auto insurance has received attention from the indus-
try [12]. Ji proposed that traditional auto insurance generally follows a “car-based”
auto insurance system when determining insurance rates, that is, it mainly considers
some factors of the car itself, such as the model, the nature of use of the vehicle
and the price, etc. The driver factors are only used as an auxiliary reference, such
as the driver’s driving behavior, driving experience and violation records. The UBI
auto insurance is based on the driver’s driving behavior as the main reference, and
follows the “humanistic” auto insurance system [13]. The research on UBI in China
is not mature enough. At present, the development of Internet insurance in China
has entered the substantial transformation stage, and some large insurance compa-
nies have also developed UBI products. However, compared with foreign countries,
there is still a big gap. Scholars need to learn from the mature theories of foreign
countries and continuously practice various pricing models to explore “localized”
UBI products.

UBI auto insurance is calculated by quantifying driving risk. Therefore, there are
many and complicated factors influencing the independent pricing of auto insurance
premiums. Including driving time, driving environment, driving mode and many
other aspects, it is difficult to express with a specific mathematical model, dynamic
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characteristics is difficult to grasp. However, fuzzy controller does not need specific
mathematical model to express. The presupposition results under the combined ac-
tion of all factors can be obtained by reasoning calculation of the influencing factors
through fuzzy controller. Therefore, a fuzzy controller is proposed to describe the
auto insurance problem. Combined with the current premium calculation formula
in China, the risk factor is input into the fuzzy controller for reasoning calculation
to calculate the dynamic autonomous underwriting coefficient. However, the fuzzy
rules and membership functions of the fuzzy controller can be set according to the
expert experience. Expert experience has cognitive limitations, so the optimization
algorithm needs to adjust membership functions and fuzzy rules more precisely and
objectively through data.

2.2 Related Algorithm Literature

Due to too many parameters of fuzzy rules, a powerful swarm optimization algorithm
is needed. PSO algorithm is a swarm intelligence optimization algorithm and opti-
mization performance has been successfully applied in many fields. PSO algorithm
is a mature optimization algorithm with strong optimization performance, wide ap-
plicability and simple application. Garg proposed a PSO-GA hybrid algorithm that
uses genetic algorithms to cross and mutate decision variables in PSO, further im-
proving the balance between exploration and development capabilities [14]. Olivas
et al. proposed a parameter adaptive particle swarm algorithm, which uses interval-
type-2 fuzzy logic modules to improve the convergence and diversity of particle
swarms [I5]. Durand and Abrao proposed a multi-beam satellite (MBS) communi-
cation power distribution method based on heuristic particle swarm optimization,
which considered the distribution of satellite communication power under different
sky conditions and improved the overall energy of the satellite system Efficiency [16].
Valdez et al. proposed a fuzzy inference system to dynamically control inertia weights
and learning factors, which enhances the performance of the algorithm [I7]. Pan
et al. proposed the PSO based on coevolution. In the antenna synthesis problem,
decision variables were assigned to subgroups. Then, the probability based learning
strategy is optimized by PSO to maintain the diversity of the population and accel-
erate the convergence speed [I8]. Lagunes et al. adopt a variety of meta-heuristic
algorithms to test algorithms through competitive methods until they find the best
way to solve the problem. In the model check, the benchmark mathematical func-
tion and membership function of the fuzzy controller of the autonomous mobile
robot are optimized [I9]. There are many improvements to the particle swarm al-
gorithm [20, 2T], 22], and the pursuit of particle swarm parameter adaptation is one
of the main directions of improvement. In addition, fuzzy controller and PSO can
be well combined to get better results. Meng et al. proposed an adaptive fuzzy
controller based on improved PSO, which realized the operation navigation of adap-
tive control of agricultural vehicles. Compared with conventional fuzzy control,
the navigation accuracy of the improved fuzzy control algorithm is significantly im-
proved [23]. Wang et al. adopted a speed control algorithm based on improved
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particle swarm optimization to optimize the fuzzy controller, and we solved the
problems such as system overharmony and poor stability of the PID controller. In
the experiment, the table showed good robustness and control accuracy [24]. Zhang
et al. proposed a new adaptive simulated annealing particle swarm algorithm, and
then used the algorithm to optimize the fuzzy rule weights and quantized scale fac-
tors of the fuzzy controller. The simulation results show that the controller enables
the brushless DC motor speed control system to have good rapidity, stability and
robustness [25]. Tian and Liang proposed a cuckoo search algorithm based on mini-
batch gradient descent, and obtained good algorithm performance [26]. Wang et al.
proposed a feature fusion sequence annotation model based on attention mecha-
nism [27]. Xu et al. used residual attention-based network to identify potato leaf
diseases [28]. In order to quickly and accurately identify various geometric errors,
Yu and Sun proposed a hybrid SAPSO-GA algorithm. The compensation effect is
analyzed by comparing the motion trajectory before and after the compensation
with the ballbar. The results show that the proposed method improves the iden-
tification accuracy, and greatly improves the machining accuracy of the crankshaft
follower grinder through compensation [29]. The simulation results of Zhang and
Huang show that the SAPSO-RBF algorithm has good self-organizing ability, and
compared with other self-organizing RBF neural network optimization algorithms,
the network structure compactness and accuracy have been greatly improved [30].
PSO combined with fuzzy controller has good complementarity. Fuzzy controller
can describe complex problems through language rules, calculated according to the
designers intend to reasoning. But the adaptive ability is poor, there are man-made
factors, the result accuracy is not high. And powerful optimizing ability of PSO can
reduce subjective conceptions of fuzzy controller, with global optimization ability,
and found the result of the high precision in the numerous possible. PSO algorithm
combined with fuzzy controller can be complementary, supplement each other, get
ideal results.

To sum up, the domestic scholars have adopted many methods to study the
reform of the car insurance rates and introducing UBI car insurance, through three
fee changes to make the car insurance industry pricing power gradually expanding,
promoted some car insurance companies insurance rates. But domestic UBI research
is still in the attempt stage, large scale implementation needs a lot of theoretical
research and practice. However, there are few studies on the application of fuzzy
controller in the field of UBI auto insurance, so we can try to describe the problem
of rate coefficient determination in the auto insurance pricing model through fuzzy
controller. In addition, the combination of PSO algorithm and fuzzy controller has
achieved good results in engineering control and other fields. After optimizing the
membership function and fuzzy rules of the fuzzy controller, the rationality of the
fuzzy controller can be further improved. Therefore, on the basis of SAPSO al-
gorithm, this paper further improves and proposes a parametric adaptive SAPSO
algorithm. The inertial weights and learning factors are determined in real time
according to particle optimization in the iteration to improve the convergence speed
and optimization performance of the algorithm. The direction of motion is adjusted
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in real time to avoid falling into the local optimal solution. The UBI auto insurance
pricing model based on parametric adaptive SAPSO optimized fuzzy controller was
proposed. The algorithm model was put into practice on the basis of data verifica-
tion. In comparison with analytic hierarchy process (AHP), entropy weight (EW)
method, genetic algorithm (GA) and parametric adaptive PSO, it was found that
the algorithm had higher accuracy and stability. The numerical results show that
the algorithm is an effective algorithm to optimize fuzzy rules and membership func-
tions, and applications in UBI pricing model is also a kind of new exploration and
practice in the study.

