
Computing and Informatics, Vol. 42, 2023, 98–125, doi: 10.31577/cai 2023 1 98

ADAPTIVE EVOLUTIONARY MULTITASKING
TO SOLVE INTER-DOMAIN PATH COMPUTATION
UNDER NODE-DEFINED DOMAIN UNIQUENESS
CONSTRAINT: NEW SOLUTION ENCODING SCHEME

Thanh Pham Dinh

Faculty of Natural Sciences and Technology
Tay Bac University
Son La, Vietnam
e-mail: thanhpd@utb.edu.vn, thanhpd05@gmail.com

Abstract. In multi-domain networks, the efficiency of path computation becomes
more and more important. The Inter-Domain Path Computation under Node-
defined Domain Uniqueness Constraint (IDPC-NDU) is a recently investigated
problem where its objective is to determine the effective routing path between two
nodes that traverses every domain at most once. IDPC-NDU is NP-Hard, so the
approximation approaches are suitable to deal with this problem for large instances.
Multifactorial Evolutionary Algorithm (MFEA) is an emerging research topic in the
field of evolutionary computation that can efficiently tackle multiple optimization
problems at the same time. This study proposed an approach based on the com-
bination of the Adaptive Multifactorial Evolutionary Algorithm (dMFEA-II) and
Dijkstra algorithm for solving IDPC-NDU. The encoding and evaluating methods
based on the permutation representation are also introduced, and the new individ-
ual representation is always to produce valid solutions. The proposed algorithm is
evaluated on two types of instances. Simulation results demonstrate the superior
performance of the proposed algorithm in comparison with the existing algorithms
in terms of the quality of the solution.

Keywords: Adaptive multifactorial evolutionary algorithm, inter-domain path
computation, transfer optimization, evolutionary multitasking

https://doi.org/10.31577/cai_2023_1_98

dMFEA-II to Solve the IDPC-NDU 99

1 INTRODUCTION

Nowadays, in the technology era, many devices need to be linked to services or
other devices through networks. This will lead to the formation of extremely large
networks as well as challenges in finding effective communication methods among
devices. To overcome these challenges, large networks are often divided into nu-
merous domains (multi-domain networks). The multi-domain networks also help to
tackle issues related to scalability and privacy [1].

In multi-domain networks, Path Computation Element (PCE) is used to com-
pute the path inside each domain. To exchange information among domains, PCE
must be communicated together according to a certain architecture. There are two
main architectures for handling communication among different PCEs, hierarchical
and distributed [2] in which the hierarchical PCE architectures has been promoted
in the last few years [3]. The parent PCE is one of the most popular architecture of
the hierarchical PCE. To compute an inter-domain path, the parent PCE collects
the information of intra-domain routing from all children PCEs.

In [4], the authors introduced a novel domain clustering concept that artifi-
cially reduces the number of domains. This concept is expressed as the Inter-
Domain Path Computation under Domain Uniqueness constraint (IDPC-DU) prob-
lem. In the IDPC-DU, the inter-domain path must satisfy the domain constraint
(called the Domain Uniqueness (DU)). This constrain requests that each domain
is traversed at most once. There are two variants of the IDPC-DU: the first
variant considers the edge set (called the Inter-Domain Path Computation un-
der Edge-defined Domain Uniqueness Constraint (IDPC-EDU)); the second vari-
ant considers the vertex set (called the IDPC-NDU). The variants of the IDPC-DU
are NP-Hard [4]. In this study, the authors also describe a Dynamic Program-
ming Algorithm (DP) to solve the IDPC-DU in which its computational complex-
ity is O(|V |22|D||D|2), where |V | is the number of nodes and |D| is the number
of domains. The computational complexity of DP is exponential for the num-
ber of domains, so DP is not effective for the multi-domain network consisting
of a large number of domains. Therefore, the approximation approach is suitable
to tackle the IDPC-DU for the network which includes the large number of do-
mains.

Evolutionary Algorithm (EA) has emerged as an important optimization and
search technique in the recent decades [5]. Due to flexible nature and robust be-
haviour, EA becomes an efficient approach and widely solves global optimization
problems. It can be used successfully in various applications of high complexity [6, 7].

