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Abstract. Today’s societies have become more dependent on social networks in
terms of communications and interactions. These networks contain most of the
people’s activities, which can be public or even personal events. In the last decade,
social networks have turned into more prominent platforms in managing and orga-
nizing public events. The Egyptian revolution in 2011 and the Ukrainian revolution
in 2014 are good reflections of such events. However, it is not known how much
the privacy issue of users is revealed in the reality as a consequence of their online
interactions. In this work, we investigate the privacy issue in online social net-
works and its reflection on real life. Our dataset was extracted from the Facebook
groups/pages that were involved in the 2019 Iraqi October revolution. Our ap-
proach generates a static network using the collected dataset. Then, we investigate
the generated static network in terms of detecting potential anomalies. After that,
we project the static network (including its characteristics) into a dynamic envi-
ronment and generate a dynamic network for investigating the privacy issue in the
real life. The contribution of this work lies in projecting a real-world static network
into a dynamic environment aiming at investigating users’ privacy in the real world.
Finally, this kind of approach has not been given enough attention in the literature
and it is therefore deeply investigated in this article.
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1 INTRODUCTION

Online social networks have become a fundamental need in modern life [1]. To-
day, many of our activities are managed and organized using these networks such
as Twitter, Facebook, WhatsApp, Instagram, etc. The number of users in these
networks varies from a country to country. For instance, some countries’ users pre-
fer using Facebook more frequently, while other countries’ users prefer to use other
online social networks. The main characteristics of these networks are the ability
of users to share their personal content with friends, show their opinions, interact
with others, and make comments [2]. Also, these networks enable users to configure
their accounts based on their preferences [3]. However, social networks still strug-
gle with the issue of privacy because users are exposed to each others’ accounts
and it is difficult to maintain users’ privacy. Although these networks do not share
users’ information with the public, some online applications request users’ permis-
sion for accessing their information and further use it for marketing or advertising
purposes [4]. The presence of users in online social networks leads to a trade-off
between the possibility of enlarging their social and professional circles, and privacy
threats. Moreover, in online social networks, users may provide information (sensi-
tive/insensitive) to third parties; this information may be revealed to other users and
violate the privacy. The information may include spatial or temporal elements such
as their location and time stamp, or personal characteristics such as personal back-
ground, hobbies, contacts, personal views, etc. Consequently, this sharing habit
can be a reason of potential threats for users (e.g., identity theft, sexual assault,
stalking, hiring, online abuse, surveillance, and unintended fame and even decep-
tive ads) [5]. On the other hand, online social networks have broken the real-life
spatiotemporal barriers due to the low communication cost. This phenomenon has
made online social networks to be one of the influential factors in real life. This
means, our real-life activities are directly influenced by our interactions in the social
networks.

The analysis of online social networks depends on the structural nature of these
networks, which can be either static or dynamic [6, 7]. The traditional kind of
analysis has concentrated on the representation of graphs as static networks. In
this case, it is more likely that researchers tend to use community detection ap-
proaches or identifying worthwhile group structures in the network. In contrast,
dynamic networks’ nodes are not stationary and their positions change over time.
This means each node is subject to spatial and temporal aspects in its features.
Furthermore, our real-life environment is considered a dynamic network in which
individuals represent the nodes and the connections among them are driven by their
social relations. Practically, when simulating a dynamic network, it is needed to
incorporate a particular mobility model that reflects the movement patterns of the
mobile nodes. Therefore, the analysis of dynamic networks is more challenging than
static networks [8]. Besides, in dynamic networks, the pattern of reactions is also
changed over time, for instance “who interacts with whom” at time t. In the same
context, another kind of network is called Labeled networks, which include informa-
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tion on different characteristics of individuals and their interactions [7]. The analysis
of these networks needs to model the structural changes in parallel with the change
in time.

