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Abstract. Multinomial logit model (MNL) is by far the most widely used discrete
choice model that is widely used to explain or predict a choice from a set of two
or more discrete alternatives. MNL operates within a framework of the random
utility model (RUM) in which the utility of an alternative perceived by an indi-
vidual consists of two components: systematic component and random component.
The systematic component is usually defined as a linear function. However, prac-
tical decision processes involve complex considerations regarding various aspects of
the alternatives and individual which cannot be adequately represented by simple
linear models. To overcome the weakness of linear utility model and improve the
performance of MNL, in this paper, we propose a general deep multinomial logit
model (GDMNL) that takes advantage of both traditional MNL and deep learning.
In this model, deep neural networks are applied to extend MNL by learning differ-
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ent nonlinear utility functions of various alternatives. The empirical study in the
domain of transit route choice analysis demonstrates the validity and superiority of
the proposed model.

Keywords: Deep learning, discrete choice model, feedforward neural networks,
multinomial logit model, nonlinear logit model

1 INTRODUCTION

A fundamental concern of economics is understanding human choice behavior. Mod-
els or hypotheses are construed on the nature of decision processes, and are evaluated
in terms of observed behavior. Among the most important and well-known models
are discrete choice models (DCMs), which are widely used to explain or predict
a choice from a set of two or more discrete (i.e. distinct and separable; mutually
exclusive) alternatives. For example, a DCM may be used to explain decision such
as labor force participation, brand choice, whether to invest, traffic model choice,
and predict a recession.

DCMs operate within a framework of rational choice; that is, it is assumed that
when confronted with a discrete set of alternatives, people choose the alternative of
maximal benefit or utility. In the light of the random utility model (RUM) [1], the
utility of alternative j perceived by individual i, Uij, consists of two components:
systematic component, which we can observe, and random component, which we
cannot observe. Thus, the model is expressed as:

Uij = Vij + εij, i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J} (1)

where Vij is nonstochastic and reflects the “representitive” tastes of the population,
εij is stochastic and reflects the idiosyncracies of individual i in tastes for alterna-
tive j, N is the number of individuals, and J is the number of alternatives available
to N individuals. Note that an alternative available to one individual does not
necessarily apply to another.

Vij is typically defined as a utility function vij, which relates all relevant observed
factors to the utility level of the alternative. Part of the DCM is that we assume vij
is linear in all relevant parameters. Thus, vij can be broken down in terms of two
vectors:

vij(x ij) = βT
j x ij (2)

where xij = (xij1, xij2, . . . , xijk)
T is a vector that describes alternative j and/or co-

variates describing either the individual (e.g., sex, income) or some aspect related to
the decision context (e.g., whether the purchase is for personal use of the individual
or a gift), and βj is an alternative specific vector of equivalent dimension, made up
of fixed regression coefficients; it factors in how much each of the attributes of xij

relates to the overall utility level.
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The utility model based on linear assumption of vij can be easily implemented
and offer high interpretability about the contribution of different attributes of the
alternatives and individual. However, many researchers have pointed out that prac-
tical decision processes involve complex considerations regarding various aspects of
the alternatives and individual, e.g. threshold effects (utility changes only if a certain
value of an attribute is exceeded) or saturation effects (utility does not change if
a certain value of an attribute is exceeded), which cannot be adequately represented
by simple linear models [2, 3, 4].

Artificial neural networks (ANNs) have strong ability to approximate arbitrarily
complex nonlinear multivariate function and its derivatives with the desired level
of precision given a sufficient number of hidden units with nonlinear activation
functions [5, 6]. This inspired some researchers to use ANN or deep learning to
construct nonlinear utility model to capture nonlinear impacts in choice decision
making.

For example, to discover nonlinear effects on brands’ utilities in a flexible way,
reference [7] specified deterministic utility by means of a certain type of neural
net. By combining such a neural net with the most widespread choice model, the
multinomial logit, this work remains within the predominant utility-maximizing
framework.

