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Abstract. As social networks have been rapidly growing, traditional network repre-
sentation learning methods are struggling to accurately characterize their dynamic
changes, and to output effective node classification and link prediction. To ad-
dress this problem, this paper proposes IproGRU, a dynamic network representa-
tion learning method based on an improved Gated Recurrent Unit (GRU) network
to improve the dynamic network representation. First, the method quickly gener-
ates embedding for an influenced node by sampling and aggregating features of its
neighboring nodes when the network changes. Second, it updates the embedding
of the influenced node on time series by the improved GRU network to fully adapt
to the changes of the dynamic network. Experimental results on node classification
and link prediction for three datasets of dynamic networks show that the proposed
method improves the accuracy by 5–10% on average from those of the traditional
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Node2vec and GraphSAGE methods and has a slight advantage over Graph Con-
volutional Networks (GCNs). The results demonstrate that our method is effective
for dynamic network representation.
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1 INTRODUCTION

The “social network”, a sociological concept proposed by J.A. Barnes, is used to
describe human relations [1]. A social network is a structure composed of nodes and
edges, where the nodes represent individuals or organizations and the edges rep-
resent certain behaviors or relationships between the nodes. A social network can
be modeled and analyzed by graphs for studies such as node classification and link
prediction. With the rapid development of social networks, their features, including
the number and attributes of nodes, the related information of links, etc., are dy-
namically changing over time. And these changes have led to the rapid expansion of
data scales. The changing features and the increasing data scales have imposed more
challenges on accurate representation and analysis for social networks. Therefore,
how to accurately represent dynamic networks has become a key issue for studies
on social networks.

Traditional representation methods can neither fully capture the dynamic chan-
ges of network structures, nor accurately represent current states of those structures.
In a social network, adding or deleting a node or a link can cause changes of the whole
network, and constant changes of nodes and links will deviate the network from
its original structure. But constantly and repeatedly learning the whole changing
network will consume exceptionally much more resources and cannot obtain an
accurate representation of the social network.

To cope with such dynamic changes in social networks, a dynamic network
representation based on an improved GRU network (IproGRU) is proposed in this
paper. Inspired by Graph Neural Networks (GNNs) [2, 3, 4, 5, 6, 7], a vector
representation of a node is obtained by aggregating feature information of their
neighboring nodes, and the improved GRU network is used to extract the spatial
features in the dynamic network. In this way, the dynamic learning process of the
social network over time is established to obtain an accurate network representation.

2 RELATED WORK

On the social platforms like Sina Weibo, users and their friends form typical so-
cial networks. These networks contain important information that can facilitate
functions such as friend recommendation, community discovery, and user modeling.
Network representation learning, also known as network embedding, is an impor-
tant way to mine social networks for information. Its core is to embed unstructured
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data, such as nodes, links or communities, into a low-dimensional space, and repre-
sent nodes, links or even the whole network with low-dimensional vectors [8]. Thus,
the unstructured data are transformed into structured ones, while the original in-
formation is preserved as much as possible to support subsequent applications such
as node classification [9], link prediction [10, 11], and community discovery [12].

Traditional representation learning methods include the Principal Component
Analysis (PCA) [13], the Multidimensional Scaling (MDS) [14], the Isometric Map-
ping (Isomap) [15] and the Local Linear Embedding (LLE) [16]. These methods
preserve the overall structure of nonlinear manifolds with a high time complex-
ity and are only suitable for small networks. The network representation learning
methods proposed in recent years are built on previous node embedding methods
and recent developments in GNNs for graph-structured data. They intend to pre-
serve certain features of the original graph in the embedding space. DeepWalk [17] is
the first method that integrates deep learning into network embedding. By treating
nodes as words and generating short random walks as sentences, one can bridge the
gap between networks and word embeddings. Neural network models, such as Skip-
gram [18], can then be applied to these random walks to obtain network embeddings.
Node2vec [19] improves DeepWalk’s random walk strategy by using bias parameters
to decide the choice between the Depth-First-Search or the Breadth-First-Search.
Large-scale Information Network Embedding (LINE) [20] compensates for the spar-
sity of the DeepWalk’s first-order nearest-neighbors by using the rich second-order
nearest-neighbor relations. GraRep [21] is an alternative approach to random walks
via matrix decomposition and provides a good representation for weighted networks.
However, as networks expand, GraRep will cost increasingly computational resources
and its representation performance is unlikely to be ideal.