3 ARITHMETIC STATEMENT
3.1 Fuzzy Controller

The calculation of self-underwriting coefficient is the key to accurate pricing. The
self-underwriting coefficient is closely related to the driving behavior of customers,
and the value of the coefficient represents the quantification of the risk level of
customers’ driving behavior. There are many factors influencing the pricing, and
there are correlations among the factors, so it is difficult to calculate the compre-
hensive influence of various factors with specific mathematical models. While the
fuzzy controller can calculate the comprehensive influence according to the input
factor without describing the specific mathematical model, and has strong control
over the uncertain object and strong robustness to the changing parameters. It is
a new attempt to select the autonomous underwriting coefficient of fuzzy controller
to calculate the rate coefficient.

Fuzzy control is based on the production experience of operators and devel-
oped by modern control theory. According to the practical experience of operators,
a qualitative and imprecise control rule is obtained by using language for reasonable
summary and description. Then it is quantified by the method of fuzzy mathemat-
ics, which is transformed into fuzzy control algorithm, and finally the fuzzy control
theory is formed. Fuzzy control has many advantages: high reliability, continuous
output and can give full play to the effect of automation. But at the same time,
there is also the disadvantage of subjectivity, which becomes more complicated and
less accurate when there are more parameters.

3.1.1 Composition and Structure of Fuzzy Controller

The composition of the fuzzy controller mainly includes three parts: the fuzzification
of the input variables, the fuzzy reasoning of the rule base, and the defuzzification
of the output variables. The composition block diagram and calculation process
are shown in Figure [l First, the exact value of the input variable is blurred, the
membership function and the rule base are set, and then fuzzy reasoning is performed
according to the rule base. Finally, defuzzification is performed to obtain the exact
value, that is, the output variable.
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Figure 1. The block diagram of fuzzy controller

In the fuzzy toolbox of MATLARB, there are two inference algorithms, Sugeno and
Mamdani. Although the Sugeno algorithm is more compact and comparatively more
efficient than the Mamdani algorithm, it fits better with optimization and adaptive
techniques. But based on the limitation of the algorithm in this paper, Sugeno
inference algorithm cannot be fused with the algorithm. Therefore, Mamdani infer-
ence algorithm is selected to construct the fuzzy controller. In addition, Mamdani
algorithm has been widely accepted by the world, and the reasoning process is more
intuitive, which is very suitable for human input and has wider adaptability.
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Figure 2. Structure diagram of Mamdani algorithm

According to the number of input and output variables, the structure of the
fuzzy controller can be divided into three types. They are SISO (single input single
output), MISO (multiple input single output), and MIMO (multiple input multiple
output). The structure diagram of the Mamdani algorithm in Figure [2] is an ex-
ample of a MISO structure. In Figure 2| input variables are on the left, inference
algorithm is in the middle, and output variables are on the right. Obviously, the
fuzzy controller in the figure is a MISO structure with four inputs and one out-
put. The structure of the fuzzy controller is determined according to the input and
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output variables of the actual problem. In addition, as the input variables in the
fuzzy controller increase, the subjective arbitrariness becomes larger. Setting fuzzy
rules is also more difficult than ever, and the algorithm is cumbersome and not pre-
cise enough, so the input variables of the fuzzy controller should be appropriately
selected.

3.1.2 Fuzzification of Input Variables

Input fuzzification is the first step to realize fuzzy control. Fuzzification is the process
of converting the exact value of input into the corresponding value of fuzzy language
variable, which is a fuzzy set. For example, speed can be divided into “fast”, “nor-
mal”, “slow” and other fuzzy sets according to the size of the speed. Therefore, the
fuzzification method is the transformation method from precise quantity to fuzzy
set. The common fuzzy methods include the classification fuzzy set method, the
membership degree of the input point is 1, the single-point fuzzy set method and
the membership degree value method. Because the classification fuzzy set method
is simple and practical, it can be used to divide the fuzzy level directly according
to the numerical value. Therefore, this paper adopts the classification fuzzy set
method, according to the meaning of each variable, according to the value of several
fuzzy sets. Each fuzzy set represents a certain degree of the variable, which can be
represented by letters VS (very short), S (short), L (long), etc.

In 1965, the American professor L. A. Zadeh first published a paper entitled
Fuzzy Sets [31]. It pointed out that if there is a number A(z) € [0, 1] corresponding
to any element z in the field U, then A is called the fuzzy set on U, and A(x) is
called the membership of z to A. When z varies in U, A(z) is a function, called a
membership function of A. The closer the membership of A(z) is to 1, the more
belongs to A, and the closer A(z) is to 0, the less = belongs to A. The degree of
membership is expressed by the membership function of the interval [0, 1]. There-
fore, the selection of membership function is an important step in the process of
fuzzification. Each fuzzy set needs to be expressed by membership function and
converted into membership value. The common methods to determine member-
ship functions include intuitive methods, fuzzy statistics, fuzzy distribution, binary
comparison ordering and direct grading by experts and scholars. Figure [3] shows 5
fuzzy sets divided by hierarchical fuzzy set method, namely [VS, S, M, L, VL]. The
Y-axis in the figure is the membership degree, and the range is [0, 1]. The X-axis is
the argument field of variables [0, 8]. According to the above principle of maximum
membership, it can be seen from the figure that element 2 is within the scope of the
three fuzzy sets of VS, S and M, but the membership degree in S is the highest, so
element 2 belongs to the fuzzy set of S.

