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Abstract. Segmentation of medical images is a necessity for the development of
healthcare systems, particularly for illness diagnosis and treatment planning. Re-
cently, convolutional neural networks (CNNs) have gained amazing success in au-
tomatically segmenting medical images to identify organs or lesions. However, the
majority of these approaches are incapable of segmenting objects of varying sizes
and training on tiny, skewed datasets, both of which are typical in biomedical appli-
cations. Existing solutions use multi-scale fusion strategies to handle the difficulties
posed by varying sizes, but they often employ complicated models more suited to
broad semantic segmentation computer vision issues. In this research, we present
an end-to-end dual-branch split architecture RGN-Net that takes the benefits of
the two networks into greater account. Our technique may successfully create
long-term functional relationships and collect global context data. Experiments
on Lung, MoNuSeg, and DRIVE reveal that our technique reaches state-of-the-art
benchmarks in order to evaluate the performance of RGN-Net.
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1 INTRODUCTION

In identifying and treating ocular fundus disorders, cardiovascular diseases, gastroin-
testinal diseases, etc., medical image analysis plays a crucial role. Concurrently, the
identification of the focal lesion and the accompanying clinical evaluations are always
performed by seasoned topic specialists. However, certain early indications are diffi-
cult to detect using the aforementioned conventional methods. Automatic Medical
Image Segmentation (MIS), an interdisciplinary recognition scenario derived from
widely used artificial intelligence methodologies [1, 2, 3, 4, 5], can optimize patient
management and filter potential subjective factors in clinical decision-making. It
can assist medical professionals in making more accurate and efficient diagnoses of
the corresponding disorders.

Figure 1. The results of segmenting medical images. The binary pictures in the second
row correlate to the original medical image from left to right in the first row.

The objective of image segmentation is to distinguish the target region of an im-
age from the background; it is a typically unstructured problem due to the differences
in medical imaging principles and the properties of the tissues themselves, as illus-
trated by the diverse medical image segmentation in Figure 1. In addition, image
creation, including CT and magnetic resonance imaging (MRI) [6], is influenced by
a number of additional variables, including noise, tissue mobility, and individual
variances.

In comparison to natural pictures, medical images have poor resolution, low
contrast, and scattered targets, but they are very accurate and stable. Early tech-
niques were mostly centered on edge detection and template matching due to these
properties. Specifically, the circular or elliptical Hough transform was employed
to segment the optic disc, whereas template matching was utilized to segment the
spleen in MRI and the ventricles in brain CT.

In this decade, the rapid development of hardware computing power has enabled
deep learning techniques [7, 8] to make significant advances in computer vision. For
instance, convolutional neural networks (CNN) have demonstrated a high ability
to learn discriminative visual representations with high capability and can be ap-
plied to a variety of computer vision tasks, such as target tracking. In this study,
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an end-to-end network is selected as the design of the MIS encoder-whole decoder,
and our approach can learn global contextual information and multi-scale feature
information more precisely without significantly increasing the parameters, which
can be essential for semantic segmentation tasks. The following is a summary of the
key contributions made by this work:

1. This work presents a dual attention module to improve the capture of the long-
distance dependency of spatial direction and precise position data.

2. Our technique incorporates the hole convolution with variable expansion factors
for multi-scale information fusion into the encoder-decoder network in order
to extract optimal multi-scale information in order to increase segmentation
accuracy.

3. Our method incorporates an attention gating technique to increase the integra-
tion level of the feature map derived by upsampling and downsampling.

4. Extensive trials, including segmentation of retinal vessels, segmentation of pul-
monary regions, segmentation of cell configurations, segmentation of cancerous
skin, etc., have confirmed the suggested method. The findings demonstrate that
the suggested strategy outperforms state-of-the-art techniques for certain tasks.

2 RELATED WORK

In this part, we outline the most significant advancements in medical picture segmen-
tation, highlight advancements in feedback attention networks, and highlight recent
contributions to image segmentation approaches based on Transformer architecture.

2.1 Medical Image Segmentation with Convolutional Neural Network

Most of the existing CNN semantic segmentation architecture is based on a fully
convolutional network (FCN) [9], or encoder-decoder architecture, such as [10]. In
the task of image classification, the fully connected layer at the end will compress
the two-dimensional matrix information in the original image, which will result in
the loss of spatial information of the image. It will have a great impact on the use
of convolution for image segmentation.