These traditional representation methods focus on the representation of static
networks and cannot adapt to the changes in the network. In order to capture the
new information that the changes bring, these methods must be retrained with sig-
nificant extra time and resource consumption. Thus, some studies have attempted to
learn node representations in dynamic graphs by applying a temporal regularizer to
enforce smoothness of the node representation from adjacent snapshots [22, 23]. But
these methods can hardly deal the situation where the nodes exhibit significantly
distinct evolutionary behaviors. GraphSAGE [24] and FastGCN [25] were devel-
oped for fast representation learning on graphs. Specifically, GraphSAGE computes
node representations by sampling the neighborhood of each node and then executes
a specific aggregator for information fusion. The FastGCN method interprets the
convolution of the graph as an integral transformation of the embedding function
and samples the nodes at each layer independently. Continuous-Time Dynamic Net-
work Embeddings (CTDNE) [26] is based on DeepWalk and builds more sensible
sampling paths by modifying the path sampling method so that the paths meet the
actual order of occurrence. Dynamic Graph Transformer (DGT) [27] uses spatial-
temporal encoding to effectively learn graph topology and capture implicit links.
Graphormer [28] uses scaled dot-product attention [29] for message aggregation and
extends the idea of positional coding to the graph domain. But it is only feasible
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to small molecule graphs and cannot cope with large graphs due to the significant
computation cost of full attention.

3 THE PROPOSED METHOD

Targeting the dynamic changes in social networks, this paper proposes IproGRU.
This method is developed based on the Barabási-Albert [30] network model since
nodes and links in dynamic networks change continuously with time. The working
process of the method consists of three procedures as follows:

1. The dynamic representation of an influenced node is generated by sampling
and aggregating the features of its neighboring nodes. The method samples
the k layers neighboring nodes of the influenced node, merges the features of
the neighboring nodes through an aggregation function, and then merges the
features of the influenced node with the features of the aggregated neighboring
nodes for the purpose of learning the features of the sampled node.

2. This method updates the representation with a series of dynamic changes in
the network structure. Unlike other dynamic network representation learning
methods, the neural network designed in this paper is based on an improved
GRU. It can update the node sequence changes with temporal information, and
the dynamic change process of the whole network can be recorded and described.

3. It has been shown that IproGRU is optimized by increasing the similarity of
neighboring node representations, since closer neighboring nodes should have
more similar embedding representations.

The method’s workflow is shown in Figure 1.

3.1 Problem Definition

Given a graph structure G = (V,E) of a social network, V and E are the vertex
set and the edge set, respectively. The dynamic change process of the network can
be described as a series of interactive information under time t and symbolized as
(vi, vj, t). Our goal is to update the representation of the whole network with this
series of temporal information. In other words, after the topology information of the
dynamic network is captured, the attributes of each node are mapped to a continuous
low-dimensional vector space Rd. Thus, the representation of the whole dynamic
network can be obtained effectively for the subsequent application tasks.

In the real world, the social networks never remain static and continue to change
with time. Therefore, before building the dynamic network representation method,
it is necessary to identify possible changes of the real-world social networks:

1. Emergence of a new independent node: a new user joins a social network, but
does not link to any existing user in the network.
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Figure 1. The workflow of IproGRU
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2. Emergence of a new link: a new link can be created between two existing users
who were not directly related before and are now connected because of common
friends, interests, hobbies, or some events.

3. Emergence of a new dependency node: a new user joins the social network and
simultaneously establishes a link with one or more existing users.

4. Disappearance of an independent node: an isolated user exits the social network.

5. Disappearance of a link: an existing link between two users is terminated.

6. Disappearance of a node: a user who has links to other users quits the social
network and all their links are terminated.

Figure 2. An example of the dynamic changes in a social network graph

Figure 2 illustrates the dynamic changes in a social network. Emergence and
disappearance of an independent node does not affect the representation of other
nodes, and only the embedding of the node needs to be added to or removed from
the network. The other four cases involve creations and removals of links and nodes
those links connect. We regard these nodes as the influenced nodes in this paper
and IproGRU is designated only to the influenced nodes.

Therefore, we consider the four changes with link changes in order to better
capture the representation of the network and describe its dynamic changes over
time. The IproGRU method consists of two parts: feature information aggregation
and network representation update. And an optimization method is developed to
finesse the similar representations between nodes that are closer together.

3.2 Feature Information Aggregate

The first step in the dynamic network representation method is to sample and ag-
gregate neighborhood features for the influenced nodes. The nodes considered in
this paper are not isolated, they are more or less connected to other nodes in the
network. When a new dependency emerges, i.e., an unlabeled node joins the net-
work and is connected to one or more other nodes at the same time, then, how to
quickly generate embedding for that node is an important question. This paper pro-
poses a new method that aggregates the feature information of the influenced node’s
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k layers neighbors when the network changes, and merges the aggregated informa-
tion into the features of that influenced node, so that when a new node is added or
other changes occur on the node, the influenced node can learn the information of
the whole network quickly through its neighbors.

Algorithm 1 defines the process of the feature information aggregation. Moti-
vated by [24], the parameters are fixed. We assume that K aggregation functions
are learned for each node, and denoted as AggF k, ∀k ∈ {1, 2, . . . , K}. They gather
the information of the k layers neighboring nodes, and Wk, ∀k ∈ {1, 2, . . . , K} is
a set of weight matrices for propagating information among neighboring nodes of
different layers.

Algorithm 1 Feature information aggregation algorithm

Input: Graph G = (V,E); input features {xv,∀v ∈ V }; depth K;
weight matrices Wk, ∀k ∈ {1, 2, . . . , K}; non-linearity σ;
aggregator function AggF k, ∀k ∈ {1, 2, . . . , K};
neighborhood sampling collection Nk,∀k ∈ {1, 2, . . . , K}
Output: vector representations zv for all ∀v ∈ V
1 h0

v ← xv,∀v ∈ V ;
2 for k = 1, . . . , K do
3 for ∀v ∈ V do

4 hk
N(v) ← AggF pool

k ({hk−1
u ,∀u ∈ Nk(v)});

5 hk
v ← σ(Wk · concat(hk−1

v , hk
N(v));

6 end
7 hk

v ← hk
v/||hk

v||2, ∀v ∈ V ;
8 end
9 zv ← hK

v , ∀v ∈ V ;

In Algorithm 1, after each iteration, the representation of the current node in-
cludes both its own attributes and the feature information of its neighboring nodes
in the corresponding layer. This aggregation algorithm therefore enriches the rep-
resentation of the node.

The input of Algorithm 1 consists of G = (V,E), and the feature informa-
tion of the nodes in network xv,∀v ∈ V . A sampling algorithm can be used to
sample and extract the neighboring nodes in 1 to k layers. Then, the feature in-
formation of the sampled neighboring nodes is aggregated (the fourth line of the
Algorithm 1). Motivated by [24], a pool aggregation structure is built, AggF pool

k =
max({σ(Wpoolh

k
ui
+b),∀ui ∈ N(v)}), where max denotes the element-wise max oper-

ator and σ is nonlinear activation function. Then, the node’s current representation,
hk−1
v , and the aggregated neighborhood vector, hk

N(v), are fed to a fully connected
layer with the nonlinear activation function σ, which transforms representations of
the node (the fifth line of Algorithm 1). Finally, the vectorization representation of
node v is output. It is worth noticing that the neighboring nodes in different layers
influence the information propagation of the influenced node v differently. When
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aggregating the feature information of neighboring nodes into the influenced node,
the neighboring nodes that are closer to the influenced node are assigned with larger
weights.

3.3 Network Representation Update

After merging the feature information of neighboring nodes, the influenced nodes
should be updated on the time series using the update component. The order of
node changes is important for the formation of node representations. For example,
in e-commerce, the most recent purchase record is more likely to capture the latest
user preferences than the older records. In this paper, we view each node change
over time as a ’sequence’. Instead of recording all the information in this ’sequence’,
we only keep the most recent information about the node, and update the sequence
when the node is influenced. A series of changes in a dynamic network may involve
different changes to the same node at multiple times, and the output of the update
operation of the previous change to the influenced node should be an input to its
next change. For example, if node v3 is disconnected from node v7 at t1 and is linked
to node v1 at t3, the output of node v3 at time t1 is one of its inputs at time t3.

Changes in the network can be represented by (vi, vj, t,flag), where vi, vj are
the influenced nodes, t refers to the time when the change occurs and flag indicates
whether the change leads to an expansion or shrinking of the network. flag = 1 rep-
resents the expansion of the network and indicate the second and the third changes
listed in Section 3.1. In Figure 2, a set of changes (v1, v3, t3, 1) occurs at t3 and the
influenced nodes are v1 and v3. flag = −1 represents the shrinking of the network
and denotes the last two changes listed in Section 3.1. For example, in Figure 2,
at t6 the link between v4 and v5 disappears and the influenced nodes are v4 and v5,
so (v4, v5, t6,−1) can be used to describe this change at t6. Since the time series is
a critical parameter to the sequence of update operations, the proposed method is
based on an improved GRU to perform update operations. A GRU is a variant of
Long Short-Term Memory (LSTM) [31].

Algorithm 2 Network representation update algorithm

Input: flag ; vector representations zvi(t) and zvj(t); cell memory mv(t−);
short-term cell memory ms

v(t−); long-term cell memory ml
v(t−); hidden

state nv(t−); time interval ∆t; decreasing function g; weight matrices W1

and W2; activation function act(·) etc.
Output: cell memory mv(t); hidden state nv(t)
1 e(t)← act(W1 · zvi(t) +W2 · zvj(t) + ε);
2 use g(∆t) to reduce ms

v(t−);
3 m∗

v(t−)← ms
v(t−),ml

v(t−);
4 mv(t), nv(t)← standard GRU (e(t),m∗

v(t−), nv(t−),flag);

Algorithm 2 defines the process of updating the network representation. It uses
a feedforward neural network to model the information of the directly influenced
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nodes before the update operation:

e(t) = act(W1 · zvi(t) +W2 · zvj(t) + ε) (1)

where zvi(t) and zvj(t) are representations of nodes vi and vj, respectively, after
they have merged the features of neighboring nodes of k layers. W1, W2 and ε are
parameters of the neural network and act(·) is an activation function such as sigmoid
or tanh. Output e(t) contains the sequence information of the nodes, (vi, vj, t,flag).

The update operation of a node depends heavily on recent impacts, while earlier
impacts are forgotten to varying degrees along the timeline. Therefore, in order to
better establish update operations, the GRU is modified to the structure shown in
Figure 3, based on [32, 33].

Figure 3. The improved GRU for network representation update

The input to the update method is the most resent cell memory mv(t−), the
hidden state nv(t−), the time interval ∆t and the information about the influenced
node e(t−). The output is the cell memory mv(t) and the hidden state nv(t) of the
influenced node.

The difference between the improved GRU and the standard GRU is indicated
in the dashed box in Figure 3. These different parts of the operation are described
as:

ms
v(t−) = tanh(Wd ·mv(t−) + λd), (2)

m̂s
v(t−) = ms

v(t−) ∗ g(∆t), (3)

ml
v(t−) = mv(t−)−ms

v(t−), (4)

m∗
v(t−) = ml

v(t−) + m̂s
v(t−). (5)

The node’s cell memory mv(t−) is divided into a short-term cell memory ms
v(t−)

and a long-term cell memory ml
v(t−). The former represents the discounting (for-

getting) of node information over time, while the latter is generated by the neural
network. In Equation (3), ∆t denotes the time interval between two adjacent times
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when the node is influenced, m̂s
v(t−) denotes that the short-term cell memory is

forgotten after a time interval ∆t, and g is a decreasing function. In Equation (5),
m∗

v(t−) denotes the combination of the long-term cell memory ml
v(t−) and the dis-

counted short-term cell memory ms
v(t−). It is the adjusted cell memory and can be

considered as the output of the dashed box that is fed into the standard GRU cell
(the rest of the update cell).

The other operations in Figure 3, same as those in the standard GRU [34], are
defined as follows:

rt = σ(flag ·Wr · e(t) +Wr · nv(t−) + λr), (6)

ut = σ(flag ·Wz · e(t) +Wz · nv(t−) + λz), (7)

m̃v(t) = tanh (flag ·Wm̃ · e(t) +Wm̃ · (rt ∗ nv(t−)) + λm̃), (8)

mv(t) = (1− ut) ∗m∗
v(t−) + ut ∗ m̃v(t), (9)

nv(t) = σ(W0 ·mv(t)). (10)

For convenience, the procedure for updating the modules is summarized as fol-
lows:

mv(t), nv(t) = Update(e(t),mv(t−), nv(t−),∆t,flag). (11)

3.4 Optimization Method

By aggregating the information of neighboring nodes and updating the represen-
tation of the network, we enrich the embedding representation of the nodes in the
network. The nodes in the network can better reflect the spatial and the temporal
features of the whole network. This kind of representation is closer to the reality and
can help the network more effectively adapt to the dynamic changes. For example, if
a new node in a social network has no label information, a node embedding represen-
tation can be quickly generated through its neighboring nodes’ feature information.
It has been shown [19, 24] that in real networks, the closer the connections between
nodes, the more similar the properties of the nodes.

In this regard, we propose an optimization method to obtain a more similar
embedding representation of nodes that are close to each other. This method uses
the parameters involved in aggregating the neighbor information (Algorithm 1) by
means of the loss function:

J(zv) = − log(σ(zTv zu))−Q · Eun∼Pn(u) log(σ(−zTv zun)), u ∈ Nv (12)

where zv is the embedding representation of the influenced node; Q defines the num-
ber of negative samples; pn is a negative sampling distribution; v is the influenced
node; and Nv is the set of sampled neighbors of node v. The loss function encourages
nearby nodes to have similar representations.
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4 EXPERIMENTAL SETUP

4.1 Datasets

We chose three datasets to evaluate IproGRU. Two of them were gleaned from real
online social platforms: HEP-TH and Epionios, and the other one is a graph network
repository: BlogCatalog. The features of the three datasets are listed in Table 1.

HEP-TH Epinions BlogCatalog

#Node 1 424–7 980 14 180 10 312

#Edges 2 556–21 036 227 642 333 983

#Time Steps 60 100 60

Table 1. Statistical information of experimental data sets

HEP-TH [35]: HEP-TH contains abstracts of academic papers in Conference on
Theory of High Energy Physics from January 1993 to April 2003. We prepared
the data in the same way as [37] did: for each month, we created a collaborative
network using all papers published up to that month; and we built a time series
of 60 graphs from the first five years data where the nodes were increased from
1 424 to 7 980.

Epinions [36]: Epinions is a product review site in which users share their reviews
and opinions about products. Users themselves can also build trust networks to
seek advice from others. The network contains 14 180 nodes and 227 642 edges,
Epinions is very useful for experiments, especially for those on the combination
of recommendation systems and social interactions.

BlogCatalog [37]: BlogCatalog is a social blog directory in which users can post
their blogs under different predefined categories. This dataset includes 10 312
nodes and 333 983 edges, and the label dimension is 39 [19]. BlogCatalog is
a static property dataset, in order to implement a dynamic environment, we
randomly added 0.1% of new edges and changed 0.1% of the attribute values
at each time step to simulate the evolution process [36].

4.2 Baselines

We deployed three classic social graph analysis methods for the tasks of node clas-
sification and link prediction, thus the results could be adequately compared. The
three methods are illustrated as follows:

GraphSAGE is an inductive learning method that uses the vertex attribute infor-
mation to efficiently generate unknown vertex embedding. The core idea is to
generate the target node embedding vector by learning a function that aggre-
gates neighbor nodes.
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Node2vec is a graph embedding method [19]. First, it incorporates Depth-First-
Search neighborhoods and Breadth-First-Search neighborhoods that directly im-
ports the word2vec package sample through a specific walking method, and gen-
erates a corresponding sequence for each point. Second, it treats these sequences
as texts and imports them into a Skip-gram method in word2vec to obtain the
vector of each node (corresponding to the vector of each word in word2vec).

GCNs [39] is a state-of-the-art graph convolutional network method. It attempts
to learn better node features by aggregating information from the node’s neigh-
bors. Since the method cannot use temporal information, it regards the dynamic
graphs as static ones in our experiments by ignoring the time of edge creation.

4.3 Evaluation Metrics

In the node classification task, TP(A), FP(A), TN(A) and FN(A) were used to indi-
cate the number of true positives, false positives, true negatives and false negatives,
respectively, among the instances predicted to be label A. C is the overall set of
labels.

Accuracy (AC) was used to measure the proportion of the entire sample space
that was correctly classified, defined as follows:

AC =

∑
A∈C(TP (A) + TN(A))∑

A∈C(TP (A) + TN(A) + FP (A) + FN(A))
. (13)

Macro-F1 is a metric that assigns the same weight to each class [40]. It is defined
as follows:

Macro-F1 =

∑
A∈C F1(A)

C
(14)

where F1(A) is the F1-measure for the label A.
Micro-F1 is a metric that assigns the same weight to each instance. It is defined

as follows:

Micro-F1 =
2 ∗ Pr ∗R
Pr +R

(15)

where Pr =
∑

A∈C TP (A)∑
A∈C(TP (A)+FP (A))

and R =
∑

A∈C TP (A)∑
A∈C(TP (A)+FN(A))

.

In the link prediction task, Mean Average Precision (MAP) was used as an eval-
uation metric for link prediction. MAP is a metric with good discrimination and
stability, according to reference [41], it can be written as:

MAP =

∑
i AP (i)

|V |
(16)

where AP (i) =
∑

k precision@k(i)·
∏

{Epredi(k)
∈Egti}

|{k:Epredi
(k)}∈Egti |

and P@k =
|Epred(k)∩Egt|

k
. P@k is

the fraction of correct predictions in the top k predictions. Epred and Egt are the
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predicted and ground truth edges, respectively. MAP averages the precision of all
nodes. High MAP values imply that the method can achieve good predictions.

5 EXPERIMENTS

We conducted a series of experiments to evaluate the effectiveness of IproGRU.
Specifically, node classification and link prediction tasks were designed on three dif-
ferent datasets to verify the practicality of IproGRU. A comparison between Ipro-
GRU and certain classical embedding methods was also conducted.

5.1 Node Classification

We conducted node classification to measure the learning effectiveness of network
representations. In this task, the considered dataset was divided into the training
and the test sets. The training set accounted for 60% and the test set for 40%.
Based on the approach in reference [42], we adopted the logistic regression as the
classification method, and used it to train a classification model on the training
set. The nodes in the test set were used to test the classification effectiveness. The
evaluation metrics included the accuracy (AC), Macro-F1 and Micro-F1, and the
results are listed in Table 2.

Method
HEP-TH BlogCatalog Epinions

AC Macro Micro AC Macro Micro AC Macro Micro

Node2Vec 0.481 0.481 0.503 0.698 0.715 0.713 0.175 0.211 0.183

GraphSAGE 0.479 0.452 0.491 0.715 0.724 0.714 0.196 0.228 0.189

GCNs 0.54 0.494 0.523 0.824 0.881 0.881 0.203 0.238 0.202

IproGRU 0.545 0.502 0.534 0.829 0.888 0.888 0.217 0.24 0.219

Table 2. The performance comparison of node classification

In Table 2, IproGRU achieves the best classification results on all three datasets.
This good performance can be attributed to two key facts:

1. the influenced nodes merged feature information from their neighboring nodes,
and enriched the embedding representation;

2. a more expressive and improved GRU helped the changing network to perform
the update operations in time.

5.2 Link Prediction

We conducted link prediction to measure the learning effectiveness of network rep-
resentations. The methods were trained by extracting a fixed proportion of the
edges, and the remaining edges were used as a test set to measure the quality of
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the prediction in terms of MAP. We deployed IproGRU and three baseline meth-
ods (Node2Vec, GraphSAGE, GCNs) on the HEP-TH, BlogCatalog and Epinions
datasets for this task, and the results are presented in Table 3.

Method HEP-TH BlogCatalog Epinions

Node2Vec 0.728 0.698 0.605

GraphSAGE 0.773 0.725 0.648

GCNs 0.826 0.769 0.702

IproGRU 0.857 0.783 0.747

Table 3. Comparison of MAP values between IproGRU and three classical methods on
link prediction

In Table 3, the MAP of IproGRU is significantly higher than that of GraphSAGE
and Node2Vec, and slightly better than that of the well-known GCNs method. The
reason is that IproGRU can better learn various rich features on the network and
achieve a more accurate network representation. These results demonstrate that
enriching the embedding of network nodes is an effective way to improve the learning
capability of dynamic network representations.

6 CONCLUSIONS

In this paper, we propose IproGRU, a dynamic network representation learning
method based on an improved GRU network that can quickly adapt to the changes
occurring in the social network. The embeddings of newly joined unlabeled nodes
are quickly generated by aggregating the features neighboring nodes in different
layers. In order to track the changes of the influenced nodes in the time series,
an improved GRU network is developed to generate more appropriate embeddings
for the nodes by enhancing the recent influences of the nodes while appropriately
preserving the previously influenced nodes. We conducted node classification and
link prediction experiments on three datasets of dynamic graphs. The experimen-
tal results show that IproGRU can significantly outperform traditional network
representation methods in terms of accuracy and other metrics, which demon-
strates the effectiveness of the method in dynamic network representation learn-
ing.
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