Membership functions can be continuous or discrete, continuous membership
functions are more accurate, discrete membership functions are more intuitive. Fig-
ure [3 shows four membership functions, among which, the membership functions of
VS fuzzy sets are ZMF, S and L fuzzy sets are triangular, M fuzzy sets are Gaussian,
and VL fuzzy sets are SMF. SMF and ZMF only need to determine the starting and
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Figure 3. Example of membership function diagram

ending points of the fuzzy set interval. The two common membership functions are
Triangular and Gaussian. The membership function of the triangle can be deter-
mined by the three parameters a, b and ¢, and the shape is determined by its slope.
Its distribution is shown in Equation ().

x—a/b—a, fa<z<b,

flz) = { (1)

x—c/b—ec, ifb<z<ec

The Gaussian membership function can be determined by ¢ and ¢ parameters.
Since the Gaussian function is continuous and differentiable, its distribution is shown
in Equation (2)).

fla) = exp [~(z = ¢)*/0”] . (2)

In the input fuzzification, for example, [a, c] in the triangular membership func-
tion is the range of each fuzzy set, while a, b and ¢ determine the distribution of
membership function. Therefore, the selection of membership function parameters is
the most important. However, when setting parameters, they are generally selected
subjectively based on experience, which is not reasonably enough.

3.1.3 Fuzzy Rules

According to the different arrangement and combination of fuzzy language variables
of fuzzy controller, a large number of fuzzy conditional statements can be consti-
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tuted, which is what we call fuzzy control rules. Fuzzy rules are generally established
based on the experience of experts. The control rules contained in the fuzzy rule
base are the embodiment of the transition from the actual control experience to the
fuzzy controller, and also reflect the thinking mode of manual control. Fuzzy rules
are designed by people subjectively, and the design needs to be tested and com-
pared repeatedly to reduce the subjective factors as much as possible. For example,
a two-dimensional fuzzy controller has the following rules.

R: if Xjis A, and X5 is B, then Y is C

where X and X, are input variables, Y is output variable, A, B and C are fuzzy sets,
and R stands for a rule, which means that when the value of X; belongs to set A and
the value of X5 belongs to set B, the value of Y belongs to set C. Only by setting the
appropriate control rules the control strategy in the operator’s mind can be better
reflected, and the satisfactory control effect can be achieved. But the fuzzy rule is
artificial, there is an error. Therefore, PSO is used to optimize fuzzy rules in the
following paper, and the fuzzy rule combinations with the highest correlation with
the historical number of accidents are screened out from the randomly generated
rule library. This does not only minimize the influence of human factors, but it also
makes the fuzzy rules of screening more reasonable.

3.1.4 Defuzzification

Fuzzy reasoning results are generally fuzzy values. The process of converting a fuzzy
value to an exact value is called defuzzification. The most common methods are
maximum membership, center of gravity, median and weighted average. The center-
of-mass method is more sensitive than other methods, and small changes in the
input variables can be reflected in the output variables. Therefore, the method of
center of gravity is selected to solve fuzziness. The barycenter method is to take the
barycenter of the area enclosed by the curve of membership function and abscissa
as the final output value of fuzzy reasoning. Its formula is shown in Equation .

B Ji v, do

[ u,dv (3)
V v

Vo

where v is the abscissa, u,(v) stands for membership function, and fv u, dv repre-
sents the area bounded by the membership function and the abscissa. The process
of using the fuzzy controller to calculate the independent underwriting factor is as
described above. After inputting the pricing factor, after fuzzification, fuzzy reason-
ing, and defuzzification, the result obtained is the independent underwriting factor
to calculate the premium.
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3.2 Description of Particle Swarm Algorithm

3.2.1 Parameter Adaptive Particle Swarm Algorithm

Particle Swarm Optimization is an intelligent algorithm that simulates the predation
of birds. It was proposed by Kennedy and Eberhart in 1995 [32]. Today, after more
than a decade of development, PSO theory has become one of the important topics
discussed at the international conference on evolutionary computing and has been
widely applied in many fields.

The mathematical description of the standard PSO algorithm is as follows: set
the search space as D dimension, the population size as IV, the position and velocity
of particle 7 are the vectors X; = (X1, Xio, ..., Xip) and V; = (Viy, Via, ..., Vip), re-
spectively. The best position gbest experienced by the i*! particles P; = (P, Py, . . .,
P,p), that is, the individual optimal value. The best position experienced by the
whole particle swarm is G = (G1, Gs,...,Gp), that is, the global optimal value.

The formula for updating the position and velocity of particle ¢ at ¢t + 1 time is
shown in Equations and .

Xigh = Xig+ Vi, (4)
Vi = wVig+ a1(Py = Xig) + e2(Gg = Xiy)- (5)

In the formula, ¢; and ¢y are the learning factors of the particles, and w is the
inertia weight. For inertia weight coefficient, the appropriate value can effectively
balance the global and local optimization ability. The linear decline formula of iner-
tial weight can make the algorithm search a wider range at the initial stage, and then
quickly gather in the optimal solution region at the later stage, which can improve
the optimization accuracy. After a series of experiments on test functions, Eberhart
and Shi B3] came to the conclusion that when the strategy of linear decline of iner-
tial weight from 0.9 to 0.4 was adopted, a good optimization effect could always be
obtained. The linear decline formula of inertial weight is shown in Equation (@) [22].

W= ws — (ws —we) (6)

tmam

where wy and w, are the initial and final inertial weights of w, ¢ is the number of
iterations, and t,,,; is the maximum number of iterations. For the learning factor
¢1 and ¢y, namely the acceleration coefficient, its value also has a great influence on
the performance of the algorithm. Ratnaweera et al. [34] studied the acceleration
coefficient and proposed a time-varying acceleration coefficient, as shown in Equa-
tions @ and . This strategy enables the algorithm to focus on learning its own
gbest. This strategy enables the algorithm to focus on learning its own [23].

Cl(t) = Cif =+ (Cls - le)t/tmaxa (7)
co(t) = cap + (Cas — 2p)t/tmaa (8)
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where, cif, c15, cof and cy, are fixed values, and the acceleration coefficient changes
with the increase of iteration times. Experimental results show that the algorithm
achieves good performance when ¢; decreases from 2.5 to 0.5 and ¢, increases from
0.5 to 2.5.

The basic flow of PSO is described below.

Step 1. Particle swarm parameter initialization, particle swarm particle position
and velocity initialization.

Step 2. The fitness values of all the initialized particles in the population are cal-
culated according to the fitness formula. The positions and fitness values of the
currently initialized particles are stored in gbest (individual optimum). Stores
the position and fitness value of the particle with the best fitness value among
all initialized particles in zbest (global optimum).

Step 3. Update the parameters, update the inertia weight according to formula @,
update the velocity and position of each particle according to formulas @
and ; update learning factors by formulas and ‘

Step 4. Calculate the adaptive value of each particle in the new population.

Step 5. Compare the fitness of each particle in the population with gbest fitness.
If the current particle fitness value is better, update zbest with the particle’s
current position and fitness value.

Step 6. If the termination condition is met and the maximum number of iterations
is reached, output zbest and terminate the algorithm; otherwise, jump back to
Step 3.