In the recent years, MFEA, a new variant of EA, has attracted attention in
the research community [8, 9, 10]. The major difference between MFEA and the
traditional EA is that the traditional EA solves only one problem in a single run,
while MFEA can solve multiple optimization problems simultaneously.

To accelerate convergence and improve the quality of obtained solutions, MFEA
takes the advantage of the process of explicit or implicit knowledge transfer across
optimization problems [11]. Due to its strong search capability and parallelism,

100 T. Pham Dinh

MFEA is a search technique widely used to find the approximate solutions of opti-
mization problems [12, 13, 14].

In 2019, Bali et al. [9] proposed a new version of MFEA, Multifactorial evolu-
tionary algorithm with online transfer parameter estimation (MFEA-II). MFEA-II
overcomes the shortcoming of knowledge transfer process in MFEA by using a dy-
namic strategy to control the extent of knowledge exchange across problems. In
2020, Osaba et al. [15] introduced another variant of MFEA for discrete optimiza-
tion problems, dMFEA-II. The paper described a new dynamic mechanism to update
the matrix of the exchange of knowledge between problems and a new parent-centric
crossover operator for permutation representation.

To take advantage of EA, MFEA, some researchers have implemented EA and
MFEA to tackle the variants of IDPC-DU. In [16], the authors proposed a two-
level strategy based on evolutionary algorithm (TLGA). An individual in TLGA
contains two arrays of genes, so TLGA must get information from both two arrays
to construct a solution of the IDPC-NDU. Therefore, TLGA wastes memory and
increases the computational complexity for constructing a solution. The solution
encoding also leads to the computational complexity of evolutionary operators if
TLGA is larger. To deal with the IDPC-NDU, Binh et al. [17] introduced a Two-level
Genetic Algorithm (PGA) which divides the original problem into two sub-problems:
the first sub-problem finds the order of the visited domains; the second sub-problem
finds the shortest path tree [18, 19] from the source node to the destination node.
Because the individual representation in PGA is the priority-based encoding and
TLGA is focused on creating a valid solution, the quality of the obtained solution
may not be improved. The common point of the two algorithms, TLGA and PGA,
is that these two algorithms only consider one edge connecting two adjacent regions
according to the coding order of the individual. To take advantage of the implicit
knowledge transfer for solving the IDPC-EDU, the authors proposed MFEA [11]
with a new encoding, many-to-one path encoding. The PMX crossover operator [5]
is used for the crossover, and the mutation is a combination of the swap mutation [5]
and the one-point mutation [5]. Although experimental results have proven the
efficiency of the proposed algorithm, the proposed algorithm still has limitations due
to the process of negative transfers. Therefore, to improve the quality of the solution
of the IDPC-DU problem, it is necessary to exploit the online transfer parameter
estimation to dynamically control the extent of knowledge exchange across tasks in
MFEA-II [9].

In order to take the advantages of the dMFEA-II [15] and overcome the dis-
advantage of existing algorithms for solving IDPC-NDU, this study describes new
approach based on dMFEA-II to solve the IDPC-NDU. The main contributions of
the proposed algorithm are:

• An individual encoding based on the permutation representation.

• A method for constructing and evaluating the IDPC-NDU solution.

• An approach based on a combination between dMFEA-II and the Dijkstra al-
gorithm.

dMFEA-II to Solve the IDPC-NDU 101

• The proposed algorithm can use existing evolutionary operators, so it can be
implemented easily.

• The experimental results obtained from the proposed algorithm are analyzed on
various test instances.

This paper is organized as follows. Section 2 provides the definition of IDPC-
NDU. Section 3 brings preliminaries. Section 4 presents the proposed algorithm.
Section 5 illustrates and discusses experimental results. Section 6 concludes the
paper with discussions about the future extension of this research.

2 PROBLEM DEFINITION AND NOTATIONS

Let G(V,E,C) be a weighted directed multi-graph, where E and V are the set of
edges and the set of nodes, respectively. Let (i, j)k ∈ E denote the kth parallel edge
between nodes i and j. Each edge (i, j)k has an associated positive weight wk

i,j.
The set of nodes V is partitioned into H separate clusters (interpreted as domains
on the network) C = {C1, C2, . . . , CH}. Two nodes, s and t ∈ V are a source
node and a target node, respectively. The objective of the IDPC-NDU is to find
a minimum cost path p from the source node s to the target node t that satisfies
the Node-defined Domain Uniqueness (NDU) constraint, which allows p to traverse
every domain at most once. The IDPC-NDU is stated as follows:

Input:

• A weighted directed multi-graph G = (V,E,C).