Investigating dynamic networks has been given enough attention in the litera-
ture. Several approaches have been proposed for detecting a variety of phenomena
(e.g., anomalies) in these networks [9]. The study of Liao et al. [10] proposed a tool
for investigating anomalies in dynamic networks. The tool uses the spatial and
temporal dimensions of network nodes to analyse anomalies. Another study per-
formed by Chen et al. [11] used a recurrent neural network in proposing a new
differential privacy scheme. The authors investigated the privacy issue for users in
a real-time manner. They showed that the proposed approach has the ability to
protect the privacy of user’s data. However, their approach was limited since it
analysed a network as snapshots at a specific time. Kokciyan and Yolum [6] clas-
sified the privacy violations that occur in online social networks. They found that
privacy violations in these networks arise from complex interactions. To understand
these violations it was needed for a semantic understanding of the occurred events.
Therefore, they suggested an agent-based representation of a social network, where
agents manage user privacy requirements by generating obligations with the system.
The suggested detection algorithm performed the analysis using the logical descrip-
tion at various depths of realistic social networks. The main limitation of their work
was the size of data that can be processed and analysed. Cho et al. [5] studied
the ability of users in enlarging their social networks by making reliable friendships
while not infiltrate their private information to unofficial individuals or social at-
tackers. They applied the notions of confidence and reputation for maintaining the
privacy of users while improving their social capital in online social networks. Using
the social network topology from Facebook, they designed a template for individ-
ual user interactions with other users which depends on feeding such as posting
information and behavior of reactions (e.g., providing likes or comments). Their
outcomes show that there is a trade-off between social capital and maintaining pri-
vacy. The study struggled with the huge amount of data that are generated as
well as the accuracy of users’ history of interactions. Bhagat et al. [12, 13] stud-
ied the problem of frequent deployment of online social networks data as network
growth while maintaining users’ privacy. They used link prediction algorithms to
model the development. They also proposed to mask a dynamic network identity
when new nodes and edges are added to the network. The prediction graph was
used for group-based anonymity. Their approach contributed to protecting the pri-
vacy and predicting network evolution but it was difficult to predict future privacy
violations.

Another study by Kafali et al. [3] developed an approach called PROTOSS
as a run-time tool for detecting and predicting privacy violations in online social
networks. Their approach detected the relationships among users, their privacy
agreements with the network operator, and domain-based semantic information and
rules. PROTOSS was used to discover whether relationships among users will violate
privacy agreements. The approach was also able to expect potential future viola-
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tions through feeding in a hypothetical future global situation. By experimenting
the model on the scenario as well as on the existing Facebook dataset, PROTOSS
could detect and predict exact leaks similar to those reported in real-life exam-
ples. The main limitations of PROTOSS were the lack when dealing with a large
scale of data and the realistic of relations among the used concepts. Furthermore,
static and dynamic networks can be used for analyzing the privacy issue among
people. However, when it comes to investigating privacy based on the interactions
among people, it is better to use a dynamic network, as discussed in the study
of Farine [14]. He studied static and dynamic networks and proved that dynamic
networks are better for predicting the behavior of people based on their temporal
interactions.

According to the literature, most of the approaches have limitations when pre-
dicting future potential privacy violations. More precisely, these limitations are
circled around the difficulties when dealing with a large scale of data (e.g., users
and their interactions) due to the heavy simulations that, in turn, generates big
data. The other limitation is that most of the researchers investigate the privacy
issue either in a static or in a dynamic network. In this context, there is a severe
lack in developing approaches that consider the history of interactions among people
in their static online networks and further utilize it in their dynamic network when
investigating the privacy issue. Investigating the privacy issue in real life needs a lot
of attention and many factors should be considered during the investigations. Fur-
thermore, we believe that the interactions among people in online social networks
are not enough to be considered as the main factor when it comes to privacy is-
sue. Other factors such as people interactions in their real environment can also
be considered. Therefore, it is important to integrate the characteristics of peo-
ple interactions in their both online social networks and the dynamic environments
they are practice their life in. Hence, to deal with the aforementioned gaps, our
contributions are:

• Develop a novel framework for projecting a real online static network into a dy-
namic environment for tracking purposes.

• Use a large-scale dataset that includes users and their features (e.g., relations
and interactions) to investigate future potential privacy violations of users con-
sidering their history of interactions in static networks, and their interactions in
the dynamic environment.

The strength of our approach is the ability to project any large-scale online
social network into a dynamic environment. Also, it can predict the future potential
privacy violations of users as a consequence of their interactions in the online social
networks. The applications of our approach can be in investigating a wide range of
aspects such as privacy violations, anomaly detection, tracking, and health-related
applications.

This article is organized as follows: the next section includes our research method
and how this work was performed step by step. In Section 3, we present the obtained
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results and discuss them in details. Finally, we conclude our work in Section 4 and
present the main challenges and the future works.