Take another example, reference [8] proposed a deep choice model which extends
the classical conditional/multinomial logit model by learning a nonlinear utility func-
tion identically for each bidder within of the job posts via a pointwise convolutional
neural network. The pointwise property ensures that the same nonlinear function is
applied identically to each bidder, defining a fully connected neural network archi-
tecture that maps each individual bidder’s attributes to a scalar utility value.

Though all these works show that the extended logit model is superior to the cor-
responding conventional model in terms of some evaluation metrics such as negative
log-likelihood, they have two common shortcomings.

Depending on what the alternatives being described are, there may exist a set of
attributes that are common across all, or at least a subset of the alternatives. In such
cases, the analyst may choose to constrain the parameters in linear utility functions
(Equation (2)) across two or more of the alternatives to be the same and estimate
what are known as generic parameters. Linear utility functions may also be specified
to contain what are termed alternative specific parameter estimates. An alternative-
specific parameter is one which is allowed to differ across alternatives.

In the above-mentioned extended logit models using ANN or deep learning to
construct nonlinear utility model, all the attributes are common across all the al-
ternatives. Hence, the alternatives share the same feedforward neural network ar-
chitecture. However, in many domains, the alternatives should correspond network
architectures with different connection weights.

In addition, all the proposed models lack the regularization strategies that en-
code specific kinds of prior knowledge. In choice analysis domain, there exists crucial
prior knowledge about suitable values of the model parameters, which can be used
to design effective regularization strategies to improve the model performance.
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To overcome these two shortcomings, in this paper, we propose a general deep
multinomial logit model that takes advantage of both traditional MNL and deep
learning. In this model, deep neural networks are applied to extend the MNL
by learning different nonlinear utility functions of various alternatives. In addi-
tion, a regularization strategy of parameter tying is proposed, which expresses prior
knowledge of choice modelling about suitable values of the model parameters. The
experiment results demonstrate the validity and superiority of the proposed model
in terms of negative log-likelihood.

The main contributions of this paper are highlighted as follows:

1. Propose a general deep multinomial logit model (GDMNL), in which the alter-
natives can correspond different network architectures.

2. Design a regularization strategy of parameter tying using prior knowledge.

3. Propose a hybrid model that combines GDMNL and MNL to enhance inter-
pretability while maintaining high performance.

The rest of the paper is organized as follows. Section 2 reviews and discusses
related work. Section 3 presents the proposed GDMNL model. Section 4 presents
our experimental study demonstrating the validity and superiority of the GDMNL
model. Section 5 discusses the interpretability of the proposed model and proposes
a hybrid model that integrates the proposed model with the traditional MNL to
enhance the model interpretability. Finally, Section 6 summarizes our contributions
and outlines future research directions.

2 RELATED WORK

2.1 Accommodation of Nonlinearity by Employing
the Box-Cox Transformation

Box-Cox logit model [9] was proposed to accommodate nonlinearity in parameters
by employing the Box-Cox (BC) transformation.

Generalized Box-Cox logit model was proposed in [10], which yields better results
than Box-Cox logit model. It provides an estimable form of the universal logit and
brings logit analysis back into the fold of classical demand analysis where additive
separability of utility is not generally credible among close substitutes.

A Box-Cox mixed logit model was proposed in [11], which includes the esti-
mation of the Box-Cox exponents in addition to the parameters of the random
coefficients distribution. Probability of choose an alternative is an integral that will
be calculated by simulation. The estimation of the model is carried out by maximiz-
ing the simulated log-likelihood of a sample of observed individual choices between
alternatives.

These models can accommodate to some extent, but cannot accurately charac-
terize the nonlinearity in parameters.
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2.2 Representation of Nonlinearity in Choice Utilities

Various studies in discrete choice modelling directly represented nonlinearity in
choice utilities based on domain knowledge.

Market shares were calculated in [12] by formulating a mixed logit model based
on improved nonlinear utility functions taking different factors into consideration,
such as seat grades, fares, running time, passenger income levels and so on.