The advent of FCN created a precedent for convolutional neural networks for
image segmentation. The basic idea is to replace the fully connected layer in the
traditional convolutional neural network model with a convolutional layer and then
use the deconvolution operation to upsample the final output feature map and skip
connections to improve the rough upsampling pixel positioning. For example, Ben-
Cohen et al. [11] first explored the use of FCN to complete the segmentation task
of liver and tumor in CT images. Drozdzal et al. [12] proposed very deep FCN by
using short skip connections. The authors showed that a very deep FCN with long
and short skip connections achieved a better result than the original one. Compared
with CNN based on fixed-size input, FCN can accept input of any size and generate
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sums through effective reasoning and learning. The corresponding size output of the
original image. There are also many previous works that have proposed a series of
SegNet [13], DeepLab [14], DANet [15], etc.

U-Net [16] is the most famous network architecture in the field of medical image
segmentation. It is an FCN-based segmentation network proposed by Ronneberger
and others in the ISBI challenge [17]. After that, a series of deformation structures
based on U-Net were extended on this basis. For example, the dense connection
operation (UNet++) [18] is added to the U-Net network, UNet++ adds more jump
connection paths and up-sampling convolution blocks to compensate for the encoder
and linguistic gap between decoders. Other work integrates the residual idea into the
U-Net network. In 2019, Ibtehaz et al. [19] used the MultiResUNet network proposed
by Resnet for reference, which used the residual idea to transform the convolutional
block and jump connection in U-Net. Mehta et al. [20] proposed the Y-Net network
structure in 2018, adding a classification task of breast cancer images to the task
of segmentation of breast cancer biopsy images. Based on U-Net, Y-Net introduces
the residual connection of the residual network to help improve the segmentation
results, and at the same time, adds a second branch for the classification of breast
cancer pictures on this basis, which is a multi-task learning algorithm.

The U-Net technique of recurrent neural networks is used in another portion of
the study. Alom et al. [21] proposed the R2U-Net network design in 2018, which
incorporates the U-Net framework. BCDU-Net was suggested in 2019 by Azad
et al. [22]. This is an alternative method for integrating recurrent neural networks
into the U-Net network. Adding LSTM to CNN mostly addresses the gradient
disappearance and gradient explosion issues that arise during extended sequence
training. For medical picture segmentation, Alom et al. [23] developed Recurrent
Convolutional Neural Network (RCNN) and Recurrent Residual Convolutional Neu-
ral Network (R2CNN) based on U-Net models. CNN and LSTM are combined to
create ConvLSTM [24]. BCDU-Net implements two-way ConvLSTM in the jump
connection and integrates the appropriate feature maps of the encoding and decod-
ing phases in a nonlinear fashion to give more accurate segmentation results.

2.2 Use Transformer for Medical Image Segmentation

The transformer was first developed for use in machine translation jobs and has
now evolved to advanced levels in several NLP applications. In order to adapt
the concept of the transformer to image tasks and computer vision problems, nu-
merous recent research have made significant modifications to transformer design.
Child et al. [25], for instance, suggested a sparse transformer (Sparse Transformer)
that employs a scalable method to global self-attention. In response to the suc-
cess of Transformer, the current Vision Transformer (ViT) [26] established the
most sophisticated classification on ImageNet by immediately applying the trans-
former to full-size pictures with global self-attention. In contrast to the CNN-based
technique, ViT must be pre-trained on its own massive dataset. Some networks,
such as TransUNet [27] and Medical Transformer [28], are built on the enhance-
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ment of ViT in an effort to lessen the difficulty of training ViT. As a vision back-
bone, [29] proposes a Swin Transformer, an efficient and effective hierarchical vi-
sion Transformer. Swin Transformer demonstrated state-of-the-art performance on
a variety of vision tasks, including image classification, object identification, and
semantic segmentation, using the shifted windows technique. In addition, some
work, such as (UNETR: Transformers for 3D Medical Image Segmentation) [24],
segments 3D medical image data using the transformer design and achieves high
performance.