2 RESEARCH METHOD

2.1 Dataset Collection

Our dataset was collected during the period of the recent Iraqi demonstrations (Oc-
tober 15, 2019 to December 15, 2019). The dataset was extracted from Facebook
groups/pages that were mainly involved in organizing and managing the demonstra-
tions’ events. The data collection process was performed using a special-purpose
crawler, which was designed for this work. The collected texts (posts/comments)
were compared word-by-word to a pre-designed dictionary (see Figure 1). This dic-
tionary contained the most frequent words used by the Iraqi people (Iraqi slang and
informal words) during the demonstrations. The collection process was based on
a particular strategy; if the contents of the selected groups/pages match words
in the dictionary, it means the post was mainly related to the demonstrations.
In this case, we collected users’ information such as user-id, location, and other
information. All the collected information was related to the users who inter-
acted with the collected posts and then connected them. In other words, we
represent users as nodes, if two users (nodes) have interacted (e.g., comment)
with the same post; this means they have an edge between them. This strat-
egy was applied to all nodes in the generated network. It should be mentioned
that we use Facebook Graph API in the collection process. This API is a secure
HTTP-based API that enables retrieving Facebook public data using authenticated
HTTP calls. After that, we processed the structure of the collected data to be
suitable for visualization and analysis. The number of nodes in our dataset was
27 835 representing the Facebook users who interacted with the demonstrations and
205 359 edges connecting them. Now, we have a network with nodes and edges
that reflect the online relations and interactions among Facebook users. In fact,
the actual number of users (demonstrators) was significantly greater than the col-
lected users, but we believe this large scale of data is sufficient enough for our
study.

Figure 1. Data collection process
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2.2 The Proposed Framework

In this work, we propose a new framework to investigate future potential privacy
violations based on people’s relations and interactions. To this end, we first gener-
ate a static network using the collected dataset and detect potential anomalies in
people behavior. Then, we project each node in the static network (including its
characteristics) into a dynamic environment aiming at generating a dynamic net-
work. Then, we use the dynamic network for investigating the privacy issue based
on 1) the interactions of people within the simulation environment, 2) the informa-
tion that was inherited from the static network (history of interactions). In fact,
violating the privacy of a user can be performed in different ways. For instance,
how frequently a user interacts/communicates with anomalous users. This kind of
interaction can be a significant factor for violating the privacy of users. Also, for
a user, a high level of interactions with others may lead the privacy to be more
exposed to others. Therefore, in this work, we take into considerations the history
of interactions in the static network and the interactions of users in the dynamic
environment for evaluating the privacy. We believe this is a good practice because
when simulating a dynamic environment, it is better to have the history of inter-
actions of people when perform the simulations, which is reasonable for this kind
of analyses. Moreover, our approach has the ability to assess the impact of users’
interactions in their social networks on their privacy in real life. Practically, the
proposed approach has three main steps, as we explain in the following subsec-
tions.

2.2.1 Step 1: Detect Potential Anomalies in the Static Network

In this step, we are inspired by sociological concepts and theories. Structural and
spectral measurements are involved and integrated with the theories aiming at de-
tecting potential anomalies. Now, we start by distinguishing the influential users
in our network. To do this, the concept of Elite theory is involved. Elite the-
ory is considered one of the powerful theories in the field of sociology. It states
that “a small minority of actors in a community holds the highest power in that
community” [15, 16]. It has the ability to distinguish people with high-power of
relations in a community and is called Elite people. By the means of this the-
ory, our approach distinguished the most influential users in the static network
during the demonstrations. A spectral measurement (Eigenvector Centrality) is
involved to evaluate the importance of a user in network connectivity. More pre-
cisely, Eigencentrality shows how well-connected a particular user is to users with
high connections. This centrality measurement fits very well with the concept of
Elite. Therefore, the elite users are those who have the highest values of Eigen-
centrality. To calculate it, given a graph G(V,E), where V denotes a set of nodes
and E denotes a set of edges connecting the nodes. We also assume an adjacency
matrix A, where A = (av, t) for the nodes v and t such that av, t = 1 if both
nodes are connected and 0 otherwise. The x score for node v is formulated as
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follows [17]:

x(v) = 1/λ
∑

t∈M(v)

xt = 1/λ
∑
t∈G

A(v,t)xt (1)

where M(v) refers to the neighbors of v and the Eigenvalue is λ. As a vector nota-
tion, the formula (1) can be reformulated as follows:

Ax = λx. (2)

Now, we have to distinguish the elite users in our network. Before that, it
is, first, needed to investigate the distribution of Eigencentrality. We found that
the distribution follows a power-law as depicted in Figure 2. One of the interest-
ing facts of this kind of distribution is the possibility of applying the Pareto rule
(80/20 rule) [18]. This principle is applicable for all the applications that are char-
acterized by a power-law according to [18]. Interestingly, this rule fits very well
with the concept of Elite theory since it states: “for many events approximately
80% of the effects come from 20% of the causes”. Hence, our approach is able to
consider the highest 20% of the Eigencentrality of users as the elite users in our
network.