In order to dynamically adjust the operation plan of overnight D-trains with sky-
lights coordinately, transfer passenger demand was predicted by formulating a mixed
logit model based on nonlinear random utility functions for different transport modes
in [13].

In [14], advice was given about presenting interaction effects with a focus on dif-
ferent techniques that are well suited to a particular type of interaction effect, which
depends on the measurement level of the independent variables that are included in
the interaction (i.e., nominal or continuous).

The conventional MNL was extended to consider the interaction among the at-
tributes, and also the decision maker’s unique attitudinal character in [15]. The
adjustable parameters in the proposed models help to represent a fine range of
attitudinal effects. The proposed models hold potential in several applications
such as in studying the decision making behavior of a large set of population,
consumer behavior, or to predict the response of a population to a new norm or
law.

The advanced DCMs such as nested logit, probit, and mixed logit were extended
to consider the interaction in [16]. The adjustable parameters dedicated to represent
the attributes interaction, and the attitudinal character facilitate to take into ac-
count the real world factors in determining the choice probabilities, which otherwise
remain unconsidered in the conventional models.

An estimation of nonlinear logit panel data model with fixed effects was discussed
in [17]. There are two main estimators for such models: “unconditional maximum
likelihood” and “conditional maximum likelihood”. Application study was designed
to determine the most important factors affecting delayed completion of adjuvant
chemotherapy among patients with breast cancer and adjuvant chemotherapy im-
provement outcomes of patients with breast cancer to determine the relationship
between time to chemotherapy and outcome according to breast cancer.

Some studies proposed various domain-specific logit models with nonlinear util-
ity functions based on prospect theory [18]. For instance, reference [19] incorporated,
in a generalized nonlinear (in parameters) logit model, alternative functional forms
for perceptual conditioning (known as probability weighting) and risk attitude in the
utility function to account for travel time variability, and then derived an empirical
estimate of the willingness to pay for trip time variability-embedded travel time sav-
ings as an alternative to separate estimates of time savings and trip time reliability.
For another instance, reference [20] proposed cumulative prospect theory-based pas-
senger behavioral logit models for dynamic pricing and transactive control of shared
mobility on demand.
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The above studies have two disadvantages. First, the proposed approaches are
specific for application domain. Second, due to the complexity of decision-making
process in the real world, it is difficult for the proposed approaches to fully represent
the interaction effects, threshold effects, saturation effects, etc.

2.3 Generalized Approach to Capture Nonlinearity Using ANNs

Many generalized approaches to capture nonlinearity in DCMs using ANNs have
been explored in the past several years [21, 22, 23].

Hybrid neural network was applied in [24] to the classification problems by
integrating the variables selected by the statistical models and the outputs of sta-
tistical models with those of an ordinary network to create hybrid models that
might be more accurate than either of the techniques when considered individu-
ally.

A logit-ANN ensemble was proposed in [25] for mode choice modeling. The
proposed ensemble uses the technique of ANN to enhance/fine-tune the predictions
of the logit model and thus increases its accuracy. The mode choice behavior of the
travelers can be interpreted by using the logit model in the first phase of ensemble
development. The use of ANN model in the second phase of ensemble is expected to
improve the accuracy of the overall mode choice predictions as well as mode choice
predictions for each mode choice.

A deep learning-based travel behavior choice model was presented in [26]. The
proposed Residual Logit (ResLogit) model formulation seamlessly integrates an
ANN architecture into MNL. It extends the systematic utility function to incor-
porate nonlinear cross effects using a series of residual layers and using skipped
connections to handle model identifiability in estimating a large number of param-
eters.

The RBM (restricted Boltzmann machine) choice model was extended in [4] to
a deep choice model to deal with the features of items, which are ignored in the
RBM choice model. Deep learning was then used to extract latent features from
images and plug those latent features as input to the proposed model.

These hybrid models were designed to contain nonlinear interaction effects,
threshold effects, saturation effects, etc., using ANNs. However, all the model struc-
tures can only accommodate common parameters, not alternative specific ones. In
addition, they all lack the regularization strategies that encode specific kinds of prior
knowledge.