• V is partitioned into H domains C = {C1, C2, . . . , CH}, Ci ∩ Cj =
∅,∀i, j ∈ {1, . . . , H}, i ̸= j.

• A source node s ∈ V .

• A destination node t ∈ V .

Output:
A path p = (p0, p1, . . . , pl) where p0 = s and pl = t.
Constraint:
A path p has left the domain, it does not revisit it later on. It means that
if pi ∈ Cd and pi+1 /∈ Cd, then pi+j /∈ Cd,∀j ≥ 2, d ∈ {1, . . . , H}.
Objective:

f(p) =
l−1∑
i=0

w(pi, pi+1)→ min.

Figure 1 illustrates the definition of the IDPC-NDU in which Figure 1 a) repre-
sents an input graph with 7 nodes and 6 domains (each colour presents a domain);
the number on each edge is its weight; and the source node and destination node
are s and t, respectively. Figure 1 b) depicts a valid path p1 = (s, 1, 4, 5, t) of the

102 T. Pham Dinh

IDPC-NDU with the cost f(p1) = 28. Figure 1 c) sketches another path from the
source node s to the destination node t, p2 = (s, 1, 2, 4, 5, t). The path p2 visits the
yellow domain at node 1 then enters the violet domain at node 2 and revisits the
yellow domain at node 5 so p2 violates the NDU constraint (it re-enters the yellow
domain the second time). Figure 1 d) shows an optimal solution of the IDPC-NDU
with the path p3 = (s, 4, 5, 3, t) and the cost f(p3) = 21.

a) An input graph b) A valid solution

c) An invalid solution d) An optimal solution

Figure 1. An illustration of solutions of the IDPC-NDU

3 PRELIMINARIES

This section introduces the basic of MFEA and MFEA-II.

3.1 Multitasking Optimization

The main driving force behind Multitasking Optimization (MTO) is to take use of
the inter-task synergy to enhance problem solving. Unlike classical EA, MTO solves
multiple tasks within only a single task. For the sake of brevity, consider K distinct
minimization tasks {T1, T2, . . . , TK} are solved simultaneously.

The objective function of the jth task, denoted Tj is defined as fj(x) : Xj → R.
MTO searches the space of all optimization tasks concurrently for {x∗1, x∗2, . . . , x∗K} =

dMFEA-II to Solve the IDPC-NDU 103

argmin{f1(x1), f2(x2), . . . , fK(xK)}, where x∗j , j = 1, . . . , K is a feasible solution in
decision space Xj.

To evaluate an individual, Gupta et al. [20] define the properties for each member
pi in a population P as follows:

Factorial Cost: The factorial cost ψi
j of an individual pi on optimization task Tj is

defined as ψi
j = γ× δij +f i

j , where f
i
j and δ

i
j are the objective value and the total

constraint violation of pi, respectively. The coefficient γ is a large penalizing
multiplier.

Factorial rank: For an optimization task Tj, the population individuals are sorted
in ascending order with respect to the factorial cost. Factorial rank rij of an in-
dividual pi is the index value of pi in the sort list, relative to all other individuals
in the population P .

Scalar Fitness: Scalar fitness φi of an individual pi is based on its best rank over
all tasks; i.e. φi = 1/min{ri1, ri2, . . . , riK}.

Skill Factor: Skill factor τi of an individual pi is the component task, amongst
all other tasks in MTO, with which the individual is associated. This may be
defined as τi = argminj∈{1,...,K}{rij}.

3.2 Multifactorial Evolutionary Algorithm

In [20], Gupta et al. introduced Multifactorial Optimization (MFO) as an evolution-
ary multi-tasking paradigm that optimizes multiple tasks simultaneously. In MFO,
the individual are encoded in a Unified Search Space (USS), denoted X encompass-
ing X1, X2, . . . , XK , and can decoded into a task-specific solution representation
with respect to each of the K optimization tasks.

The basic structure of the MFEA is presented in Algorithm 1 where RMP is
a prescribed random mating probability [15, 9].