Figure 2. Distribution of eigencentralities

In this paper, we will frequently use the term ABIs to mention people with
abnormal behavior. This term is the acronym of Anomalous Behavior Individu-
als, which are few people who had behaved abnormally/anomalously in their online
interactions during the demonstrations (or any other events) [19]. Moreover, dis-
tinguishing/tracking ABIs is considered as a challenging task due to the lack of
information about them. Therefore, in addition to use a spectral measurement
(Eigencentrality), we also use structural measurements to more accurately define
the normal and abnormal behavior within the structural and spectral spaces of our
network.
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According to the aforementioned, we decide to investigate the highest 20% val-
ues of the Eigencentrality. This investigation is performed using the structural
space of network users. The structural measurements can dig deeply into the rela-
tions among users. Therefore, we propose to use nodes-level measurements, which
we believe they can be a powerful tool and contribute to the detection of potential
ABIs as follows.

• Clustering Coefficient CO: it is a reflection of the tendency of users to group
with other network users. By the means of our network, ABIs tend to be con-
nected to specific users. The value of CO for undirected network is formulated
as follows [20]:

CO(i) =
2|{ljk : nj : nk ∈ N, ljk ∈ E}|

ki(ki − 1)
(3)

where ljk is a group/page between users nj and nk, and N denotes the total
users in the network, and ki denotes the number of neighbors.

• Betweenness Centrality Cb: it reveals how many times a user appears in the
shortest path between any given pairs of users within the network. In other
words, it shows how well-positioned (e.g., importance) a user in connecting
groups or network users. Cb of user j is defined as follows [20]:

Cb(j) =
∑
i ̸=j ̸=k

σik(j)

σik

(4)

where σik denotes the shortest paths between the users i and k. σ(j) denotes
the number of network paths that pass through user j.

• Degree Centrality Cd: it is the frequency of connections of a user, which means
the actual number of friends for that user [20].

• Closeness Centrality Cc: it is the user’s reciprocal of the sum of all the shortest
paths to other users. It reflects how close a user is to other network users and
it is formulated as follows [20]:

Cc(i) =
(N − 1)∑

j d(ij)
(5)

where d(ij) denotes the distance between the pairs i and j.

These measurements enable us to provide a multidimensional view of the ac-
tual relations among network users. Our proposed approach aims to combine these
measurements in what we call a user’s Status (S). Our inspiration at this point
comes from sociological concepts and theories (e.g., Collective Behavior Theory [21]).
Based on this theory, we can explain the behavior of users within their communities.
The S values, then, will be used as indicators in distinguishing potential ABIs. The
status S of a user is proposed to be as follows:

S(v) = (Cb(v) + Cc(v) + Cd(v))
CO(v) (6)
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where S(v) denotes a user v’s status and the other parts of the equation are al-
ready defined in the previous paragraphs. The main idea behind the above equa-
tion is to extract the actual structural behavior of users within the static net-
work, which is crucial in determining how well-positioned the users are in the net-
work. We plan to apply this equation to the highest 20% of the Eigencentral-
ity.

Now, for distinguishing the potential ABIs, the concept of Deviance theory [22]
is involved. It explained the “deviant action or behavior” that violates communities’
social norms. Based on this concept and the concepts of the parameters of Equa-
tion (6), the lowest S values (abnormal) will be considered as the potential ABIs.
Normal users in online social networks are usually considered to be almost better-
positioned because they already have their circles/groups and almost connected to
people they know. On the other hand, abnormal users are usually considered in-
truders to the circles/groups and they are not well-positioned within the network.
Now, there is a need for an indicator that helps us to decide which values are the
lowest. Figure 3 shows the distribution of S values; clearly, they follow a Normal
distribution. One of the important features in this distribution is the “Empirical
Rule” [23], which is applicable to S values. The Empirical rule states that for all
the phenomena that are characterized by a Normal distribution, it is approximately
68% of the observations are located within a distance of one standard deviation (σ)
from both sides of the mean (µ), 95% within (2σ), and 99.7% within (3σ). Ac-
cording to the aforementioned, we decide to consider the values that are located
in the left region (2.5% of users) as the potential ABIs users (see Figure 3). The
mentioned percentage (2.5%) is originally extracted from the highest 20% of the
Eigencentrality. The precise percentage of the potential ABIs users equals 0.5% of
the total network users.

Figure 3. Distribution of S values
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2.2.2 Step 2: Projecting the Static Network into a Dynamic Environment

In this step, we project the generated static network into a dynamic environment.
Performing this step is not an easy task. It needs a lot of attention because sim-
ulating dynamic networks needs many requirements such as the nature of the en-
vironment that will be used in the simulation, the mobility model that should be
incorporated to describe the movement patterns of the mobile objects (users), the
distribution of users within the environment, and the strategy of tracking users in the
environment. These requirements should be defined and prepared before performing
the simulations.

Nodes in static networks are stationary and positioned in fixed locations. A par-
ticular topology can be involved to describe the positions of nodes within an en-
vironment. However, in dynamic networks, the positions of nodes are not fixed
and are changed over time. Practically, it is important, for simulation purposes,
to use a particular mobility model that describes the movement patterns of nodes
in terms of direction and velocity. In this context, developers should use models
that accurately reflect the movement patterns of the mobile nodes, which can be
people, animals, automobiles, etc. In our work, the mobile nodes are humans.
Therefore, in the proposed framework, we include a mobility model that accu-
rately simulates people movement patterns. In this regard, we propose to use
the model that was developed by Song et al. in 2010 [24]. His model is the most
known accurate model that reflects human movement patterns and is called Indi-
vidual Mobility (IM) model. It is based on two main mechanisms. Exploration,
which states that the number of explored locations is decreased by time. More
precisely, as time goes, the number of locations that a particular individual visit
is decreased. The probability (Pnew) of exploring a new location is formalized
as:

Pnew = ρL−λ (7)

where ρ and λ are used to control the tendency of users to explore new locations
in the next move (step) and L is the number of explored positions (locations).
The second mechanism is Preferential Return, which means people tend to re-
turn to the most explored locations they have visited in the previous movements
(past) with a complementary probability (Pret) of the previous mechanism as fol-
lows:

Pret = 1− Pnew. (8)

It should be mentioned, in the IM model as people move, the number of ex-
plored locations L is increased by 1 (L = L + 1) in the next move. In this work,
our dataset contains two kinds of nodes; regular users and potential ABIs. In the
simulations, the former should be simulated normally in terms of their movement
patterns. Therefore, we use the IM model to simulate their dynamics. The latter
(ABIs) are expected (as we propose) to behave differently in terms of their move-
ments patterns. Therefore, minor changes should be made on the IM model when
simulating this kind of user. In real life, abnormal behavior can be observed in
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revolutionary events. ABIs, in this kind of event, tend to explore and visit more
locations than usual. They have a strong tendency to collect more information on
the events by visiting as many places as they can. For this reason, we propose to
perform some modifications and re-formalize the first mechanism (exploration) in
Song’s model. The updated mechanism should increase the number of explored lo-
cations to be close to real-life behavior. To this end, we propose to add a parameter
called N+. This parameter is used to increase the number of explored locations.
Therefore, the probability of exploring new locations for the ABI (PABI−new) can be
formalized as follows:

PABI−new = ρ(L+ (1/N+))−λ. (9)

Practically, N+ is an integer dynamic-variable that is changed over time. It
adds some randomness pattern to the whole movement pattern, which is desired
since we involve ABIs. During the simulations the value of N+ is randomly selected
at time t:

L(t) > N+(t) > 0. (10)

To summarize, we use the IM model for simulating the regular users, while in
simulating ABIs, we use the proposed updated version of the first mechanism in the
IM model.

The second requirement for our simulations is the tracking procedure that should
be used to monitor users’ movements and their dynamic interactions. The process
of projecting users from the static to the dynamic environment (Projection Strat-
egy) is based on a relation-driven approach. We propose that users are distributed
within the simulation environment based on their relations to each other in terms
of positions. For instance, “friends” in static networks are positioned close to each
other. Therefore, at time t = 0 in the simulations, the groups in the static net-
work are projected in the dynamic environment and positioned close to each other.
During the simulations, for instance, at time t = 1 − n, the movements of users
are driven by the IM model. Figure 4 shows an example of how the projection is
performed. As the simulations in running, users move within the environment and
encounter each other; they change their positions and directions. All the informa-
tion that is related to the interactions among users is reported. This means we
can keep track of every single user in the dynamic network. Tracking information
includes: with whom users encounter, how regular these encounters are, how long
each encounter lasts for, the number of visited locations, and other interactions-
related information. This kind of information will further be utilized when eval-
uating the privacy in the dynamic networks. The other requirement for our sim-
ulations is the way of deploying users within the simulation environment. In this
regard, the above-mentioned projection strategy is not enough and it is needed to
follow a particular pattern/method for deploying the users within the simulation
environment. According to the distinguished work of Grossman [25], in metropoli-
tan cities, people are deployed based on a power-law distribution. This means,
people are concentrated in the city center and gradually decreased where approach-
ing city borders. Therefore, in our simulations, all users are deployed based on
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a power-law distribution with respect to the projection strategy in the previous
paragraph.