3.2.2 Parameter Adaptive Simulated Annealing Particle
Swarm Optimization Algorithm

The basic idea of simulated annealing algorithm (SA) was first proposed by N. Me-
tropolis in 1953, which inspired the principle of solid annealing. The basic idea is that
the objective function value is the internal energy E, and the solution of each solution
space has a corresponding internal energy value E. A random perturbation to the
current solution in each iteration is applied. Metropolis acceptance criterion is used
to decide whether e 2F/T accepts the new solution by calculating whether it is larger
than € (¢ is [0, 1] random number). In the particle position update process, simulated
annealing and Metropolis criteria were introduced to form a new adaptive simulated
annealing particle swarm optimization (SAPSO) algorithm. The algorithm uses the
Metropolis criterion to determine whether it accepts the new solution during the
location update process, so that each particle adds a judgment process after each
move. The algorithm keeps the particle population a certain diversity, enhances the
ability to jump out of the local optimal solution, and improves the global search
ability of the algorithm.
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The Metropolis criterion is the core of the simulated annealing algorithm. In
the iterative process, it is necessary to judge whether to accept the transition from
the current solution to z the new solution z’ according to the probability. The
calculation formula of Pr is shown in formula @D:

(f(=) = f(:v))

- ©)

Pr =-exp <
where, x and 2z’ represent the old solution and the new solution when the control
parameter is T, respectively; f(z) and f(z’) represent the non-negative objective
function of x and z’, respectively. The control parameter T will decrease with
the number of iterations, so that the probability that the algorithm accepts the
deteriorated solution is continuously reduced and finally converges to the global
optimal solution.

For the above-mentioned parameter adaptive standard particle swarm optimiza-
tion algorithm, its inertia weight and learning factor are closely related to the num-
ber of iterations, and there is a regular linear change as the number of iterations
changes. However, the number of iterations is only a judgment condition, and can-
not provide feedback on the specific situation of the particle swarm optimization
process. For this reason, on the basis of the SAPSO algorithm, the parameters
are adjusted purposefully, effectively and dynamically according to the distance be-
tween particles and the changes in fitness values, so as to achieve the optimal solution
faster.

1) Variation in the direction of movement. The direction of motion refers
to the direction of the particle velocity. As shown in the updated formula @,
the new particle position is the old particle position plus the moving speed.
Movement direction variation means that the new particle position can be added
or subtracted from the old particle position, and the movement direction of the
particle swarm can be controllably changed according to the diversity of the
particle swarm. The formula is shown in Equation ([10)).

Xig ' = X+ (=1)7 % Vg™ (10)

(—1)¢ in formula is a directional coefficient of particle velocity, which is
used to change the direction of particle movement. The ¢ is an integer, and
the odd and even numbers are changed according to the population diversity
of the particles and the distance of the particles. Whenever the particle swarm
reaches a local optimal solution, the direction coefficient will change the parity.
The particle swarm will move in the opposite direction and find another local
optimal solution globally, which enhances the search capability of the algorithm
while ensuring the quality of the optimized solution.

2) Adaptive inertial weight. Using the distance between each particle and

the optimal particle to adjust the inertia weight can effectively quickly gather
and maintain the diversity of the population, and improve the optimization
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ability of the algorithm. The distance formula of particles is shown in Equa-
tion . The positions of particle ¢ and particle 5 and D dimensional vectors
Xi = (Xﬂ, Xig, ey X1d> and X] = (le, XJQ, . 7de)7 respectively, f(Xz) and
f(X;) are the fitness values of the two particles, and D(i,j) is the distance
between the particle and the particle j.

d

D(i, j) = Z(l"zk —x)? + (f(Xa) — f(X5))* (11)

k=1
The maximum distance between particles can be defined as:

Dipar = max D(i, 7). (12)
If N is the number of particles, the average distance between particles is the

quotient of the sum of the spacing of all pairs of particles and the number of
particles, which can be defined as:

N N ..
Daverage = 3 3. D%’j ), (13)

Jj=1 =1

The average distance between a particle and the optimal particle in the popu-

lation can be defined as: v

Daver = »_, D(i, py).- (14)

=1

When the particle is far away from the optimal particle, the particle needs to
have a greater inertia weight. This helps to search for the global optimum and
converge faster. If the particle is closer to the optimal particle, it should be
given a smaller inertia weight. The weight update formula is as Equation ([15]).
This formula can be used to calculate the inertia weight of each particle in the
algorithm, and after substituting the updated formula, it can fine-tune each
particle generated in the next iteration. Greatly improve the quality of the next
particle population and improve the optimization speed.

Wmaz, D(X’pg) > Daverage»

Wrnin + (wmax — Wpin In (1 + (6 - 1)#)) X else.

average

w =

(15)

3) Adaptive learning factor. The strategy of automatically adjusting the learn-
ing factor according to the fitness of each particle. The main idea is to determine
the value of the learning factor based on the relative difference between the fit-
ness of each particle and the optimal fitness of the individual and the optimal
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fitness of the group. The learning factor adjustment formula under this strategy
is shown in Equation ({16]).
— k[P )
= kil f(pi)

ty_
Cy = kﬂf@;)(pj)(?g) ‘

)

(16)

In formula , ¢1 and ¢y are the learning factors of particles. f(z!) is the
fitness value of the position of particle 7 at time ¢, f(p;) is the fitness value of the
optimal solution of individual particles i, and f(p,) is the fitness value of the optimal
solution of all particles. ki, ko are the learning factor weight coefficients. It can be
seen from the two formulas that the greater the difference between the fitness value
of the particle and the optimal particle fitness value, the greater the learning factor;
the smaller the difference between the fitness value of the particle and the optimal
particle fitness value, the smaller the learning factor. According to the fitness value,
the learning parameters can be adjusted in real time, and the fuzzy controller can
be optimized more efficiently.

The basic process of parameter adaptive simulated annealing particle swarm
optimization algorithm is as follows:

Step 1. Initialize the particle swarm parameters, initialize the position and velocity
of the particle swarm,;

Step 2. Calculate the fitness value of all initialized particles in the population ac-
cording to the fitness formula, store the position and fitness value of each particle
currently initialized in the of each particle, and store the position of the particle
with the best fitness value among all initialized particles. And the fitness value
is stored in zbest;

Step 3. Parameter update, according to formula to update the inertia weight,
formula to update the control parameter temperature, and formula to
update the learning factor;

T =1f(py)] x (2)"- (17)

In the formula, ¢ is the temperature control parameter, and the value is generally
[1.01,1.3].

Step 4. Update the speed and position of each particle according to formulas ([10)
and ;
Step 5. Calculate the fitness value of each particle in the new population;

Step 6. Compare the fitness value of each particle in the population with the fitness
value of gbest. If the current particle fitness value is better, update gbest with
the particle’s current position and fitness value;

Step 7. Determine whether to accept new solutions according to Metropolis crite-
ria;
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Step 8. If the termination condition is met, output zbest and terminate the algo-
rithm, otherwise skip back to Step 3.