3.3 An Adaptive Multifactorial Evolutionary Algorithm
for Permutation-Based Discrete Optimization Problems

The initial phases of dMFEA-II [9, 15] are the same as those in MFEA. The main
differential factor between dMFEA-II and MFEA is the incorporation of the online
RMP learning module. In dMFEA-II, RMP is a symmetric K ×K matrix with ele-
ment’s values in the range [0.0, 1.0]. RMPi,j indicates the probability of conducting
an inter-task crossover between ith and jth tasks. Two parameters ∆inc and ∆dec

are used for determining the evolution of each RMPi,j as follow:

• RMPτi,τj is incremented using ∆inc as RMPτi,τj = min{1.0, RMPτi,τj/∆inc},
• RMPτi,τj is decreased using ∆dec as RMPτi,τj = max{1.0, RMPτi,τj ×∆inc}.

To adapt OX crossover [5] to the parent-centric feature [9], dMFEA-II limits the
size of the cutting windows (the segment of the individual lying two random cutting

104 T. Pham Dinh

Algorithm 1: Basic structure of the MFEA

1 begin
2 Randomly sample N individuals in X to form initial population P (0);
3 for every individual pi in P(0) do
4 Assign skill factor τi = mod (i,K) + 1, for the case of K tasks;
5 Evaluate pi for task τi only;

6 t← 1;
7 while stopping conditions are not satisfied do
8 Configure offspring population Pc(t) = ∅;
9 while offspring generated for each task < N do

10 Sample two individuals uniformly at random (without
replacement): xi and xj from P (t);

11 if τi = τj then
12 [xa, xb]← Intra-task crossover between xi and xj;
13 Assign offspring xa and xb skill factor τi;

14 else
15 if rand < RMP then
16 [xa, xb]← Inter-task crossover between xi and xj;
17 Each offspring is randomly assigned skill factor τi or τj;

18 else
19 [xa]← local variantion (mutation) of xi;
20 Assign offspring xa skill factor τi;
21 [xb]← local variantion (mutation) of xj;
22 Assign offspring xb skill factor τj;

23 Evaluate [xa, xb] for their assigned skill factors only;
24 Pc(t)← Pc(t) ∪ [xa, xb];

25 P ← Select the best N individuals in P ∪ Pc(t) as per their scalar
fitness;

26 t← t+ 1;

27 return The best individuals in P for each task Tk;

points) to a fractionW ∈ [0, 1] of the total dimension asW ×RMPi,j×Di where Di

is the dimensionality of ith task. The mutation parameter Pm ∈ [0, 1] in dMFEA-II
controls whether a new individual xa or xb should perform mutation.

dMFEA-II is obtained from MFEA in Algorithm 1 by replacing lines 15 – 22
with those in Algorithm 2.

4 PROPOSED ALGORITHM

This section describes our novel approach for solving the IDPC-NDU (N-dMFEA-
II). The proposed algorithm includes: a new individual encoding, a new method for
constructing the solution, a decoding method, and evolutionary operators.

dMFEA-II to Solve the IDPC-NDU 105

Algorithm 2: Crossover strategy of dMFEA-II

1 begin
2 if τi ̸= τj then
3 if rand1 ≤ RMPτi,τj then
4 [xa, xb]← Inter-task crossover between xi and xj;
5 if rand2 ≤ pm then
6 xa ← mutation(xa);
7 xb ← mutation(xb);

8 Each offspring is randomly assigned skill factor τi or τj;
9 Update RMPτi,τj using ∆inc and ∆dec;

10 else
11 Randomly select xp1 with τp1 = τi and p1 ̸= i;
12 xa ← Intra-task crossover between xi and xj;
13 if rand2 ≤ pm then
14 xa ← mutation(xa);
15 Assign offspring xa skill factor τi;
16 Update RMPτi,τi

17 Randomly select xp2 with τp2 = τj and p2 ̸= j;
18 xb ← Intra-task crossover between xp2 and xj;
19 if rand2 ≤ pm then
20 xb ← mutation(xb);
21 Assign offspring xb skill factor τj;
22 Update RMPτj ,τj

23 return The best individuals in P for each task Tk;

4.1 Motivation of Proposed Algorithm

In the previous studies [16, 17], the major steps for constructing a solution of IDPC-
NDU are as follows:

Step 1: Generate an order of domains that the path will go through.