In this work, we considered the poor performance of the CNN network in learn-
ing long-term spatial dependence, which may seriously affect the segmentation per-
formance of challenging tasks. The advantage of the transformer is the ability to
model long-term dependencies. Therefore, we have combined the advantages and
disadvantages of the two networks.

3 METHODOLOGY
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Figure 2. This schematic is about the framework of RGN-Net. It consists of an encoder-
decoder network, multi-scale fusion, and a multi-hybrid attention mechanism. Layer-
Norm (LN) in the middle rounded rectangle denotes the normalization of the channel
direction by calculating the global average value.

This section illustrates the MIS technique recommended in this article. This
analogues of our algorithm include the encoder-decoder network, multiscale fusion,
and multiple hybrid attention mechanisms. Figure 2 displays the specifics of frame-
work.
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3.1 Encoding and Decoding Module

Our RGN-Net is shown in Figure 2, in which we employ a ResNet network with
pre-training and integrate a global context extraction network with an attention
gate mechanism network for joint extraction of feature vectors with higher semantic
representations. In Figure 2, red and blue tensor blocks, respectively, indicate the
encoding and decoding routes. This has the benefit of plainly illustrating the forward
propagation flow of our algorithm. Our encoder and decoder techniques are as
follows:

1. We quantify an input medical image asX = {x1,x2, . . . ,xi, . . .xN}, where N de-
notes the pixel number, and xi has m-dimensional features. In Figure 2, input
feature map of RGN-Net can be represent as F, where F ∈ RC×H×W ; ⊗ is the
operator of the tensor product; C, H, and W represent the number of channels,
height, and width of the tensor, respectively.

2. In the encoder, there are four downsampling layers, with each layer consisting of
two 3×3 convolutions, a Rectified Linear Unit (ReLU) function, and a 2×2 max-
pooling operation. Each encoder step can yield doubled feature maps. After four
iterations of downsampling, a high-dimensional feature extraction map may be
obtained and fed into a multi-scale fusion module.

3. Regarding the decoder, our objective is to recover the high-level semantic uti-
lizing the extracted features from the feature encoder and the multi-scale fu-
sion module. A hops-connected architecture is utilized to collect comprehen-
sive information from the encoder in order to compensate for information loss
caused by continuous pooling and strung convolution operations. Two pro-
cedures comprise the decoder procedure: upscaling and deconvolution. The
former expands the size of the picture using linear interpolation, whilst the
latter fills the leftover positions with 0 before performing a convolution pro-
cess.

3.2 Multi-Scale Feature Fusion

Using diverse convolution kernels, we may extract and combine information from
various scales to provide a superior representation. We also believe that a broader re-
ceptive field can improve the detection and segmentation of tiny objects. Therefore,
hole convolution is performed to generate more dense data, whilst Atrus Spatial
Pyramid Polling (ASPP) is utilized for multi-scale information fusion [14]. Ad-
ditionally, the varied image sizes provide an obstacle. Consequently, we execute
multi-branch pooling in four sizes. The resultant fused feature map is given into the
subsequent network layer.
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3.3 Attention Mechanism of Segmentation Network

Coordinate attention, in contrast to channel attention, which turns the feature ten-
sor into a vector via 2-dimensional global pooling, decomposes the channel atten-
tion into two 1-dimensional feature encoding processes that aggregate information
along two spatial directions. Consequently, distant dependencies may be collected
in one spatial direction, while precise position information can be maintained in an-
other spatial direction. The produced feature maps are then encoded into a pair of
orientation-sensitive and position-sensitive attention maps that may be deployed in
conjunction with the input feature maps to improve the representation of intriguing
items.

3.3.1 Self-Attention Mechanism for Context Extraction

To describe distant dependencies using the Global Context (GC) of the Non-Local
Network (NLNet) structure, cutting-edge methodologies have implemented a self-
attention mechanism. Nonetheless, NLNet is plagued by a high computational load.
Significantly, the GC of the NLNet is almost same across positions, indicating that
it is unnecessary to learn the GC by taking position dependence into account.

Informed on the work of Cao et al. [30], our technique captures all of the image’s
pixels. The structure of a Global Context Extract (GCE) block is shown in Figure 2,
which is expressed as (1):

Zi = xi +Wv2ReLU

(
LN

(
Wv1

n∑
j=1

eWv3xj∑n
m=1 e

Wv3xm
xj

))
(1)

where xi represents each element in the feature map of one instance of input data

x, 1 ≤ i ≤ n, n = W × H, x ∈ Rn; eWv3xj∑n
m=1 e

Wv3xm
represents the weight for global

attention pooling; Wv1, Wv2 and Wv3 indicate the linear transformation matrices.