3.3 Particle Swarm Optimization Fuzzy Controller

In the above description, the parameter selection of membership function is sub-
jective and arbitrary, so the higher accuracy of fuzzy controller results cannot be
guaranteed. PSO is used to search intelligently and find the most suitable member-
ship function in the simulation process, which can improve the accuracy.

The membership function of PSO firstly divides the input quantity into the
universe of discourse. It is not necessary to be accurate to the range of each fuzzy
set, but only to determine the number of fuzzy sets of each variable. As shown in
Figure [d] the variable is divided into 5 fuzzy sets such as HS, but the fuzzy number
x; is unknown.

HS S C L VL
/\
N\ NG NN
AN AN . .
a; a, as g ds Ug ©
U, X1 Xz X5 Xa Xs

Figure 4. Fuzzy number display diagram of membership function

Secondly, when the position of the particle is expressed as the membership pa-
rameter, a certain transformation is required. The particle swarm first generates
m random numbers ay = [ag1,apg; - - -, Aom] from 0 to 1 randomly, where m rep-
resents the number of membership parameters. In order to ensure the complete
representation of membership function, the parameters of the same variable must
satisfy z; < z; (i < j), that is, the fuzzy number increases with ¢. Multiply each
random number by the maximum interval @,,,,, which is the maximum value of the
difference between adjacent parameters of the membership function (z;41 — z;), and
set its size according to the scope of the universe of discourse. The result is the ran-
domly generated parameter interval a = [a1, ag, . . ., an), as shown in Figure E| The
former fuzzy number plus the parameter interval equals the latter fuzzy number,

and the formulas are shown in Equations and .

a; = (aOi)mawy (18)
1=1,2,...,m,
T1 = a1,
To = X1 + Gg;
T3 = X9 + as; (19)

T = Tm—1 + Q-
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Finally, the generated parameters are put into the position of the particle, and
the program is run to generate the membership function. Add to the fuzzy controller
to generate a new fuzzy controller. The accuracy of fuzzy controller is verified in
simulation and the optimal membership function is found by PSO.

3.3.1 Fuzzy Rules of Particle Swarm Optimization

The number of fuzzy rules is determined by the number of input variables and the
number of fuzzy sets of variables. The product n of the fuzzy sets of input variables
is the number of fuzzy rule bars, the number of fuzzy sets of output variables is,
then the combination of fuzzy rules has n™ species. PSO is not only inefficient and
computationally intensive, but also easy to get into local optimal solution. In order
to improve the efficiency, fuzzy rules are synthesized by using fuzzy rule weights,
and then PSO weights are used to select the optimal combination of fuzzy rules.

First, the digitization of fuzzy rules. Each input variable has a different fuzzy
set, representing different degrees of driving. For example, the monthly mileage
is divided into five fuzzy sets according to the length of the mileage, which are
digitized in terms of 1 to 5, respectively. Where the number 1 means the mileage
is very short, and the number 5 means the mileage is very long. After all of them
are digitized, they are arranged in the form of fuzzy rules in the fuzzy controller
to form a matrix combination of n x 5. It covers all combinations of fuzzy sets of
five variables, and each fuzzy rule represents a different combination of fuzzy sets.
The autonomic underwriting coefficient is calculated through five driving behavior
reasoning, which is essentially seven fuzzy sets of the comprehensive influence of
input variables distributed to output variables.

Then, the weight is given and the case of the output variable is calculated. Give
each input variable a weight. The weight represents the influence on the result,
and it also represents the risk level of the driving behavior in the driving process.
For each variable, the weight is multiplied to represent the number of the fuzzy set,
and the sum of the fuzzy set combinations of each row is calculated, as shown in
formula . The total value of each combination represents the comprehensive risk
size of five driving behaviors, and then the total value is equally distributed to seven
fuzzy sets, resulting in a complete set of fuzzy rules, namely the matrix combination
of n x 8.

5
Si:Zhijijv 1=1,2,...,m. (20)
j=1

In formula (20), s; represents the total value calculated by each fuzzy set combina-
tion, w; represents the weight, and h;; represents the fuzzy set combination.
Finally, PSO optimizes the fuzzy rule weights of input variables. The weight
of each input variable closely affects the fuzzy rule, and every small change will
affect the entire fuzzy rule. By constantly adjusting the weights through the PSO
algorithm, each weight combination will generate different fuzzy rules. The fuzzy
rules run in the fuzzy controller to obtain the results, and the calculated adaptive
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values feedback the advantages of the weight combination. The specific process is
shown in Figure 5

4 EMPIRICAL ANALYSIS
4.1 Design of Fuzzy Controller

4.1.1 Select the Pricing Factor

In the actual driving process, driving safety is often affected by a human, car, road
and traffic environment. When the input parameters of fuzzy controller are too
many, the calculation precision will decrease. In order to facilitate calculation and
operation, it is necessary to select appropriate representative pricing factors. Among
the multifarious impact factors, the selection of representative pricing factors can
well reflect the driving risk of customers and shape the accurate rate determination
coefficient. It is the basic work to build the pricing model of auto insurance, and it
is also an important guarantee to calculate the premium accurately. By consulting
a great deal of literature, this paper selected five representative pricing factors,
including monthly driving mileage, violation times, night driving time, over speed
driving time proportion and sharp turn times, and then it is explaining and analyzing
the pricing factors.

1) Monthly mileage. Monthly mileage refers to the total monthly mileage of the
customer in a given month. The driving mileage of a driver is a basic factor
affecting driving safety. Through the study, it is found that the traffic accident
rate will increase with the increase of drivers’ mileage and time. So the longer
the mileage, the greater the risk, the more representative it is as one of the
pricing factors.

2) Number of violations. The number of violations is the number of violations
of the customer’s driving in a year. According to statistics, illegal driving is one
of the main factors inducing road traffic accidents. Traffic accidents caused by
illegal driving account for more than 50 % of highway traffic accidents and more
than 70 % of human casualties [6]. Therefore, illegal driving is taken as one of
the pricing factors.

3) Driving time at night. Night driving time refers to the total time spent
driving at night. Insufficient illumination on the road at night, blinding caused
by vehicle high beam lights, and decreased night vision of human eyes under
dynamic conditions will lead to decreased visibility and slow response of drivers
at night. In addition, nighttime is a period of frequent accidents, which makes
driving at night risky. Therefore, nighttime driving time is taken as one of the
pricing factors to measure the risk.