Step 2: Construct a graph according to an order of domains in which an inter-
domain edge between two nodes is only created if the corresponding domains
are adjacent.

Step 3: Find the shortest path from the source node to the destination node in the
constructed graph in Step 2.

The strength of these approaches is that if a solution is produced by the approach
then it is valid. However, it has a common drawback, i.e., the previous studies only
create inter-domain edges connecting two adjacent domains, but in some cases, the
inter-domain edges connecting two non-adjacent domains can improve the quality
of solution. Figure 2 illustrates an example of the shortcoming of the existing
individual representation with the input graph as in Figure 1 a). Suppose that the

106 T. Pham Dinh

order of domains is Green→ Y ellow → V iolet→ Orange→ Pink → Blue. After
performing step 2, a new graph is constructed according to the order of the domain
as in Figure 2 a). The shortest path from s to t of the input graph in Figure 2 a)
is p1 = (s, 1, 2, 3, 5, t) with the cost of 38 (Figure 2 b)). If there is an inter-domain
edge connecting two non-adjacent domains, orange and blue domains (the dotted
edge (3, t) in Figure 2 c)) then the shortest path is p2 = (s, 1, 2, 3, t) with the cost
of 27 (Figure 2 d)). The cost of the path p2 is smaller than the one of the path p1.
It means that if inter-domain edges connecting non-adjacent domains can help to
decrease the cost of the IDPC-NDU solution.

a) b)

c) d)

Figure 2. The disadvantage of the existing individual representations

To overcome these disadvantages, in this study, an individual encoding based
on permutation representation is introduced. The new individual encoding builds
inter-domain edges which link non-adjacent domains.

4.2 Structure of the Proposed dMFEA-II

The pseudocode of the proposed approach is presented in Algorithm 3 where K,
Di is the number of tasks and the number of domains in ith task, respectively. It
should be noted that the cost of an individual is computed through the cost of the
corresponding solution of the IDPC-NDU. It means that to evaluate an individual pi,
N-dMFEA-II builds and computes the cost of the corresponding IDPC-NDU solution
si and then the cost of the individual pi is computed.

The solution of the IDPC-NDU can be constructed through the order of the
domains, so a chromosome in N-dMFEA-II only needs to store the order of domains.

dMFEA-II to Solve the IDPC-NDU 107

Algorithm 3: New approach to solve the IDPC-NDU

Input:
– The weighted directed multi-graphs Gi = {Vi, Ei, Ci}, i ∈ 1, . . . , K;
Ci = {C1

i , C
2
i , . . . , C

Di
i };

– The source nodes si ∈ Vi;
– The destination nodes ti ∈ Vi;
Output: IDPC-NDU solutions;

1 begin
2 t← 0;
3 Pt ← Randomly generate N individuals;
4 foreach individual indj ∈ Pt do
5 Assign random skill factor τj for indj;
6 Construct solution sj of IDPC-NDU based on the individual indj

and τj ▷ Refer to Subsection 4.6;
7 Compute the factorial cost of the solution sj;
8 Compute the factorial rank, the scalar fitness of the individual indj;

9 t← 0;
10 while stopping conditions are not satisfied do
11 Ot ← ∅;
12 P

′
t ← Tournament Selection(Pt);

13 Ot ← Perform crossover and mutation operator(P
′
t);

14 foreach individual oj ∈ Ot do
15 Construct solution s

′
j of IDPC-NDU based on its assigned skill

factor and the individual oj ▷ Refer to Subsection 4.6;

16 Evaluate the factorial cost of oj based on the cost of solution s
′
j;

17 Rt ← Ot ∪ Pt;
18 Update the factorial ranks, scalar fitness and skill factor of every

individuals in Rt;
19 Pt+1 ← Select N fittest members from Rt;
20 t← t+ 1;

21 return The best solution of IDPC-NDU in each task;

Therefore, to evaluate an individual, N-dMFEA-II performs the decoding method
to build an individual for each task, then it constructs the unweighted directed
graph G′ (also known as an H-Graph, where “H” implies a graph where each vertex
corresponds to a domain of the input graph) based on the received individual. After
that, a weighted directed graph G′′ (called an L-Graph, where “L” refers to a graph
where each vertex corresponds to a node in the input graph) is constructed from the
H-Graph G′ and the input graph G, and then finds the shortest path from the source
node to the destination node in the L-Graph G′′.

108 T. Pham Dinh

4.3 Individual Representation

4.3.1 Individual Representation for a Task

In N-dMFEA-II, a solution of the IDPC-NDU can be encoded by an order of the do-
mains. Therefore, if the input graph of a ith task has Di domains then an individual
in this task is a permutation of the set {1, . . . , Di}.

Figure 3 shows an example of individual representation for a task in N-dMFEA-
II. Suppose that the input graph including 7 nodes and 6 domains is sketched as in
Figure 1 a) and the order of domains is Green → Yellow → Violet → Orange →
Pink → Blue. As a result, the order can be encoded to an individual as shown in
Figure 3 a). For the sake of simplicity, the domain colors are labeled as numbers,
i.e., in Figure 3 a), the Blue, Green, Violet, Orange, Pink, and Yellow domains are
labelled 1, 2, 3, 4, 5, and 6, respectively. Consequently, the individual in Figure 3 a)
is depicted as shown in Figure 3 b).

a) b)

Figure 3. An illustration of individual encoding method for a task

This individual representation helps to reduce the size of storage memory and
computational complexity in comparison with the individual encoding by a path of
nodes in the graph. Another benefit of this individual representation is that the
IDPC-NDU solution created from an individual always satisfies NDU constraint.

4.3.2 Individual Representation in Unified Search Space

Because the solution of a task is encoded by the permutation representation [5], N-
dMFEA-II uses the permutation representation for encoding individual in USS [21,
22]. Suppose that the K task of IDPC-NDUs are solved and Di is the number
of domains in ith task. Then the dimension of chromosome in USS is DUSS =
maxi∈{1,...,K}Di.

a) b) c)

Figure 4. An example of individual representation in USS

Figure 4 depicts an example of individual representation in USS for two IDPC-
NDU tasks including 4 and 6 domains respectively. Figure 4 a) illustrates a chromo-
some in USS while Figure 4 b) and Figure 4 c) sketch the chromosomes of two tasks
which are associated with the chromosome in Figure 4 a).

dMFEA-II to Solve the IDPC-NDU 109

4.4 Evolutionary Operators

A major difference between MFEA and MFEA-II is that the crossover operator
in MFEA-II has parent-centric characteristic [15]. In N-dMFEA-II, the inter-task
crossover and the intra-task crossover are Dynamic Order Crossover (dOX) [15] and
Order Crossover (OX) [7], respectively. The mutation operator is 2-opt [23, 24].

Figure 5. An example of the Order crossover operator

Figure 5 illustrates OX in which two vertical red lines present two random
crossover points. For creating the offspring 1, the segment (cutting window) be-
tween two crossover points (including genes 5, 4 and 2) is copied from the first
parent. After that, the remaining unused genes from the second crossover point
in the second parent, i.e., 3, 1, and 6, are copied into this offspring. The second
offspring is created in an analogous manner, with the parent roles reversed.

dOX is a modified version of OX in which OX is edited to adapt to the parent-
centric feature [9, 15] by limiting the size of the cutting window toW×RMPk,k′×Dk,
where W ∈ [0, 1] is a parameter; RMPk,k′ is the probability of conducting an inter-
task crossover between tasks k and k′; and Dk is the dimensionality of task Tk.

a) b)

Figure 6. An example of the 2-opt mutation operator

Figure 6 depicts an example of the 2-opt mutation operator, which removes
two edges and reconnects the paths created. Figure 6 a) illustrates the path of
an individual before (the above part) and after (the below part) performing this
mutation operator, where the dashed lines are edges to be deleted; the arc edges are

110 T. Pham Dinh

edges to be added. Figure 6 b) illustrates the position of genes of an individual before
(the above part) and after (the below part) performing this mutation operator.

4.5 Decoding Method

To find an individual ind′ for ith task, Ti from an individual indU in USS, N-dMFEA-
II selects all the integers no larger than Di from indU and keeps them in the same
relative order as in indU .

Figure 7. An illustration of the decoding method in N-dMFEA-II

Figure 7 presents an example of a decoding method from an individual in USS
to a task in which the dimension of the individual in USS and the dimension of the
task are 6 and 4, respectively. Because indU has two genes larger than Di = 4, these
genes are not selected. The remaining genes, i.e., 1, 4, 3, 2 are selected to create an
individual for the task.

4.6 Solution Construction and Evaluation

Because each individual indt = (ind1t , ind
2
t , . . . , ind

Dt
t) (Dt is the number of domains

in the input graph of the tth task) in N-dMFEA-II is a permutation of the set of
domains, to construct a solution of the IDPC-NDU from an individual indi, N-
dMFEA-II finds the shortest path from the source node to the destination node
according to the order of domains in indt. Considering the input graph G, the cost
of an individual indt is computed in four steps:

Step 1: Determine the order of domains based on the order of genes in indi.

Step 2: Construct a H-Graph G′ = (V ′, E ′) according to the order of domains as
follows:

• A vertex v′i ∈ V ′ is a representation of a domain indit.

• There is a directed edge e′ = (v′i, v
′
j) ∈ E ′ connecting from node v′i ∈ V ′ to

vertex v′j ∈ V ′ when there is at least one edge in G connecting a node in

domain indit to a vertex in domain indjt and i < j.

Step 3: Construct a L-Graph G′′ based on G and G′ in the following steps:

• G′′ and G are the same vertex set.

• For inter-domain edges: edges connecting from domain indjt to domain indj+1
t

(j = 1, . . . , Dt−1) or connecting from domain indDt
t to domain ind1t are kept,

other inter-domains edges are removed.

dMFEA-II to Solve the IDPC-NDU 111

• For intra-domain edges: all edges in G are retained.

Step 4: Perform the Dijkstra algorithm [25, 26] for finding the shortest path from
the source node to the destination node in G′′.

a) H-Graph G′ b) L-Graph G′′

c) A solution of IDPC-NDU

Figure 8. An illustration of the individual evaluation method in N-dMFEA-II

The main steps of the individual evaluation method are sketched in Figure 8.
Figure 8 a) depicts an H-Graph G′ which is constructed based on the input graph G
in Figure 1 a) and an individual in Figure 3. Because the yellow domain is before the
violet domain in G′ and there is an edge (1, 2) in G connecting these two domains,
there is an edge connecting the yellow and violet domains. The other edges of G′

are similarly created. Figure 8 b) sketches a L-Graph G′′ which is constructed from
G and G′. Because inter-domain edges, i.e., (s, 1), (s, 4), (1, 2), (4, 5), (1, 5), (2, 3),
(3, 5), (3, t) and (5, t) are the same direction as the edges connecting vertices in G′

in Figure 8 a), these edges are preserved and the remaining inter-domain edges are
removed. The shortest path from the source node s to the destination node t in G′′

is s→ 4→ 5→ t (as shown in Figure 8 c)) with the cost of 22.

5 COMPUTATIONAL RESULTS

5.1 Problem Instances

In order to examine the effectiveness of N-dMFEA-II in solving the IDPC-NDU, we
select two datasets:

112 T. Pham Dinh

• The Artificially Generated Synthetic Dataset (AGSD) [27] includes two distinct
types of instances, which are also used in the previous works [16, 17]. AGSD is
created as follows: Firstly, three parameters are generated for each instance: the
number of nodes, the number of domains, and the number of edges. Secondly,
an optimal path p is created in which the weight of edges is equal to 1 and the
number of domains on p is approximately the number of domains of the input
graph. The noise is then added to the instance for each node in p. Besides
random-weight edges, several random one-weight edges from that node to some
other nodes not in p, and some random edges with greater values of weight
than the total cost of p are added. Especially in Type 2, feasible paths whose
length is less than three are removed. Each type includes two sets regarding
dimensionality: a set of small instances with the number of nodes from 50 to
2000, and a set of large instances with the number of nodes over 2000.

• The instances from the Internet Topology Zoo Dataset (ITZD) [28] in which the
range of these instances is country+, continent, continent+, or global, and the
position of a node in an instance is determined by its longitudes and latitudes,
obtained through geocoding of Points-of-Presence (PoP) locations. The type of
selected instances is the backbone network and they belong to the commercial
network. However, it was necessary to add information about a source and a des-
tination nodes to each of instances. Therefore, for each instance, we randomly
select two nodes as the source and destination nodes, which belong to a differ-
ent country. For each instance, the country property of the nodes plays as the
domain, i.e., if two nodes belong to a country, then these nodes are considered
to belong to a domain.

A summary of the datasets is shown in Table 1.

Dataset NoVertices NoDomains NoEdges NoIns

AGSD Minimum 427 7 14 927
16

Type 1 Small Maximum 2002 42 178 026

AGSD Minimum 2 102 12 164 811
9

Type 1 Large Maximum 7352 32 1 461 349

AGSD Minimum 52 6 204
20

Type 2 Small Maximum 1902 32 137 407

AGSD Minimum 2 002 17 128 021
8

Type 2 Large Maximum 2802 30 229 375

ITZD
Minimum 8 2 7

21
Maximum 93 37 216

NoVertices: The number of Vertices; NoDomains: The number of domains;

NoEdges: The number of edges; NoIns: The number of instances.

Table 1. Summary the types of the IDPC-DU instances

dMFEA-II to Solve the IDPC-NDU 113

5.2 Experimental Criteria

To make our comparison fair, Table 2 presents criteria for evaluating the quality of
the obtained solution from the algorithms.

Average (Avg) The average function value over all
Best-found (BF) Best function value achieved over all runs
Std Standard deviation
NoNF The number of runs in which an algorithm does not find a solution

Table 2. Criteria for assessing the quality of the output of the algorithms

5.3 Experimental Settings

To evaluate the performance of the proposed algorithm, we analyze the received
results of N-dMFEA-II, the two existing algorithms, i.e., TLGA [16] and PGA [17],
and the optimal solutions.

The parameters of N-dMFEA-II are set up in a similar experimental environment
of dMFEA-II [15] and are summarized in Table 3.

Parameters Value Parameters Value

Population size 100 Initial values of RMPk,k′ 0.95
Crossover rate 0.95 Intra-task crossover operator OX [7]
Mutation rate 0.05 Inter-task crossover operator dOX [15]
∆inc/∆dec 0.99/0.99 Mutation operator 2-opt [15]

Cutting window size (W) 0.9

Table 3. Parameter values for N-dMFEA-II

This study implements N-dMFEA-II with two tasks. Each task is a different
instance of the IDPC-NDU.

In the result tables (Tables 4, 5, and 10), two instances that are in a case are
selected to perform N-dMFEA-II simultaneously. If the number of instances is odd,
then an instance will be randomly paired with another instance. For example, given
a set of instances A, B, C, D, E, F, and G, suppose that the pairs of instances
are (A,C), (B,D), and (E,F). Since there is no more unused instance to pair with
instance G, one of the instances in the sets {A,B,C,D,E,F} is randomly selected to
pair with instance G. Suppose that the generated pair is (G,E), because the solution
of the instance E has been found in the pair (E,F), so the solution of the instance
E in the pair (G,E) is not used.

To make our comparison fair, for each instance, all algorithms are simulated 30
times on the computer with a CPU – Intel Xeon E5620, RAM – 8GB. The source
codes were implemented in the C# language. The total number of objective function
evaluations is 50 000.

Dijkstra algorithm [25] is implemented for finding the shortest path.

114 T. Pham Dinh

5.4 Experimental Scenario

Three set of experiments are conducted for assessing the performance of N-dMFEA-
II:

• The non-parametric statistic is used for analysing the received results of N-
dMFEA-II and the existing algorithms.

• Comparing the results achieved by N-dMFEA-II with the existing algorithms.

• Because the performance of the proposed algorithm was contributed by parame-
ters: the relationship between the number of nodes and the number of domains,
etc. is conducted to evaluate the effect of these parameters.

5.5 Experimental Results on the AGSD Dataset

In this subsection, the experimental results obtained by N-dMFEA-II are compared
with the ones obtained by the two newest algorithms, PGA [17] and TLGA [16] on
instances in the AGSD dataset.

5.5.1 Non-Parametric Statistic for Comparing the Results
of the Proposed Algorithm and Existing Algorithms

The non-parametric statistic is used for analyzing the received results of the algo-
rithms. We perform two main steps in the comparison process:

• