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Abstract. Network representation learning has attracted widespread attention as
a pre-processing process for some machine learning and deep learning tasks. How-
ever, most existing methods only consider influence of nodes’ low-order neighbors
to represent them. Either nodes’ high-order neighbor or the intrinsic characteris-
tic attributes of nodes are ignored, leading to the effect of network representation
learning that needs to be improved. This paper proposes a novel model named
Structure Enhanced Graph Convolutional Network (SEGCN) to address these lim-
itations. SEGCN consists of the following components, i.e., the network structure
enhancement to transform weak relationship into strong relationship, the node fea-
ture aggregation to fuse high-order neighbor information. Hence, the SEGCN model
can simultaneously integrate network structure information, attribute information,
and high-order neighbor relationships together. Experimental results for node clas-
sification and node clustering on six datasets show that SEGCN achieves better
effectiveness and efficiency than state-of-the-art baselines.

Keywords: Network representation learning, graph convolutional network, deep
learning

Mathematics Subject Classification 2010: 68-T30

1 INTRODUCTION

Graphs are ubiquitous data structure employed in many deep learning
tasks [T, such as paper citation networks [2], social networks [3], e-commerce net-
works [4], and so on. There are a large number of graph-based algorithms and
applications have been derived, including information recommendation [5, 6], link
prediction [7], and traffic risk forecast [§], etc. Obviously, as a prior machine learn-
ing task, how to efficiently and accurately learn and represent a complex network
has become a top priority. The key of network representation learning (Figure |1
is to embed the nodes in the network with given network structure information
or attribute information, and embed nodes of high-dimensional sparse space into
a low-dimensional dense representation vector [9]. Traditional approaches usually
use the structural information about given networks for embedding, which allows
structurally similar nodes to have similar vector representations. However, these
methods ignore the inherent characteristics of nodes. In recent years, one of the
most popular deep learning methods is the graph convolutional neural network,
which aggregates the information of a node’s neighbors to improve its vector repre-
sentation. Nevertheless, the deep-learning-based methods only consider nodes’ local
adjacency relationship but ignore the impact of their high-order neighbors.

Hence, this paper proposes the SEGCN framework to integrate the local struc-
ture, global structure and node characteristics of the network to improve the effect
of network representation learning. The overall architecture of SEGCN is illustrated
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Figure 1. Network representation learning

in Figure[2l For an initial complex network, considering its structure and attributes,
we compute the structural similarity and attribute similarity, respectively. The au-
toencoder is used to non-linearly fuse the two similarities, and then based on the
similarity threshold comparison method, the structure of the whole network is en-
hanced, new edges arise in the network, and the original sparse network will become
a dense network. The central node and its high-order neighbor nodes may be linked,
and the graph convolutional neural network is further employed to finish the feature
aggregation of nodes in the network, and a high-quality node vector representation
is generated. Based on the structure enhancement algorithm, the graph’s adja-
cency structure is enhanced to capture high-order neighbor relationships, and the
enhanced weighted adjacency matrix is input into the graph convolutional neural
network model, then the network’s high-order topological structure and the inherent
characteristics of the node are merged to realize the representation learning of the
node. Experimental results on six datasets show the effectiveness and efficiency of
the algorithm proposed in this paper.
In summary, this work makes several major contributions:

1. An autoencoder is used to fuse the nonlinear relationship between structural
similarity and attribute similarity to obtain comprehensive similarity, and the
similarity threshold method is further used to enhance the network structure to
capture high-order neighborhood relationships.

2. Based on the structure enhancement algorithm and one-layer GCN network,
the over-smoothing problem is alleviated and high-quality node representation
learning is obtained.

3. We conduct extensive experiments on some datasets for node classification and
node clustering, experiments on all of those datasets and tasks show that SEGCN
model is consistently better than those state-of-the-art baselines or deep learning
methods.
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The remainder of this article is structured as follows. Section ] briefly introduces
the methods for representation learning and the existing problems, Section 3| presents
our methods and elaborates, Section [] evaluates the proposed method and analyzes
the experimental results. Section [f discusses the conclusion and future works.

2 RELATED WORK

In this section, we mainly review some algorithms of network representation learning.
They are organized into two subsections. Section 2.1] summarizes some traditional
network representation learning methods, while Section 2.2] introduces some deep
learning methods for graph embedding.

2.1 Traditional Representation Learning Methods

The purpose of network representation learning is to map a group of nodes in a high-
dimensional space to a low-dimensional space, and each node is marked as a low-
dimensional dense vector. The low dimensional node representation vector group
can be located in the vector space and has the ability of representation and rea-
soning, which can be used for downstream machine learning or deep learning tasks,
such as node classification, node clustering, link prediction, recommendation sys-
tem, etc. Traditional network representation learning algorithms are mainly based
on factorization or shallow network structure.

Some factorization based methods [10, 1] regard an adjacency matrix A as the
adjacency relationship between any node in the network and other nodes. By de-
composing this adjacency matrix, those similar nodes in the network structure can
also have similar node representation after matrix decomposition. Locally Linear
Embedding (LLE) [12] assumes that the nodes in the network are a set of linear
representations of the neighbor node vectors in the network, and aims to find a set
of normalized weight coefficients so that the node can be weighted by a group of
neighbor nodes. However, this method is depending on the choice of neighbor nodes,
and different neighbor nodes will have an important impact on the representation of
the node. Laplacian Eigenmaps [I3] regard the representation of the node as a prob-
lem of the eigenvalue decomposition of the Laplacian matrix, and the eigenvector
obtained by decomposing the Laplacian matrix is regarded as the embedding rep-
resentation of the node. However, the time complexity of this method is too high.
When the network structure is large, such as an e-commerce network containing
millions of nodes, it will have a large time cost, so it is not suitable for large-scale
networks.

Methods based on shallow networks mostly consider the low-level topology of
the network, and then combine some bag-of-words models or natural language
processing methods to complete node embedding. Based on the idea of random
walk, DeepWalk [T4] uses a depth-first search strategy to find a node sequence
s ={v1,v,...,v;} that contains the network topology, and then feeds the sequence
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into the Skip-Gram model. The central node and the context node in the sequence
generate the representation vector of the node. LINE [I5] considers both the first-
order similarity and the second-order similarity. The first-order similarity is regarded
as the directly connected local similarity, and the second-order similarity is used to
compensate for the sparsity of the first-order similarity, so that nodes with similar
first-order similarity and second-order similarity also have similar node represen-
tations. Node2vec [16] is different from DeepWalk in that it uses a breadth-first
search strategy to sample the sequence of nodes, while observing the microscopic
view around the nodes, which can make the nodes with structural equivalence closer
in the embedding space.

Although the above network representation learning methods can use the topol-
ogy information in the network to embed and represent the nodes, some ignore the
high-order neighbor relationship of the network structure or do not integrate the in-
herent characteristics of the node, resulting in the performance of the representation
learning needs to be further improved.

2.2 Deep Learning for Representation Learning

The rapid development of deep learning in computer vision has also promoted the
application of deep learning in natural language processing and social networking.
Using deep learning technology to learn representations of nodes in the network
has become a concern of many researchers. Structural Deep Network Embedding
(SDNE) [I7] uses unsupervised learning to obtain the latent representation of the
vertices by forming an AutoEncoder based on the neighbor structure of the vertices,
which will effectively retain the second-order similarity of the network. At the same
time, in order to retain the first-order similarity, it is of great significance to use
the method of Laplacian feature mapping to supervise and adjust the embedding
representation of the node according to the prior knowledge represented by the
adjacency matrix.

In the real world, many irregular data do not have a network structure that
can only be represented in the form of graphs. Therefore, extending the idea of
neural networks to graph structure data has attracted great attention from re-
searchers. Convolutional neural networks for graph structure are mainly divided
into two aspects: graph convolution based on spectral domain or based on spatial
domain.

For spectral domain graph convolution, Bruna et al. [I§] introduced the CNN on
the graph for the first time to perform eigenvalue decomposition on the Laplacian
matrix of the graph, and then regard the decomposed eigenvectors as a set of basis
for Fourier Transform. However, when the network is large, the time cost for decom-
position of the Laplacian matrix is too high. Because the K-order Chebyshev needs
to multiply the Laplacian matrix on the graph for k times, the Laplacian matrix
under the k-fold multiplication can represent the K-order neighbor relationship on
the graph, so Defferrard et al. [T9] introduced Chebyshev polynomials to approxi-
mate graph convolution operations in the spectral domain. In 2020, Abu-El-Haija
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et al. [20] proposed to train multiple GCN instances on the node pairs found at dif-
ferent distances in the random walk, and learn to optimize the output combination
of the instances of the classification target, and finally achieve better results.

For spatial graph convolution, the convolution operation is directly defined on
a group of similar nodes in space, and the representation of a node can be regarded as
a weighted combination of a group of neighbor nodes. The weight learning between
the central node and neighbor nodes has recently attracted more and more attention.
GAT [21] incorporates the attention mechanism into the aggregator function to take
into account the relative importance of each neighbor’s information from the target
node’s perspective.

Due to the natural ability to integrate topological structure and inherent fea-
tures, the network representation learning method based on graph convolution has
significantly improved the representation effect of nodes compared with traditional
methods. Since each convolution of GCN only involves first-order neighbors, if we
want to integrate the features of K-order neighbors, we need to perform k times
convolution operations. However, high-level graph convolution will have overfitting
problems, so most of the existing graph convolution models are within two or three
layers. In other words, it can not effectively capture high-order neighbors’ features.

2.3 Existing Problems

While both conventional and deep learning-based approaches have made significant
contributions to representation learning tasks, there are notable drawbacks.

1. It is challenging to capture high-order local interactions in some sparse networks.
To use the citation network as an example, the majority of paper citation net-
works are sparse, meaning that each article is referenced in around a dozen
or fewer documents, yet the total citation network may include thousands of
documents. There may be no citation link between articles on the same sub-
ject, making it impossible to incorporate effective high-order neighborhood node
information during representation learning tasks, resulting in low-quality repre-
sentations.

2. In addition to the complex network’s topological structure connection, the nodes
in the network have a wealth of attribute qualities. The conventional approach
of representation learning retrieves the node representation vector from the net-
work topology, but ignores the influence of node attributes or intrinsic features
on representation learning. While some deep learning algorithms use node char-
acteristics to some degree, they neglect the effect of high-order neighbor nodes
on the representation learning process.

As a result, this article proposes the SEGCN model. On the one hand, it is
capable of capturing high-order neighborhood node information through structural
enhancement, and on the other hand, it is capable of efficiently integrating the
network’s topological structure and node attribute information to achieve a higher
representation learning effect.
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3 PROPOSED METHOD

This paper proposes a Graph Convolutional Neural Network model named SEGCN
based on the Structure Enhancement algorithm. The innovation of this model lies
in the design of a structural enhancement algorithm. The algorithm can not only
integrate the nonlinear relationship between structural similarity and attribute sim-
ilarity, but also capture the influence of higher-order neighbor relationships on node
representation. The model in this paper has been tested on multiple datasets, show-
ing that the SEGCN model can outperform the mainstream network representation
learning methods.

3.1 Basic Definition

Given an undirected graph G = (V,E, A), where V = {vy,ve,...,0,} is a set
of nodes, F is an edge set that can be represented by adjacency matrix E =
(€ij)nxn € R A = (a1,a9, .. .,an)T € R™*? ig a feature representation matrix
of all nodes, where a; € R? represents the feature representation vector of node
i. D ={d;;} € R™" is a diagonal matrix, representing the degree of all nodes in
the graph, which can reflect the local influence of the nodes in the network, where
D;; = Z?Zl d;;. If there is an edge between node v; and v;, then d;; = 1; otherwise,
dz‘j =0.

3.2 Network Structure Enhancement

The existing network representation learning is mainly based on strong relation-
ships, namely first-order neighbor relationships. Since weak relationships [22] exist
between nodes that are not directly connected, this kind of relationships forms
an “information bridge”, which makes the information of one node spreading to
another node. This information dissemination will also affect the representation of
the node. Therefore, in complex networks, the weak relationship based on higher-
order neighbors is also worthy of attention. In this part, we use the autoencoder
to integrate node similarity and attribute similarity to enhance the network struc-
ture. Specifically, given a similarity threshold, if the similarity between two nodes
exceeds the threshold, it indicates a necessary mutual influence relationship be-
tween the two nodes, and a new edge is added between the two nodes. The weak
relationship between the two nodes will transform into a strong relationship. Mean-
while, the similarity value represents the weight of the relationship between the two
nodes.

To discover weak relationships among nodes, we use SimRank [23] to calculate
the structural similarities among nodes by following formula:

, 1, i =],
SiM sy (V5, V) = ; . _ (1)
OGO 2=a€0(w) 2be0(u;) SMstru(@, ), otherwise,
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where O(v;) and O(v;) represent the out-degrees of the two nodes, respectively, and
C' is the damping coefficient.

We iteratively calculate the structural similarities among nodes. We only calcu-
late the similarity among the unconnected nodes. After the process is over, for each
node in the initial network, an n-dimensional vector stru; € R™ will be obtained
to indicate the similarity between a node in the network and the remaining n — 1
nodes.

SimRank only calculates the structural information of nodes, but ignores the
attribute information of them. Therefore, we use cosine similarity to calculate the
attribute similarities among nodes as below. After the process is over, for each
node in the initial network, an n-dimensional vector attr; € R™ will be obtained to
indicate the attribute similarity between a node in the network and the remaining
n — 1 nodes.

L i=J,
Simattr(i7j> = Enﬂ (Xi'Yi) ) (2)
N &:)2_ N>k otherwise.

After calculating the strucural and attribute similarities, we obtain the structural
similarity and attribute similarity between nodes. Since structural similarity and
attribute similarity are not linear, if the two parts of similarity are directly weighted
and fused, on the one hand, it does not conduce to extracting the nonlinear rela-
tionship between them; on the other hand, it will cause information redundancy.
Therefore, we use the autoencoder to capture the nonlinear relationship between
structural similarity and attribute similarity, and to better integrate the two parts
to obtain a comprehensive similarity. The process of using the autoencoder to in-
tegrate structure and attribute similarity to obtain the comprehensive similarity
between nodes is shown in Figure 3

The autoencoder network [24] (Figure [4]) consists of an encoder and a decoder.
The encoder converts the original input data z into an intermediate hidden layer
vector h. It is a process of dimensionality reduction that can capture the nonlinear
relationship between features. Then the hidden layer vector of the middle layer
is remapped to the same space as the initial input dimension, and a vector & is
obtained, which having the same dimension as x.

In our model, the encoder function and decoder function are as follows:

hi = O'(WHIZ + bl), (3)
:i'i O'(WH}Li + bz) (4)
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where W and b are network parameters, o is the activation function, and ReLU is
employed here. Meanwhile, we employ the Mean Square Error as the loss function
of the autoencoder.

loss(X, X) = min Z (z; — )" (5)

The loss function converges when the initial input vector and output vector are
infinitely close, and the autoencoder reaches the ideal state.

For node 4, a structural similarity vector stru; € R" and an attribute similarity
vector attr; € R" will be obtained. Concat the two to get the input z; € R* of the
autoencoder. When the autoencoder converges, the output of the hidden layer is the
vector representation of the comprehensive similarity that combines the structure
similarity stru; and the attribute similarity attr;, which is sim; € R™. When all
the nodes are processed, a similarity matrix SIM = (sim;;)nxn € R™*", where sim;;
represents the comprehensive similarity between node ¢ and j.

It is worth noting that for the original relationship in the network, the two
nodes initially have connected edges, we consider it to be a strong relationship and
do not deal with it. For node ¢ and j which have no relationship between them
at the beginning, with a given similarity threshold ¢, if sim;; > t, it is considered
that node i and node j are similar enough that they can influence each other, then
an edge is added between the two nodes, and the weak relationship is transformed
into a strong relationship. The weights of their relationship are calculated as fol-
lows:

1, =7,
1, attrij = 17

’f’@li]‘ = (6)
simij, Simi]’ >,

0, otherwise.

After the above process, we have obtained a structure-enhanced network. Even
though there may not be a strong relationship between two nodes in the initial
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network, because they are sufficiently similar in structure and attributes, this weak
relationship eventually turns into a strong relationship. For example, for node 2 and
node 5 in the Figure [5 there is no connection between them, but after strength-
ening the structure, a new connection appears between them. After the processing
of the structure enhancement algorithm, the adjacency relationship of the entire
graph can be represented by L = (rel;;)nxn € R™*™, combined with the initial fea-
ture matrix A € R™*? of the network, and sent to the graph convolutional neural
network for representation learning. The overall structure of the model is shown in

Figure 2
3.3 Node Embedding Based on SEGCN

The existing Graph Convolutional Neural Network (GCN) have achieved good re-
sults in network representation learning tasks. However, since only the local topo-
logical structure of the initial adjacency matrix is considered, and the global topo-
logical structure information formed by high-order neighbors is ignored, the loss
of information will eventually affect the performance of the network representation
learning. Therefore, based on the similarity matrix calculated above, we follow
Kipf and Welling [25] and propose a Graph Convolutional Neural Network based on
Structure Enhancement (SEGCN). Figure p|illustrates the process of utilizing GCN
to complete node representation learning by using the generated structure-enhanced
network.

In order to weaken the fluctuations caused by the excessive weight of some nodes,
we first normalize the similarity matrix so that the aggregated features roughly
maintain the same proportions as the input features, and also add self-loops to the
similarity matrix to alleviate the over-smoothing problem.

S =D YV:LD71/? (7)

where L = L + I, I is the identity matrix and D is the degree matrix. The charac-
teristics of the nodes are updated by fusing their own information and the charac-
teristics of neighbor nodes, and use different weights to distinguish the contributions
of neighbor nodes to the central node.

I+1 _ ! !
z = sum; + E ST (8)

JEN (i)

where s;; represents the weight of the node itself, and ! is the output node repre-
sentation in the upper layer network. N (i) represents the set of neighbors of node i
after structural enhancement, s;; represents the similarity between node ¢ and j,
and is used here to represent the contribution of node j to node i. By fusing the
information of the central node and neighbor nodes of the {*" layer, we get the in-
formation of the (I + 1) layer node. Since the adjacency matrix generated by the
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structural enhancement algorithm can describe the relationship of high-order neigh-
bors, a layer of GCN network can be used here to fuse the feature information of
high-order neighbors, and at the same time, the over-smoothing problem caused by
multi-layer GCN network can be alleviated. After that, the feature vectors of all
nodes are spliced and transposed to obtain a feature representation matrix.

XY = Concat(x, 2o, .. x")" (9)

The feature representation matrix of the (I + 1) layer obtained by the above
formula is high-dimensional and sparse, and then a linear transition matrix is intro-
duced to reduce the dimension and use ReLU [26] as the activation function, and
finally a feature representation matrix that can be obtained.

XD = Rely (X(l“)/W) . (10)

Our model is finally trained on a semi-supervised learning task. We use the
Cross Entropy function [27] as the loss function and use back propagation to update
the parameters.

c
Loss = — Z Zyu [c] - log 5 [d] (11)

vE€EVigper ¢=1
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where Vg is the set of nodes that have labels, C is the number of classes, y, is
the one-hot label vector of node v, and x!! is the predicted probability vector of
node v.

4 EXPERIMENTS

In this section, we perform extensive experiments to evaluate the effectiveness of our
proposed SEGCN on six real graph datasets with ground-truth classes. Our algo-
rithms are implemented in Python and Pytorch, and all experiments are conducted
on Ubuntu 14.04.6 with GeForce GTX 1080 GPU and 512 GB main memory.

4.1 Datasets

In order to verify the effectiveness of the SEGCN model proposed in this paper, not
only experimental verification is carried out on the citation network datasets Cora
and Citeseer, but also four public real small attribute networks (Cornell, Texas,
Washington and Wisconsin) are selected to verify the experimental effect of the
model. Among them, for Cora and Citeseer, each paper in the dataset is repre-
sented as a node, and the citation relationship between papers is represented as an
edge relationship between nodes. Each paper uses a high-dimensional one-hot en-
coded vector to describe the text content. Taking the Cora dataset as an example,
1433 unique words are selected as the corpus. If a word appears in the paper, the
index position of the word is 1, otherwise it is 0. Finally, a 1433-dimensional paper
text representation vector is obtained.

Q

a) Washington b) Wisconsin c)

ornell d) Texas

Figure 6. t-SNE embedding and visualization

We use the t-SNE [28] method to view the distribution of the original data.
As can be seen from Figure [0 these nodes have begun to show clustering effects
on the two-dimensional plane. The reason may be that the distribution of nodes
with similar characteristics is denser, and the distribution of larger differences is also
more scattered. Some statistics of our datasets are shown in Table [l
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Dataset V| |E| Dimensions Clusters Average Degree
Cornell 195 283 1703 5 1.5%
Texas 187 280 1703 5 1.6%
Washington 230 366 1703 5 1.4%
Wisconsin 265 459 1703 5 1.3%
Cora 2708 5278 1433 7 0.14 %
Citeseer 3327 4552 3703 6 0.8%

Table 1. Datasets statistics. |V|: number of nodes, |E|: number of edges, dimensions:
number of node attributes, clusters: number of classes.

4.2 Model Evaluation

In order to better evaluate our model, we have selected two evaluation indicators,
Accuracy (AC) and Normal Mutual Information (NMI) [29]. AC is used to evaluate
the accuracy of node classification. NMI is used to measure the clustering coefficient
of nodes, which can reflect the quality of node clustering. The value range of NMI
is 0 to 1. The larger the value of the NMI, the better the clustering effect.

4.3 Comparison Against State-of-the-Art Baselines

We compared SEGCN with six state-of-the-art algorithms, incluing SNMF [30],
NC [31], PCL-DC [32], SCI [33], CDE [34], GCN [25]. These algorithms have
achieved good results in some node classification or community detection. We mainly
compare the AC and NMI indicators with these methods to detect the performance
of our model for network representation learning.

SNMF. Use the idea of matrix decomposition to decompose the matrix, and obtain
the probability that the node belongs to a certain community through continuous
iterative optimization.

NC. Considering the network as a graph, and continuously divide it to maximize
the similarity between nodes in the sub-graphs, while the similarity between the
sub-graphs is kept to a minimum.

PCL-DC. The content analysis and links are considered together for community
detection, and a discriminant model of content analysis is designed to reduce
the influence of not wanting to manage content attributes.

SCI. Based on matrix decomposition, combined with the observed network struc-
ture and node attributes, only the adjacency matrix is decomposed, and no
attention is paid to the decomposition of the node attribute matrix.

CDE. The inherent community structure is coded on the basis of the original net-
work structure, and the community discovery problem is regarded as a non-
negative matrix factorization problem.

GCN. The convolution operation is applied to unstructured graph data, and utilize
the idea of message passing and information aggregation for node embedding.
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Dataset ~ Cornell Texas Washington Wisconsin Cora  Citeseer
SNMF 0.3692  0.4019 0.3009 0.3773  0.4323 0.3079
NC 0.3538  0.4545 0.4348 0.3170  0.2622 0.4094
PCL-DC  0.3512  0.3850 0.4608 0.3773  0.5823 0.4682
AC | SCI 0.4769  0.6096 0.3773 0.5283  0.4121 0.3260
CDE 0.6154  0.6150 0.5823 0.7321  0.6555 0.5827
GCN 0.3692  0.6385 0.6122 0.4553  0.7782 0.6461
SEGCN 0.4989 0.8932 0.6547 0.8667 0.7961 0.6563

Table 2. Quality evaluation (in terms of AC) on networks with ground-truth classes

Dataset  Cornell Texas Washington Wisconsin Cora  Citeseer
SNMF 0.0762 0.1022 0.0321 0.0842 0.2996 0.1044
NC 0.0855  0.0706 0.0591 0.0507  0.1731 0.1998
PCL-DC 0.0873  0.0729 0.1195 0.0778  0.4071 0.2246
NMI | SCI 0.1516  0.2153 0.1304 0.1823  0.2138 0.0758
CDE 0.3403  0.3208 0.4079 0.4284  0.5037 0.2985
GCN 0.1476  0.2099 0.1708 0.1867  0.5625 0.3543
SEGCN 0.2258 0.7783 0.2768 0.6439 0.5913 0.3746

Table 3. Quality evaluation (in terms of NMI) on networks with ground-truth classes

We compare the proposed SEGCN with baseline methods proposed above using
six network datasets: Cornell, Texas, Washington, Wisconsin, Cora and Citeseer,
with ground-truth classes on the Accuracy (AC) and Normalized Mutual Informa-
tion (NMI) indicators.

The results reported in Table ] and Table [3] show that SEGCN clearly outper-
forms other six baseline methods on most datasets with significant improvements. In
terms of AC indicator, we can see that in addition to the Cornell dataset, our model
is better than other methods in the node classification accuracy. In some cases, the
effect of our model can be improved by 10-25% for Texas and Wisconsin. Under
the NMI indicator, it is obvious that in addition to the Cornell and Washington, the
effect of our SEGCN model on several other datasets has been greatly improved. As
a result of the fact that the initial state of the dataset is different, the effect of our
model on different datasets is more different.

In our experiment, in order to evaluate the impact of the similarity threshold
between nodes on the SEGCN model, we changed the similarity threshold from 0
to 0.8 to evaluate the impact on node classification and node clustering. It can be
seen from Figure |Z| that when the dataset is small (Cornell, Texas, Washington,
Wisconsin), the change of the similarity threshold has a greater impact on AC
and NMI. This may be that when the dataset is small, the number of edges in
the structure-enhanced network increases significantly, and most edges with smaller
weights cause the phenomenon of excessive smoothness when the node features are
fused. When the similarity threshold becomes larger, this part of the edge with
smaller weight is eliminated, and the edge with larger weight is left. The nodes
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connected by this part of the edge have higher similarity, which is more conducive
to the feature fusion of the nodes, so when the similarity threshold becomes larger,
the effect is significantly improved. On the Cora and Citeseer datasets, when the
similarity threshold changes to 0.4, the effect of the model tends to stabilize. This
may be that most of the newly added edges have weights below 0.6. When the
similarity threshold is greater than 0.6, the network structure is not much different
from the previous one, so the effect of SEGCN under the AC and NMI indicators
tends to be stable. In addition, from Figure we can see that the degree of nodes
in the network is mostly below 25, that is, the connections of nodes are relatively
sparse. After we use the structure enhancement algorithm, the edges between nodes
become dense. Combined with the adjustment of the similarity threshold, only
the edges with larger weights are retained and the edges with smaller weights are
deleted, which plays a positive role in obtaining high-quality node representation to
a certain extent.

At the same time, we also explored the influence of the embedding dimension
of nodes in network representation learning on the model. We control the embed-
ding dimension of the node between 64 and 512, respectively and verify it on node
classification and node clustering tasks. It can be seen from Figure [0] that when
the embedding dimension of the node is 64 or 128, the model has the best effect.
And the effect of the model is not linearly related to the embedding dimension of
the node. Considering that the dimensions of the initial features of Cornell and
other datasets are around 1700 dimensions, when the node is embedded in 64 or
128 dimensions, in this vector space, the representation vector of the node will be
relatively low-dimensional and dense, compared to high-dimensional and sparse rep-
resentation of the node, which can better characterize a node, so it has the best
effect on node classification and clustering tasks.

Training Ratio 20 % 40 % 60 % 80 %

Cornell 0.3633 0.4419 0.4989 0.4929
AC Texas 0.5321 0.7431 0.8743 0.8932
Wisconsin 0.6214 0.7853 0.8232 0.8667

Washington 0.3245 0.7432  0.6132 0.6547

Table 4. Quality evaluation (in terms of AC) under different training ratios

Training Ratio 20 % 40 % 60 % 80 %

Cornell 0.1454 0.1832 0.2258 0.2154
NMI Texas 0.3245 0.4214 0.5673 0.7783
Wisconsin 0.3512 0.3850 0.4608 0.6439

Washington 0.0989 0.1665 0.2234 0.2768

Table 5. Quality evaluation (in terms of NMI) under different training ratios

In addition, we also compare the effects of different training ratios and different
training iterations on the experimental results.
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Epoch Cora Citeseer
AC NMI AC NMI
50 | 0.5876 | 0.3123 | 0.5783 | 0.3214
100 | 0.6421 | 0.5123 | 0.6234 | 0.3345
200 | 0.7961 | 0.5913 | 0.6563 | 0.3746
300 | 0.7945 0.59 | 0.6542 | 0.3702

Table 6. Quality evaluation (in terms of AC and NMI) under different training epochs

It can be seen from Table [d and Table [ that with the increase of the training
ratio, the AC index and the NMI index also have a relatively obvious improvement.
When the training ratio reaches more than 60 %, the improvement of the AC index
starts to decrease slowly, while the improvement of the NMI index is still relatively
obvious. This may be because NMI is more dependent on the local topology of the
network. When the training ratio increases, the more nodes participating in the
training, the tighter the local network, and the more obvious the improvement of
the NMI index. As shown in Table [f], under the two datasets of Cora and Citeseer,
the AC and NMI indicators increase significantly with the increase of the number
of training iterations, and the optimal results are achieved when the number of
iterations reaches 200. It shows that the SEGCN model proposed in this paper can
quickly converge and reach a stable state.

5 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel Structure Enhanced Graph Convolutional Net-
work (SEGCN) to address some limitations of existing methods of network rep-
resentation learning, such as ignoring the influence of higher-order neighbors, or
discarding the node characteristics. To be specific, SEGCN contains the following
parts:

1. Structure enhancement to capture high-order neighbor relationships,

2. Combine graph convolutional neural network for node feature aggregation to
complete node representation learning,

3. Verify effectiveness on node classification and node clustering tasks.

Furthermore, we have thoroughly validated the performance of SEGCN on six real-
world datasets, from the experimental results, we can see that due to the ability
to capture the global structure and integrate high-order neighbor features, our pro-
posed model SEGCN can improve the effectiveness of node classification and node
clustering. At the same time, our model has a fast convergence rate. As can be
seen from Figure the SEGCN model can reach the convergence state after only
one hundred iterations of training. However, our model also has some shortcomings,
such as the instability of our model on large and small datasets, which is also the
problem we need to solve in the next step.
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