4) Proportion of speeding time. The proportion of speeding time refers to
the proportion of driving time to total driving time at a speed of more than



UBI Auto Insurance Pricing Model Based on Optimized Fuzzy Controller

Start

Generate
randomnumbers to
calculatefuzzy rule

weights

¥

Synthesis of fuzzyrules
using fuzzy rule weights

v

Randomly

generatafuzzy numbers
formembership function

v

Combining fuzzy

rulesand fuzzy numbers

intoparticle swarm
locatioms

v

Y

Particle swamm

parameter initialization,
velocity initialization

Calculate
individual extremes
and
global extremes

Maximum number of

iterations

Update speed
and position

v

Output the
optimal solution

1097

Feasible solution
from particle
swarm
optimization

v

Fuzzy rules
and membership
functions

v

Fuzzy controller

Sample data entry

v

Fuzzy control
output

Historical number
of accidents

Corelation test

Choose the
most relevant

Figure 5. Flow chart of PSO optimized fuzzy controller



1098 X. Wang, W. Liu, Z. Ou, C. Yan, M. Qi, W. Jia

120km/h. Speeding is one of the main causes of traffic accidents, the accident
rate and the degree of danger will multiply with the increase of driving speed.
And when driving at high speed, the driver’s field of vision narrows and his
ability to react decreases. To sum up, one of the pricing factors is the proportion
of speeding time.

5) Number of sharp turns. The number of sharp turns is the number of sharp
turns in the course of the vehicle, it is one of the “three urgent” behavior factors.
Due to the limited number of pricing factors, sharp turn is taken as the top
representative of the “three urgent” behavior factors. Sharp turning behavior
will not only lead to vehicle wear and tear, vehicle easy reveals a hidden trouble,
and it is easy to roll and cause a collision. So the number of sharp turns is taken
as one of the pricing factors.

This paper comprehensively considers the driving habits of customers and selects
five indicators from the four aspects of driving distance, driving time, driving envi-
ronment and driving behavior. As the risk factor influencing the self-underwriting
coeflicient, the index is input into the fuzzy controller to measure the driving risk
level of the customer.

4.1.2 The Setting of Membership Function

Based on the reasoning calculation of the pricing factor, the fuzzy controller obtains
the autonomous underwriting coefficient. Therefore, the pricing factor monthly driv-
ing distance, the number of violations, night driving time, the proportion of speeding
time and the number of sharp turns are taken as the input parameters X, which
are denoted as X = [X7, Xo, X3, X4, X5] in turn. The self-underwriting coefficient is
taken as the output parameter Y. The value range is set as the discourse domain,
and the binned fuzzy set method is used. Refer to the scoring model table in the
article “Research on the UBI based auto insurance rate determination model and
method in the context of Internet of Vehicles” by Zhu [5]. Blur X and Y into fuzzy
subsets, as shown in Table [T}

. Discourse  Fuzzy Membership Function

Variables Domain Subset Type

X, [0, 3000] {VS, S, M, L, VL} zmf + triangle + smf
Xo [0, 4] {S, M, JL, L} zmf + triangle + smf
X3 [0, 20] {S, M, JL, L} zmf + triangle + smf
Xy [0,7] {S, C, L} zmf + triangle + smf
X5 [0, 65] {S, C, L} zmf + triangle + smf
Y [0.85,1.15] {HS, S, JS, C, JL, L, VL} triangle

Table 1. Fuzzy subsets of variables

In the selection of membership function, triangular membership function is
mainly used. Because the triangle function is simple and easy to use, with a strong
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sensitivity and wide applicability, it can better reflect the differences between the
grades. The fuzzy toolbox in MATLAB software is used to set the initial member-
ship function. The pricing factor’s domain is all positive, so ZMF type membership
function and SMF type membership function are used to process the boundary of the
domain, representing that the membership degree beyond the scope of the domain
is regarded as 1. Using the fuzzy toolbox in MATLAB, the membership function
curve of the set pricing factor and independent underwriting coefficient is shown in
Figure [6}

4.1.3 Fuzzy Rules

This paper establishes a five-dimensional fuzzy controller with hundreds of fuzzy
rules. PSO is to select reasonable fuzzy rules from the fuzzy rule base. In order to
improve the efficiency of fuzzy rules of PSO and to construct more reasonable fuzzy
rules, fuzzy rule weights are selected to construct fuzzy rules. Firstly, fuzzy rule
digitization. In the MATLAB software environment, the fuzzy rules of letter form
cannot be recognized by the program, so it needs to be converted into numbers. For
example, in Table , the fuzzy subset of monthly mileage is set as {VS = 1,5 =
2, M =3,L =4, VL = 5}, and the other five factors are also digitized.

Secondly, the weights of fuzzy rules are determined. For this reason, this paper
refers to the weight calculated by AHP-EW in [B] and takes it as the initial solution,
with the weight wy = [0.1183,0.1934,0.1615,0.4024, 0.1244] [5].

Finally, fuzzy rules are constructed. Formula is used to calculate the sum
of each fuzzy rule. Each corresponds to a fuzzy subset of Y, whose fuzzy subset
is digitized to 1 to 7. The determinant of 960 x 8 is formed. Columns 1 through
5 represent the five pricing factors, respectively. The sixth column represents the
independent underwriting coefficient. Each row represents a combination of fuzzy
subsets. MATLAB software was used to write the program, the fuzzy controller was
established, and the file abcf.fis was generated after saving.

4.2 Optimization of Fuzzy Controller Based on Particle Swarm
4.2.1 Initialization

Using environment MATLAB software, the parameters of PSO are set as follows:
population is 100, dimension is 960, number of iterations is 100. For the learning
factor, c1y in ¢ is 2.5 and ¢ is 0.5; cop in cp is 0.5, cgy is 2.5, the inertia weights
ws and w, are 0.9 and 0.4, and the particle position and velocity ranges are [0.1,7],
read abcf fis.

Parameter adaptive SAPSO algorithm parameter settings are as follows: popu-
lation is 100, dimension is 960, number of iterations is 100. The initial values of the
learning factors ¢; and ¢y are both 2, the learning factor weight coefficients k; and
ko are set to 0.6, the inertia weight w is set to 0.8, the particle position and velocity
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range are both [0.1,7], and is set to 0. The temperature control parameter value is
1.3, read into abcf fis.

In this paper, the membership function and fuzzy rules are optimized by PSO
algorithm, and the parameters to be optimized are 973. Where the fuzzy number
to be optimized in the membership function is 13 and the fuzzy rule is 960. The
details are shown in Table Bl

Price Factors to Be Number of Fuzzy Number of Parameters
Optimized Subsets to Be Optimized
Monthly mileage 5 4
Night-driving time 4 3
Proportion of speeding time 3 3
Number of sharp turns 4 3

Table 2. The membership function of each pricing factor

Since the scope of the number of violations of the factor is small, the membership
function can be optimized in less space after it is divided into four fuzzy subsets. In
order to reduce the task of optimization, membership function can be set directly.
The membership functions of the other four pricing factors have different fuzzy
numbers, among which the left and right endpoints of the domain range are also
fuzzy numbers of each factor, which are determined in the membership function. By
comparing the figure in Figure [l] it can be seen that the remaining fuzzy numbers
after removing the endpoints need to be optimized, among which the membership
function of the ratio of proportion of speeding time is special, and the fuzzy number
to be optimized is set as 3.

4.2.2 Fitness Calculation and Data Processing

The sample data came from Zhu’s work [5] on the UBI based auto insurance rate
determination model and method under the Internet of vehicles environment, with
100 customers’ sample data. The sample included data on monthly mileage, number
of violations, night-time driving time, percentage of speeding times, number of sharp
turns and number of historical accidents. The data of 60 customers were selected as
the training set and the remaining 40 as the test set. Some users’ driving behavior
data examples are shown in Table [3|
There is a dimensional difference between the indicators of the index system,
so normalization needs to be performed. The specific normalization operation is
implemented by the mapminmax function, and the implemented formula is shown
in Equation (21)):
y = (yma.x ymln) * (I ‘Lmln) + Ymmin- (21)
Tmax — Tmin
Among them, = in the formula is the feature vector that needs to be normalized,
Tmax and T, respectively represent the largest and smallest vectors in D, 9. and
Ymin correspond to the largest and smallest values in the interval range after the
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User Monthly  Proportion of Time Higher Rapid  Night-Driving
Mileage (km) Than 120km/h (%) Acceleration Time (h)
1 84 0 0 0
2 362 0 1 0.9
3 1137 0.66 1 0
4 870 0.48 4 0
5 754 1.02 2 1.1
6 1180 0.63 3 4.3
7 1240 1.24 13 6
8 574 3.04 6 1.6
9 1710 0.95 34 7.3
10 1185 4.86 4 6.1

Table 3. Some examples of user driving behavior data

data is normalized. At this time, all the values in the original stock characteristic
data are converted into the interval [0, 1]. Such processing can avoid the dimension
between different characteristic attributes without affecting the internal relationship
of the same attribute value.

When the new fuzzy rule and membership function constitute the fuzzy con-
troller, the training set data is imported into the fuzzy controller to obtain the
autonomous underwriting coefficient. Works [B] and [35] use the same data to score
driving behaviors using AHP-EW and gray correlation-level analysis respectively.
This article draws on the driving behavior score data in the two articles as the basis
for judgment. Since the autonomous underwriting coefficient is inversely propor-
tional to the driving behavior score, the fitness value is set as the absolute value
of the correlation between the autonomous underwriting coefficient and the driving
behavior score. The fuzzy rule with the largest fitness value is selected as the opti-
mal solution. Then, the correlation analysis between the number of historical risks
and the independent underwriting coefficient is made, and the correlation degree is
calculated using the function in MATLAB software.

4.3 Result Analysis

Based on MATLAB software, this paper runs particle swarm algorithm to optimize
the membership function and fuzzy rules. The driving score in [35] is included in
the fitness function as the criterion. The driving scores of work [5] were compared as
a control group. The following is a comparison of fuzzy rule construction methods,
a comparative analysis of weighting algorithms, and correlation testing. For ease
of listing, in the following table, parameter adaptive PSO is abbreviated as APSO,
and parameter adaptive SAPSO is abbreviated as ASAPSO.
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4.3.1 Comparative Analysis of Fuzzy Rule Construction Methods

Fuzzy rules are generally set artificially in fuzzy controllers based on the expert
experience or design concepts. In the algorithm, a random array that conforms
to fuzzy rules is generated by a random group function. Due to the high dimen-
sionality of the pricing model, there are as many as 973 parameters to be opti-
mized for the particle swarm. In order to simplify the calculation and optimiza-
tion process, this paper proposes a method of constructing fuzzy rules indirectly
using fuzzy rule weights, calculate the weight of each input variable, that is, the
weight of the fuzzy rule. The weighted average algorithm is used to construct fuzzy
rules based on the weights of fuzzy rules. Compared with direct generation, the
fuzzy rules constructed by this method are not only more regular and reasonable,
but also reduce a lot of randomness, and the optimized optimal solution is also
more representative. The two algorithms of adaptive PSO and parameter adap-
tive SAPAO are optimized by using two construction algorithms respectively. The
training set is used for optimization in the algorithm, and the test set is used for
comparative analysis of the optimal solution. The specific results are shown in
Table H

Construction Method APSO ASAPSO

Fitness 1 0.7589 0.7791
Test value 1 0.6572 0.6047
Relative error 1 13.40% 17.44%
Fitness 2 0.9293 0.9422
Test value 2 0.8962 0.9413
Relative error 2 3.56 % 0.09 %
Fitness difference 0.1704 0.1739

Table 4. Comparison of the results of two methods of constructing fuzzy rules (1 stands
for direct generation, 2 stands for use weight)

Table [ lists the comparison of the results of the two optimization algorithms.
From a longitudinal comparison, the fuzzy rules directly generated by the parametric
PSO algorithm optimization have a fitness 1 of 0.7580; the fuzzy rules composed of
optimized weights have a fitness 2 of 0.9293, and the fitness difference between the
two is 0.1704. Similarly, in the parameter adaptive SAPSO algorithm, the fitness
level 2 is higher than the fitness level 1. Through the relative error comparison,
the relative error 1 of the parameter adaptive SAPSO algorithm is 17.44 %, the
relative error 2 is 0.09 %, the error is greatly reduced, and the same is true for the
parameter adaptive PSO. Therefore, it is considered that the optimal fuzzy rules
generated by the weight construction fuzzy rules are more representative. Obviously,
in the optimization algorithm, the method of using weights to construct fuzzy rules is
better than directly generated fuzzy rules. Not only is the accuracy of the optimized
fuzzy rules higher, but also the stability under different data is better and more
representative.
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In a horizontal comparison, the performance of parameter adaptive SAPSO algo-
rithm is higher than parameter adaptive PSO under the same fuzzy rule construction
method. Regardless of the fuzzy rule generation method, the accuracy of the param-
eter adaptive SAPSO algorithm is higher than that of the parameter adaptive PSO.
Especially combined with the fuzzy rule method of weight formation, the stability
of parameter adaptive SAPSO is greatly improved. Oblique comparison found that
the adaptability of parameter adaptive PSO 2 is 0.9293, and the adaptability of pa-
rameter adaptive SAPSO 1is 0.7791. It can be seen that the method of constructing
fuzzy rules has a great influence on the results of the optimization algorithm. Using
weights to construct fuzzy rules can greatly improve the accuracy and stability of
the optimization algorithm.

4.3.2 Comparison of Algorithms for Determining the Weights of Fuzzy
Rules

There are many ways to determine the weight. This paper chooses five algorithms:
AHP, EW, GA, parameter adaptive PSO and parameter adaptive SAPSO algorithm
to determine the weights, and then construct fuzzy rules to obtain the optimal
solution. The specific results are shown in Table

Training Test Relative Experimental Control

Algorithm Set Set Error Data Set  Data Set Difference
AHP 0.7984  0.7438 0.0684 0.7841 0.8078 —0.0237
EW 0.8859  0.8562 0.0335 0.8783 0.8917 —0.0133
GA 0.7673  0.6014 0.2162 0.7162 0.7016 0.0146
APSO 0.9293  0.8962 0.0356 0.9193 0.9183 0.0011
ASAPSO 0.9422 0.9413 0.0009 0.9428 0.9439 —0.0011

Table 5. Comparison of the results of determining the weighting algorithm

In Table [5] five methods are used to determine the weight. Among them, AHP
determines the weight subjectively based on expert experience, and EW objectively
extracts the index weight based on driving data. The other three are all weighed
in the simulation of optimizing fuzzy rules. Through comparative analysis, it can
be seen that the weights determined by the APSO and ASAPSO algorithms are
more accurate, and the difference with the control data set is also the smallest, only
—0.0011. Among them, ASAPSO has the highest accuracy. It can be seen that the
algorithm has stronger optimization performance when optimizing fuzzy rules.

Figure [7] is the individual optimal solution diagram of the ASAPSO algorithm
during 100 iterations. It can be seen from Figure []] that the ASAPSO algorithm
regularly seeks the optimization up and down with the adaptation degree of 0.9
as the axis during the entire iterative process. During the whole iteration process,
the fitness value of most optimal individuals is above 0.86, and the quality of the
particle population is very good. It is the adaptive adjustment of parameters in the
optimization process that guarantees the population quality of each iteration. In
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Figure 7. Iterative diagram of parameter adaptive SAPSO optimization

the 22"¢ iteration, the global optimal solution was found to be 0.9422, which shows
that the optimization speed is relatively fast and the optimization performance is
strong. The motion direction variation of the algorithm makes it move backward
immediately when it finds a local optimal solution so as not to fall into the local
optimal solution, and obtain a larger exploration range and optimization space.

When optimizing fuzzy rules, the membership function is optimized simultane-
ously. The membership functions of four input variables are optimized by the fuzzy
numbers of 13 membership functions, which are monthly mileage, night driving time,
proportion of speeding time, and number of sharp turns. The details are shown in
Figure B

4.3.3 Correlation Test

In this paper, the driving score is used as the relevant data of the fitness function to
test its correlation. The driving score in [35] is used as experimental data, and the
correlation with the number of historical accidents is —0.5497. The driving score
in [5] is used as the control group data, and the correlation with the number of
historical accidents is —0.5593. The optimal fuzzy rules and membership functions
are screened out and substituted into the fuzzy controller to obtain the autonomous
underwriting coefficient. Using SPSS software to test the correlation between the
independent underwriting coefficient and the number of historical risks, the Pearson
correlation between the two is 0.5836, as shown in Figure [ Since the historical
number of risks are all integers, and the range of change is 04, individual differences
are too small, so the correlation with the independent underwriting coefficient is still
relatively high. This shows that the results obtained in this paper are reasonable
and the algorithm performance is relatively superior.
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After optimization by parameter adaptive particle swarm optimization, the op-
timal fuzzy rules and membership functions are added to the fuzzy controller. Part
of the obtained independent underwriting coefficients for 100 customers is shown in

Table B
Order Independent Underwriting Order Independent Underwriting
Number Factors Number Factors
1 0.8869 11 0.9490
2 0.9505 12 0.8995
3 1.0261 13 0.9760
4 0.8995 14 0.8515
5 1.1046 15 0.8995
6 0.8828 16 0.9250
7 0.8853 17 1.0239
8 0.9060 18 0.8995
9 1.0000 19 0.8605
10 0.9505 20 1.0510

Table 6. Independent underwriting coefficient for 20 customers

It can be seen from Table [f] that through the fuzzy controller, the driving infor-
mation of 20 customers is input to obtain the independent underwriting coefficient
of each person. In the customer’s UBI auto insurance premium calculation, different
independent underwriting coefficients are substituted into the premium calculation
formula to meet the differentiation and autonomy of auto insurance pricing.

In this chapter, stability is included in the screening conditions, and the im-
proved algorithm is used to process UBI customer data to obtain the fitness func-
tion. On the premise of ensuring stability, high-precision fuzzy rules are screened,
which avoids the over-optimization of fuzzy rules and the dependence on data. By
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comparing the results of various algorithms, it is found that the SAPSO algorithm
has high accuracy and good stability in processing UBI auto insurance data, so on
this basis, the optimal fuzzy rules are selected to construct a fuzzy controller. Fi-
nally, the optimal fuzzy controller is used to calculate the autonomous underwriting
coefficient for UBI auto insurance pricing.

5 CONCLUSION

Aiming at the precise pricing and premium differentiation of UBI auto insurance,
a pricing model using fuzzy controllers to calculate autonomous underwriting coef-
ficients is proposed. On the basis of this model, the fuzzy controller is optimized,
and a parameter adaptive SAPSO algorithm is proposed. This algorithm optimizes
the membership function and fuzzy rules of the fuzzy controller. Among them, the
weight composition method is designed to achieve the purpose of optimizing fuzzy
rules, and good results have been achieved. In the optimization process, the correla-
tion between the autonomous underwriting coefficient and the driving score is used
as the fitness value to judge the pros and cons of each set of fuzzy rules, and train
the optimal combination in the driving score data. In comparison with the results of
other algorithms, it can be seen that this algorithm has a higher accuracy. In order
to verify the stability of the algorithm, the comparison of the results of test samples,
training samples and control samples is studied. The correlation test was carried out
to prove the rationality of the model results. The experimental results show that
the parameter adaptive SAPSO algorithm can self-adjust the parameters during the
optimization process, so that the particle swarms produced are of higher quality,
with higher accuracy and stability. The UBI pricing model of parameter adaptive
SAPSO optimized fuzzy controller can realize accurate differentiated pricing. In the
future, we will add more pricing factors to improve the optimization algorithm and
optimize on the basis of big data to establish a more accurate and scientific auto
insurance pricing model.
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