3.3.2 Attention Gates in RGN-Net Model

To acquire a large segmentation domain, a downsampling method that improves the
feature graph might be considered. First, the coarse-grained position of the target
item is determined, while its global connection is represented. In general, we are able
to generate a global eigenvector to give AGs with information to delete irrelevant
content [31].

3.4 Loss Function

In order to complete the end-to-end deep learning framework RGN-Net, which is
represented in Figure 2, we must train the model pixel-by-pixel to identify whether
a pixel belongs to the foreground or background in the classification job. Cross-
entropy, the most common loss function, is unsuitable for MIS applications because
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the objects in medical images, such as retinal arteries and erythrocytes, usually oc-
cupy a restricted amount of space. In this work, the Dice coefficient loss function
is substituted for the conventional cross entropy loss for quantifying segmentation
performance when ground truth is available. Suppose k is the class label, where
k = {1, 2, . . . , K}, K ∈ N+. The ground truth labels vector and the predicted
probabilities vector can be represented as Y = {y1(k), y2(k), . . . , yi(k), . . . , yN(k)},
ŷi(k) ∈ [0, 1] and Ŷ = {ŷ1(k), ŷ2(k), . . . , ŷi(k), . . . , ŷN(k)}, yi(k) ∈ {0, 1}, respec-
tively. The formula of Dice loss function is shown as Equation (2).

LDice = 1−
K∑
k=1

2ωk

∑N
i ŷi(k)yi(k)∑N

i ŷ2i (k) +
∑N

i y2i (k)
(2)

where N is the number of pixels. K and ωk represent, respectively, the class number
and class weight. According to the MIS binary classification constraint, K = 2. Due
to the fact that the regularization factor successfully reduces model overfitting, we
can construct the final loss function as Equation (3).

Lfinal = Ldice +
λ

2
∥ ω ∥2 (3)

where
λ

2
∥ ω ∥2 is a regularization term to avoid overfitting; λ is the hyperparameter

of regularization term.

4 PERFORMANCE EVALUATION

4.1 Datasets and Evaluation Criterion

To evaluate the effectiveness of our algorithm RGN-Net, we conducted trials on four
medical picture segmentation datasets, including lung segmentation, DSB2018 cell
segmentation, retinal vascular identification, and red blood cell segmentation. The
DRIVE dataset is utilized for segmenting retinal vascular pictures, the lung dataset
is used for lung cancer diagnosis and screening, and the ISBI dataset is used for
segmenting cells.

To comprehensively evaluate the experimental results, we used seven evaluation
metrics commonly used for medical image segmentation tasks, namely accuracy,
specificity, sensitivity, precision, F1-Score, IoU, and Dice, which are shown as a cri-
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Figure 3. We extracted some prediction visualization results plots on several public bench-
mark datasets

terion group in Equation (4).

Accuracy =
TP + TN

TP + FP + FN + TN
,

Sensitivity =
TP

TP + FN
,

F1 =
2× (PR× SN)

PR + SN
,

IoU =
TP

TP + FN + FP
,

Dice =
2× TP

(TP + FN) + (TP + FP )
.

(4)

In this experiment, TP reflects the number of positive samples that were ac-
curately anticipated. Similarly, TN indicates the number of accurately negative
predicted samples, FP represents the number of positive predicted samples antici-
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pated to be negative, and FN represents the number of negative predicted samples
predicted to be positive. During the construction of the index, these four computed
values account for every conceivable circumstance.

4.2 Experiment Configuration

Our method RGN-Net is built on the PyTorch deep learning library. We use the
ResNet network, which has been pre-trained on ImageNet, as the backbone in the
encoder stage, because it was experimentally found that ResNet outperforms other
backbones, and we perform four downsampling operations to obtain a sufficiently
comprehensive set of semantic features. We trained and tested the platform relying
mainly on Ubuntu 20.04 system and two NVIDIA® RTX3090 graphics cards with
24GB video memory. In the training process, we used a batch stochastic gradient
descent (SGD) strategy, where the batch size was set differently for different datasets,
with the main parameters being 8, 16, and 32. In addition, the network learning rate
was set to 0.0001. In terms of optimizer selection, although we tested both Adam
and SGD for comparative experiments, it was found that SGD usually achieves
better performance, while Adam can converge in a shorter time. Our method adds
more dropout layers to the network in order to prevent the overfitting phenomenon
of the network training process, and the cut threshold is set to 0.7. Experimentally,
this proves to be effective in reducing the overfitting phenomenon of the network.

4.3 Experimental Results

As shown in Figure 3, we visualize the visual segmentation result graph and ground
truth comparison result graph of our method on several datasets. It can be seen that
after several iterations of the model, the gap between the result graphs predicted
by our algorithm and the ground truth result graphs is significantly reduced. This
precisely proves the effectiveness of our method and the accuracy of our experimental
design.

4.3.1 Cell Segmentation Datasets

The dataset utilized for the task of cell segmentation consisted of electron microscope
photographs of cells annotated with cell outlines. Our mission is to precisely pinpoint
the location of the cell outline in the image. Multiple cell segmentation datasets,
including gland segmentation, red blood cell segmentation, and DSB2018 datasets,
were used to test our approach. The glandular dataset comprises the anatomy of
intestinal glands; the DSB2018 dataset includes a significant number of segmented
nuclear pictures; and the erythrocyte dataset has 1 328 images. In addition, there
are 1 328 basic facts that are related.

In Table 1, we present the common assessment metrics for the segmented cell
dataset and erythrocyte dataset from the DSB 2018 release. Four assessment scores
for the U-Net technique on the DSB2018 dataset are 0.8516, 0.8812, 0.8725, and
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0.8833. UNet++ received scores of 0.9043, 0.9217, 0.9255, and 0.8974 across the
four assessment measures. For precision, accuracy, IoU, and Dice on the DSB2018
dataset, the experimental results of our technique for the four separate evaluation
metrics are 0.9340, 0.9339, 0.9422, and 0.9420, respectively, which are superior than
the current state-of-the-art methods.

Methods Precision Accuracy IoU Dice

U-Net [16] 0.8516 0.8812 0.8725 0.8833
Attention U-Net [31] 0.8881 0.9093 0.9119 0.9235
R2U-Net [23] 0.8531 0.8732 0.9015 0.9033
UNet++ [18] 0.9043 0.9217 0.9255 0.8974
CE-Net [32] 0.9232 0.9243 0.9349 0.9156
DoubleU-Net [33] 0.9296 0.9307 0.9401 0.9233
ResUNet++ [34] 0.9330 0.9045 0.9231 0.9328
RGN-Net (Ours) 0.9340 0.9339 0.9422 0.9420

Table 1. Erythrocyte dataset performance comparison between the proposed network with
state-of-the-art methods

4.3.2 Pulmonary Segmentation Dataset

The lung pictures in the Pulmonary Segmentation dataset consist of CT scans in
two dimensions. The collection contains 267 photos, each with a dimension of 512
by 512 pixels. The 267 photos are divided into three groups: a training set, a test
set, and a validation set. In the experimental data allocation, we utilize 80% of
the photos for training and the remaining images for testing and cross-validation.
The assessment criteria consist of precision, sensitivity, IoU, and Dice. Table 2
displays the segmentation dataset findings for the lungs. Four distinct measures
were employed to assess our experiments. U-Net achieved 0.9685, 0.9696, 0.9872,
and 0.9784 for the four assessment measures, but UNet++ achieved 0.9812, 0.9734,
0.9815, and 0.9836. Our technique yielded the highest F1, accuracy, and AUC
values, respectively 0.9912, 0.9980, and 0.9957.

Methods F1-Score Sensitivity Accuracy AUC

U-Net [16] 0.9658 0.9696 0.9872 0.9784
Attention U-Net [31] 0.9783 0.9784 0.9892 0.9834
RU-Net [35] 0.9638 0.9734 0.9836 0.9800
R2U-Net [23] 0.9832 0.9944 0.9918 0.9940
BCDU-Net [22] 0.9904 0.9910 0.9972 0.9946
UNet++ [18] 0.9812 0.9734 0.9815 0.9836
CE-Net [32] 0.9823 0.9831 0.9920 0.9812
RGN-Net (Ours) 0.9912 0.9862 0.9980 0.9957

Table 2. Performance comparison of the proposed network and current methods on a pul-
monary dataset
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Original Probability Binary Groundtruth

Figure 4. The segmentation results of RGN-Net on DRIVE dataset

Methods Accuracy Specificity Sensitivity AUC

U-Net 0.9531 0.9820 0.7537 0.9680
Attention U-Net 0.9629 0.9725 0.7884 0.9740
Deep Model 0.9495 0.9768 0.7763 0.9720
RU-Net 0.9553 0.9820 0.7726 0.9779
R2U-Net 0.9652 0.8303 0.7792 0.9245
BCDU-Net 0.9560 0.9786 0.8007 0.9789
UNet++ 0.9656 0.9867 0.8234 0.9628
CE-Net 0.9545 0.9851 0.8309 0.9779
Backbone 0.9477 – 0.7781 0.9705
Fusion Mechanism 0.8247 0.9847 0.8140 0.9782
RGN-Net (Ours) 0.9684 0.9937 0.8443 0.9868

‘–’ represents the data is not available

Table 3. Performance comparison of the proposed network and the state-of-the-art meth-
ods on DRIVE dataset

4.3.3 Vessel Segmentation Dataset

DRIVE is a data collection designed to separate blood vessels from retinal pic-
tures. It comprises of forty color retinal pictures, of which twenty are utilized for
training and the remaining twenty for assessment. These photos were originally
565 × 584 pixels in size. Having such a sample dataset under normal conditions
is insufficient to train a deep neural network. Given that deep learning networks
must converge, the model must be backed with a significant quantity of high-quality
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data so that the network may acquire more knowledge. Consequently, we use data
augmentation methods and the following ways to overcome the aforementioned is-
sue: First, random blocks were generated from the input photos. Twenty training
photos produced a total of around 190 000 patches, of which 171 000 were utilized
for training and the remaining images were used to DRIVE 19 000 patches of seg-
mentation data for validation. The batch size employed as network input data was
64× 64.

We show the segmentation results of RGN-Net on the DRIVE dataset in Fig-
ure 4. The four columns of data are the original color image, the predicted proba-
bility image, the predicted binary image, and the ground truth. In addition, we list
in Table 3 other state-of-the-art works and quantitative results obtained by the pro-
posed network RGN-Net on the DRIVE dataset. We used four different evaluation
metrics to evaluate our experiments, where U-Net method obtained 0.9531, 0.9820,
0.7537, 0.9680 on DSB2018 dataset from four evaluation metrics. UNet++ obtained
0.9656, 0.9867, 0.8234, 0.9628 on four evaluation metrics. We can see that RGN-Net
obtained 0.9656, 0.9867, 0.8234, 0.9628 on accuracy, specificity, sensitivity and AUC
metrics achieved excellent results with values of 0.9684, 0.9937, 0.8443 and 0.9868,
respectively.

5 CONCLUSION

In this study, we introduce the innovative combinatorial network RGN-Net, an end-
to-end system for medical picture segmentation using deep learning. During down-
sampling and stepwise feature map extraction, we use an attention strategy based
on the sum of two spatial orientations, which captures long-distance dependencies
along one space while keeping precise position information along the other space.
The resultant feature maps are then encoded as two direction-aware and position-
sensitive attention maps that may be applied to the input feature maps to enhance
the representation of significant objects. In addition, by cascading a multi-scale
information extraction module in the network, our method takes into considera-
tion the vast variety of medical image scales. To lower the weight of uninteresting
areas while stitching downsampled and upsampled feature maps, we calculate the
difference between the target region and the region of no interest. Our experimen-
tal findings demonstrate that our suggested technique may enhance the segmen-
tation of medical pictures for a variety of applications, such as the segmentation
of diverse cellular datasets and the identification of retinal vascular structures in
the lungs. RGN-Net earns the greatest F1 score on the lung dataset, which cor-
responds to 99.12% of the values discovered. This method should be applicable
to additional 2D MIS initiatives. Future study will focus further on reducing the
number of model parameters to reduce model complexity and enhance forecast ac-
curacy.
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