Figure 4. An example of our Projection Strategy and how the static network is projected
into a dynamic environment to generate a dynamic network

2.2.3 Step 3: Analyse the Dynamic Network in Terms of Privacy

In this step, we aim to analyse the interactions among people based on the generated
dynamic network. To this end, it is needed to describe the characteristics of human
relations and interactions. Investigating the relations among people is important
insofar as it contributes to measuring the privacy issue, which is our purpose in
this work. According to the distinguished work of Barabasi [26], people relations
and interactions can be characterized by several features. In this work, our proposed
approach is based on three features that mainly characterize the relationship between
two users. Now, the first feature is the Recurrence of Meetings (RM), which reflects
how many two users meet. The second feature is the Consistency of Meetings (CM),
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which means how consistent/regular the meetings between two users are. It can be
calculated using the average time between every two meetings for a pair of users as
follows:

CMij(t) =
tcurrent∑
t=1

waitij(t)

RMij(tc)
(11)

where CMij denotes the consistency of the meetings for the users i and j at time t,
and waitij denotes the waiting time of all the meetings between i and j at time t.
tcurrent represents the time of the current meeting and RMij is the recurrence of
meetings. The third feature we propose to use is the Duration of Meetings (DM),
which is the average of the duration times of all the meetings between two users and
can be formulated as follows:

DMij(t) =
tcurrent∑
t=tf

duij(t)

RMij(t)
(12)

where DMij(t) denotes the average duration time of all the meetings between the
users i and j at time t. duij(t) denotes the duration of the meeting between i and
j at time t, tf denotes the time of the first meeting between i and j. Based on
the aforementioned features, we calculated the weight of the relations among every
single pair of users in our network. The weight (W ) of the relation between the
users i and j represent the collected values of the three aforementioned features as
follows:

Wij(t) = RMij(t) +DMij(t) + (1/CMij(t)). (13)

The term (1/CMij(t)) makes it fair enough for the three features when calcu-
lating the weights. More precisely, if two users meet every long period of time,
we cannot say they have a strong relation. Therefore, a low value of CM reflects
a strong relation between two users. It should be mentioned that the weight of
the relation between two users is dynamic and recalculated whenever an interaction
happens. Also, all the three mentioned features are normalized to be between 0
and 1.

3 RESULTS AND DISCUSSIONS

For the dynamic network, we performed our simulations using a special-purpose
simulator that is used for this kind of work. The simulator is called Social-Network-
of-Sensors (SNoS ) that is based on the multi-agent programming of NetLogo mod-
eling. The kind of simulations performed in this work is similar to the simula-
tions performed in [27]. The simulation environment is designed as a city with
borders and partitioned into blocks (patches). The projected users are deployed
based on power-law distribution. The movement of users is driven by the IM
model. During the movements of users within the environment, they cannot pass
city borders because the steps in the IM model are dominated by exponential-cut-
off. For the sake of accuracy, we carried out the simulations 20 times then we
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averaged them. In the simulator, each step is called a tick that is approximately
equal to 1.2 minutes in reality considering the human walk speed of 3 km/h ac-
cording to Grossman [25]. We proposed to simulate our approach for the same
period of the dataset collection, which was for 67 200 ticks simulating 80 640 min-
utes (8 weeks) in the reality. The reason behind selecting this period is to show
the impact of both networks under the same time constraints. The distance be-
tween every two users is recalculated at every step. In our simulations, two users
meet if they stop on the same block (location) and leave that block at the same
time.

The first step towards our results was the evaluation of the privacy issue in the
static network. The evaluation was based on the frequency of interactions among
users. In other words, how many times two users had interacted with the same post
(e.g., comment, like, or share). The evaluation was performed among all the pairs
of regular (normal) users as well as between the regular users and the ABIs in the
network. This means, we evaluate the level of interactions among the regular-regular
pairs and compared it regular-ABIs pairs. The main purpose of this evaluation was
to reveal the behavior of the static network and to further use it as an indicator
in the second step of our analysis (the dynamic network). Figure 5 shows these
interactions for network pairs. Expectedly, the frequency of interactions for the
regular-regular pairs outperformed the regular-ABIs pairs, which is reasonable due
to the number of regular users. We can see that a similar linear pattern is obtained
in both pairs. Moreover, we tested the variations of these interactions to see the
stability of these interactions for each week. Figure 6 a) shows that the regular-
regular pairs reflected a close level of variations compared to regular-ABIs pairs.
In fact, this result needs more investigation in terms of its significance. Therefore,
we decided to plot the statistical notched boxplot for the variation of both types
of pairs. In Figure 6 b), the two boxes’ notches do not show an overlap. This can
be considered as strong evidence that their medians differ and this difference is
statistically significant.

According to the obtained results, for the static network, it can be concluded
that there exist interactions between regular and ABIs users, which lead the privacy
of regular users to be exposed to the ABIs. Based on the results [28], similar behavior
was obtained for the ABIs users.

The second step of our analysis is to evaluate the privacy issue in the dynamic
network. To do this, we calculate the weight of all the pairs of regular-regular and
regular-ABIs. We compare the level of interactions among users within the dynamic
environment. More precisely, we try to find out how much the ABIs interacted with
the regular users in terms of the features of encounters (recurrence, consistency, and
duration). We believe that these indicators can reveal the strength of the relation
of network pairs, which eventually lead to figuring out how much the privacy of
regular users is exposed to the ABIs. Figure 7 depicts the weights of the two types
of pairs. We observed that the weights of regular-ABIs pairs were growing faster
than the regular-regular pairs. This is very interesting and promising since it leads
to important findings. The relations of the regular-ABIs users became stronger as
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Figure 5. The interactions between regular-regular and regular-ABIs pairs in the static
network. The x-axis represents the time from week 1 to 8 and y-axis the frequency of
interactions.

time passes. This phenomenon could be considered as a negative indicator of privacy
violations among users. In other words, the privacy of regular users is more exposed
by the ABIs over time. According to these observations, it is needed to analyse the
obtained results.

We start with the variations of the weight values of both types of pairs. Figure 8
shows the variations in weight for every week and for all the pairs. Figure 8 a) reflects
the variations of every week and how they are changed and become close over time.
Figure 8 b) shows the notches of both types of pairs, it is clear that their median is
not overlapped, which means the difference has existed.

These results were not enough to be confirmed since after week 5 the pattern
became closer. Therefore, it is important to investigate what driving this pattern
and whether there is a statistically significant difference between both pairs. To
confirm this, we create a linear regression model and then use one way ANOVA to
analyse the variance of the pairs. As we can see from Table 1, the standard error
of the interactions of regular-ABIs is less than regular-regular. Therefore, our null
hypothesis (H0) assumes that the mean values of regular-regular and regular-ABIs
are equal and the alternative hypothesis (H1) assumes not with a confidence level
of 97%. According to Table 1, the significance level is significantly greater than
the p-value. This means we cannot accept the null hypothesis of equal means and
the difference between both kinds of pairs is statistically significant. Also, Table 2
shows that the sum of squared errors for the regular-ABIs is significantly less than
the other pair.

We can conclude that the interactions between regular and ABIs grow faster
among regular users and the privacy of regular users is more exposed to the ABIs
over time.
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a)

b)

Figure 6. a) The variations of the interactions among regular-regular and regular-ABIs
pairs in the static network. b) Notched Boxplot for the interactions of both classes of
pairs.
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Figure 7. The interactions between regular-regular and regular-ABIs pairs in the dynamic
network. The x-axis represents the time (week 1 to 8) and y-axis the weights.

Coefficient Estimate Std. Error P-Value F-Statistics

Intercept −4.886 1.42
Regular-Regular Interactions 18.868 5.352 0.00000641 747.4
Regular-ABIs Interactions 3.737 3.176

Table 1. One way ANOVA for regular-regular and regular-ABIs interactions

Another step in our analysis is investigating the correlations among the weekly
behavior of the pairs in both networks (see Figure 9). This analysis is not related
to the privacy issue insofar as it relates to the cumulative weakly behavior of users.
The purpose of this analysis is to show how the behavior of users is changed from
a week to another and whether there is a pattern that characterizes the correlations.
In the static network, as shown in Figure 9 a), the weekly behavior of regular-regular
users is close to a sine wave. The pairs ((week 2, week 3), (week 3, week 4), (week 5,
week 6), and (week 6, week 7)) are strongly correlated. Since the dataset is related
to demonstrations, we believe these correlations are due to the motivation of the
demonstrators as well as the governmental procedures during the demonstrations.
Moreover, the impact of ABIs on the privacy of users is cumulative, as can be seen
in Figure 9 b). The figure shows that week 8 has correlations to approximately all
the other weeks. This result confirms what we have seen in Figure 6 a) and the
impact of ABIs is gradually increased and violated the privacy of regular users.
On the other hand, Figures 9 c) and 9 d) show the correlations in the dynamic

Terms Regular-Regular Inter. Regular-ABIs Inter. Residuals

Sum of Squares 41.821 0.038 0.639

Residual Std. Error 0.617

Table 2. Sum of squares and residuals for regular-regular and regular-ABIs pairs
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a)

b)

Figure 8. a) The variations of the interactions among regular-regular and regular-ABIs
pairs in the dynamic network. b) Notched Boxplot for the interactions of both types of
pairs.

network. The regular-ABIs pairs in Figure 9 d) do not reflect a clear weekly pattern
because the movement patterns of users within the environment are different from
regular users. More precisely, it is a consequence of the change in the exploration
mechanism in the IM model. Also, we observe that regular-ABIs show different
weekly pattern. For instance, the correlations between week 8 and the previous
weeks are significantly weak compared to the correlations among the other weeks.
This result interprets what has been mentioned in Figure 9 a) in week 8. Therefore,
in dynamic networks, the correlation between two weeks is independent of the other
pairs of weeks. Furthermore, the correlation between a week and its succeeding
for the regular-ABIs pairs in both networks is shown in Figure 10. We can see
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that the correlation between every two sequential weeks for the period of 8 weeks
is unstable and significantly decreased over time. Since the features of the users in
the dynamic network are inherited from the static, we observe that the pattern of
the correlation is also reflected from the static network. It can be concluded that
the privacy issue in online social networks has an approximately close pattern of
exposure.

Based on the experience obtained from this work, our model can be improved –
in terms of patterns’ accuracy of the regular and ABIs users – by including more in-
formation and attributes about network users. However, the data collection process
was restricted only to public data due to Facebook privacy policies that allows scrap-
ers to collect only users’ public information. On the other hand, incorporating more
attributes and parameters into our dynamic model will increase the complexity of
the model. This leads the dynamic simulations to generate a large-scale data that is
not easy to handle. Furthermore, in case more information is available about users,
some social concepts can be utilized such as the Homophily principle. This principle
can be used in having a more in-depth investigations about users interactions (e.g.,
regular and ABIs).

4 CONCLUSIONS

This article investigated future potential privacy violations in a dynamic network.
The proposed approach projected a large scale static social network into a dynamic
environment. The projection was not performed only based on users’ relations,
but also on their structural and spectral features. Therefore, the simulated dy-
namic network included the history of interactions of users in their online social
networks.

In the analysis, we involved two types of users: regular users and anomalous
users. The results showed that violating the privacy of people in real life can be
a side effect of their relations and interactions in online social networks. In real
life, the level of violation can be increased over time due to the high possibility
of interactions with anomalous users. Also, the interactions of regular people with
anomalous in an online social network lead to exposing their privacy more than in
dynamic networks. This is because people in real life are more aware of whom they
are interacting with.

The main challenge in this research was the time consumed in running the simu-
lations since we dealt with 27 835 dynamic nodes. The dynamics (e.g., interactions)
of these nodes generated a significantly huge amount of data that should be keeping
tracked for every single node within the simulation environment, which was not an
easy task.

As future work, we plan to simulate our dataset for a longer time period (e.g.,
3 months or more) and see the impact of users’ interactions on their privacy. We
also plan to reduce the dimensionality of features aiming at minimizing the simu-
lations time. Other future works can be in adopting some principles in sociology
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a)

b)
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c)

d)

Figure 9. a) Static network correlations among regular-regular users. b) Static network
correlations among regular-ABIs. c) Dynamic network correlations among regular-regular
pairs. d) Dynamic network correlations among regular-ABIs pairs.
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Figure 10. Correlations of the behavior for the pairs of weeks (week 1, week 2), (week 2,
week 3), (week 3, week 4), (week 4, week 5), (week 5, week 6), (week 6, week 7), and
(week 7, week 8) for both networks

such as Homophily (or called Assortativity) aiming at having an in-depth analy-
sis of the regular-regular, ABIs-ABIs, and regular-ABIs interactions considering
most of the possible attributes and parameters that make the simulations man-
ageable.
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