3 PROPOSED GDMNL MODEL

In this section, we will follow the problem specification presented in the introduction.
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3.1 Multinomial Logit Model

The probability that individual i chooses alternative j is given as the probability
that outcome j will have the maximum utility:

Pij = Pr(Uij > Uim,∀m ̸= j) = Pr(Vij + εij > Vim + εim,∀m ̸= j). (3)

The individual chooses the alternative which maximizes utility:

yi = argmax
j

Pij. (4)

Multinomial logit model (MNL) [27] is by far the most widely used DCM. It is
based on three hypothesis. The first hypothesis is the independence of the errors.
The second one is that each ε follows a Gumbel distribution. The last one is that
the errors are identically distributed. As the location parameter is not identified for
any error term, this hypothesis is essentially a homoscedasticity hypothesis, which
means that the scale parameter of the Gumbel distribution is the same for all the
alternatives.

The probabilities for a MNL are considerably simpler than other popular DCM
models, such as multinomial probit model (MPL), and can be computed in closed
form. It has been shown in many sources, such as [28], that for a MNL:

Pij =
ajexp(Vij)∑J
k=1 akexp(Vik)

, j ∈ {1, 2, . . . , J} (5)

where ak = 0, if alternative k is available to individual i; else ak = 1.
MNL is estimated by maximizing the following log likelihood function:

N∑
i=1

J∑
j=1

yij ˙logPij (6)

where yij is the choice indicator of individual i of alternative j (one if alternative j
is selected, else zero).

3.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs) [29, 6, 30, 31], also often called deep feedforward
networks, or neural networks, are the quintessential deep learning models. The goal
of a feedforward network is to approximate some function f ∗. These models are
called feedforward because information flows through the function being evaluated
from x, through the intermediate computations used to define f ∗, and finally to the
output y. There are no feedback connections in which outputs of the model are fed
back into itself.
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Input to the MLP is usually linear transformation (i.e. input × weight + bias),
but most of the real world data are nonlinear. So, to make that input nonlinear,
nonlinear activation functions are used to add nonlinearity into the network.

MLPs regained the attention of researchers due to the successes of deep learning,
and became extreme importance to machine learning practitioners. They form the
basis of many important commercial applications. For instance, the convolutional
networks (CNNs) used for object recognition from photos are a specialized kind of
feedforward network. In this study, we will construct the deep multinomial logit
model based on MLPs.

3.3 Model Architecture Design

The architecture of the proposed GDMNL is shown in Figure 1.
The input layer consists of J vectors. jth vector xj denotes the attributes of

alternative j and/or the attributes of individual i. Note that if j is not available to

i, x j =
⇀

0.

The unit H
(j)
1m of the first hidden layer is given by

H
(j)
1m = g(w (j)(1)T

m x j + b(j)(1)m ), 1 ≤ j ≤ J, 1 ≤ m ≤ B1 (7)

where g is a nonlinear activation function and B1 denotes the number of the units
of the first hidden layer.

The unit H
(j)
1m of the lth (2 ≤ l ≤ n) hidden layer is given by

H
(j)
lm = g(w (j)(l)T

m H
(j)
l + b(j)(l)m ), 1 ≤ j ≤ J, 1 ≤ m ≤ Bl (8)

where Bl denotes the number of the units of the lth hidden layer.
The (n+ 1)th hidden layer denotes the observed utilities of J alternatives per-

ceived by individual i. The unit Vj of this layer is given by

Vj = g(w (j)(n)TH
(j)
n+l + bj), 1 ≤ j ≤ J. (9)

According to Equations (7), (8) and (9), Vj can be regarded as a nonlinear utility
function which relates x ij to the utility of alternative j for individual i.

As in the multinomial logit model, a softmax-like function is applied to normalize
the vector (V1, V2, . . . , VJ)

T into a probability distribution (P1, P2, . . . , PJ)
T as the

output layer. Thus, the unit Pj is given by

Pj =
ajexp(Vj)∑J
k=1 akexp(Vk)

, 1 ≤ j ≤ J (10)

where ak = 0, if x k =
⇀

0; else ak = 1.
Note that if g is a linear function y = x, the proposed model is reduced to the

traditional MNL.
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Figure 1. The architecture of the GDMNL model
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3.4 Learning Algorithm

The proposed GDMNL is trained using maximum likelihood. This means that
the cost function is simply the negative log-likelihood, equivalently described as
the cross-entropy between the training data and the model output distribution
(P1, P2, . . . , PJ)

T.

We use a famous stochastic gradient descent method, Adam optimization [32]
as the learning algorithm, which is based on adaptive estimation of first-order and
second-order moments. The Adam method is computationally efficient, has little
memory requirement, invariant to diagonal rescaling of gradients, and it is well
suited for problems that are large in terms of data/parameters.

3.5 Model Regularization

A central problem in deep learning is how to make an algorithm perform well not
just on the training data, but also on new inputs. Many strategies to solve this
problem used in deep learning are explicitly designed to reduce the test error, which
are known collectively as regularization.

Most common regularization strategy may be putting extra constraints on a deep
learning model, such as adding restrictions on the parameter values. If chosen care-
fully, these extra constraints can lead to improved performance. These constraints
are usually designed to express a generic preference for a simpler model class in
order to promote generalization. However, sometimes we may need other ways to
express our prior knowledge about suitable values of the model parameters, such as
some dependencies between them. A common type of dependency is that certain
parameters should be close to one another, which is called parameter tying.

In linear utility functions, the generic parameters are constrained to be same
and the alternative-specific parameters should not be far from each other across the
alternatives. Similar to the constraint of the parameters in linear utility functions,
in the proposed deep model, the corresponding parameters associated to different
alternatives should be constrained to be close to one another. Hence, we use an L2

penalty as the constraint which is given by

||ωi − ωj||22 ≤ d, d ≥ 0 (11)

where ω(i), ω(j) denote the vectors formed by the parameters associated to x i and x j,
respectively.

When d = 0, ω(i) = ω(j), and this regularization strategy is referred to as
parameter sharing. This means that all the attributes are common across all of the
alternatives. A significant advantage of parameter sharing over parameter tying is
that only a subset of the parameters (the unique set) need to be stored in memory.
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4 EMPIRICAL STUDY

4.1 Application Domain and Dataset

Public transport has a significant role in urban transport systems. It is paramount to
analyze the route choice behavior of transit passengers to capture the spatiotemporal
distribution pattern of passenger flow in a transit network [33]. Also, maintaining
service reliability would be improved by knowing flow assignment patterns in a tran-
sit network [34]. Passengers make their route choice decisions by considering several
factors such as in-vehicle time, the number of transfers, crowdedness, etc. There-
fore, the proposed deep multinomial logit model is promising for modeling the route
choice behavior of transit passengers.

In this study, the main focus is on those journeys with a commuting purpose
which start within a weekday morning peak (7–9 am) and night peak (4:30–6 pm).
Using the smart card fare payment system of a city in China, all essential data such
as date, time, boarding location, bus number, route number, and direction of each
transaction is provided. Each commuter who uses smart card has a unique ID that
is available in our data.

Based on the original data gathered in one year, we estimated the origin-
destination (OD) pair for each card ID, and then generated the corresponding route
choice set. The elements selected less than five times in a route choice set were
removed as the corresponding journeys are very likely not for commuting purpose.

We extracted three datasets about Dezhou, Anqing and Jinan. These three
datasets have 1 252, 2 730 and 6 685 records, respectively.

We quantified the relevant attributes that have potential influence on the route
choice decision. A summary of all variables and their descriptions is given in Table 1.

Variable Description

Time Travel time in bus (minutes)
Distance Distance traveled in bus (kilometers)
Tran-count Number of the transfers
Tran-distance Sum of all the transfer distances (meters)
Fare Sum of the bus fares (Chinese yuan)
C-type Card type (1: Common card; 2: Student card)

Table 1. Summary of variables

As a preprocessing step, we normalized the data to ensure commensurability in
the attribute values.

4.2 Experimental Setup

We conduct an experiment with TensorFlow, the second generation of Google arti-
ficial intelligence learning system, and a desktop computer with Intel Core i5 CPU
(2.90GHz) with 16.0GB memory.
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We used the negative log-likelihood as the evaluation metric, and the 10-fold
cross-validation as the technique to evaluate the models. In addition, we averaged
the results of 5 evaluations for each model.

The mini-batch size of stochastic gradient descent was set to 20. The learning
rate, exponential decay rate for the 1st moment estimates, exponential decay rate for
the 2nd moment estimates, and epsilon hat of the Adam method were set to 0.001,
0.9, 0.999, and 1e−7, respectively.

We used the rectified linear unit (ReLU) as the activation function, as a model
that uses it is easier to train and often achieves better performance. The number of
the units of the first hidden layer was set to 32. The number of the units of the lth

(2 ≤ l ≤ n) hidden layer was set to 2(6−l).
We used Glorot initialization as weight initialization scheme, which initialized

the weights in the model by drawing them from a distribution with zero mean and
a specific variance. In addition, we initialized the biases with zeros.

4.3 Parameter Sharing

In this domain, all the attributes are common across all of the alternatives which
share the same linear utility functions. Therefore, we designed a parameter sharing
strategy, named PS-1, as model regularization strategy. PS-1 is described as follows:

w (i)(s)
pq = w (j)(s)

pq ,w (i)(n+1)
r = w (j)(n+1)

r , 1 ≤ i, j ≤ J, 1 ≤ s ≤ n. (12)

To verify the superiority of PS-1, we proposed another parameter sharing strat-
egy, named PS-2, which leads to higher model capacity and probability of overfitting.
Assuming x u, x v correspond mth alternatives of any two individuals respectively,
PS-2 is described as follows:

w (u)(s)
pq = w (v)(s)

pq ,w (u)(n+1)
r = w (v)(n+1)

r , 1 ≤ u, v ≤ J, 1 ≤ s ≤ n. (13)

4.4 Experimental Results

Table 2 shows the experimental results on the three datasets. The table entries
present the negative log-likelihood of the traditional MNL, the DDCM model pro-
posed in [8], the ResLogit model proposed in [26], and the GDMNL models with
different numbers of hidden layers and parameter sharing strategies. For DDCM
and ResLogit, we selected their best models on each dataset for comparison. The
best model for each dataset is highlighted.

In the following, we abbreviate GDMNL models with PS-i (i = 1, 2), and PS-i
and j (j = 1, 2, 3, 4) hidden layers as PS-i and PS-i-j, respectively.

From Table 2 we can see that on all three datasets, both PS-1 and PS-2 outper-
form the traditional MNL and PS-1 outperform DDCM and ResLogit. This strongly
suggests the validity and superiority of the proposed GDMNL model. On Dezhou
dataset, PS-1-1 gets the best performance among all the models, while on the other
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Dataset MNL DDCM ResLogit

GDMNL
Number of Hidden Layers Parameter

1 2 3 4
Sharing
Strategy

Dezhou 0.80288 0.78014 0.77381
0.77232 0.77236 0.77299 0.77312 PS-1
0.78256 0.78491 0.78336 0.78261 PS-2

Anqing 0.79353 0.76119 0.75657
0.75266 0.75187 0.75349 0.75513 PS-1
0.76319 0.76252 0.76408 0.76627 PS-2

Jinan 0.79455 0.74886 0.74302
0.74271 0.73944 0.74006 0.74108 PS-1
0.75193 0.75011 0.74836 0.74996 PS-2

Table 2. The negative log-likelihoods of different models

two datasets, PS-1-2 performs best. The reason for the worse performance of PS-1-3
and PS-1-4 may be that higher model complexity leads to more severe overfitting.

Figure 2 contrasts the running times of MNL, 1 layer GDMNL and 2 layer
GDMNL as dataset size increases from 1 000 to 6 000.

Figure 2. Running times with dataset size

5 DISCUSSION

5.1 The Interpretability of the GDMNL Model

Like many popular machine learning models such as neural networks, the proposed
GDMNL models are black-box, and thus are not readily interpretable to the deci-
sion maker (DM). Recent researches have proposed approaches to addressing the
interpretability of machine learning models [35], such as the gradient-based meth-
ods [36, 37], the sensitivity analysis [38, 39], and the mimic models [40, 41]. Among
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these methods, a particular important stream of research focuses on learning ex-
plicit functions to characterize the nonlinear contributions of variables during the
training process. A typical example is the generalized additive model (GAM), which
uses a link function to build a connection between the mean of the prediction and
a function of the variables [42]. It is good at both dealing with and presenting
the nonlinear and non-monotonic relationship between the variables and the predic-
tion [43]. Therefore, GAM is usually more accurate than linear additive models but
difficult to be interpreted if the underlying function shapes are extremely compli-
cated, and thus cannot be easily understood by the DM.

MNL and machine learning can provide natural benefits to each other. On one
hand, machine learning techniques are capable of handling high-dimensional and
nonlinear data because of the high complexity of the model. They can help MNL
approaches relax conventional assumptions and improve model performance. On
the other hand, the preference disaggregation approaches of MNL use a global value
function (usually in an additive form with a predefined shape) to reveal the rationale
of DM’s judgment. Thus, MNL approaches provide convincing evidence to assist
comprehending the decision-making. They can help enhance the interpretability of
“black-box” machine learning models.

In the light of the above analysis, we propose a hybrid model that combines
MNL and GDMNL to achieve good performance while capturing the explicit rela-
tionships between individual attributes and the prediction. The MNL uses marginal
value functions to approximate the explicit relationship between the outcome and
individual attributes whereas the GDMNL is used to capture the implicit high-order
correlations between attributes in the model.

The architecture of the hybrid GDMNL is shown in Figure 3, which has two
components. The one in dashed box is the linear component. Note that constant
vector β(j) corresponds to β(j) in Equation (2), which is estimated using the tra-
ditional approaches of MNL. The other one outside dashed box is the nonlinear
component.

The learning algorithm and model regularization of the hybrid GDMNL can be
the same as that of GDMNL. The linear and nonlinear components of the model
are jointly trained. Note that this joint training process is different from ensemble
learning [44], in which multiple classifiers are trained individually and their predic-
tions are simply combined after every model is optimized separately. For example,
an ensemble learning approach could have a linear logistic regression model and an
MLP model to make predictions for the same dataset separately, and then integrate
the prediction results of the two models. The joint training process indicates that
the linear and nonlinear components are connected.

5.2 Flexible Inclusion of Attributes in the Nonlinear Component

In practice, human decision-making usually focuses on a small number of well-chosen
attributes/criteria [45, 46]. However, there could exist other minor attributes that do
not directly contribute to the prediction but could affect the prediction through non-
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Figure 3. The architecture of the hybrid GDMNL model
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traceable complex interactions with other attributes (for example, the interaction
between the nonlinear transformation of an attribute and the nonlinear transforma-
tion of five other attributes). These minor attributes can be incorporated by the
nonlinear component of the hybrid GDMNL model to improve model performance.

6 CONCLUSIONS AND FUTURE WORK

In this paper, a general deep multinomial logit model is proposed to adequately
represent the complex considerations regarding various aspects of the alternatives
and individual. Compared to the traditional MNL and two latest similar models,
the proposed model gets better performance in terms of negative log-likelihood.

Our work opens up avenues for further research. While we have conducted
a preliminary experiment using a transit route choice dataset, more experiments
with datasets drawn from various domains can be conducted to validate the gen-
eralizability of our findings. In addition, the deep neural networks can be applied
to extend the other sophisticated DCMs, such as multinomial probit model, nested
logit model, etc., to get better performance.
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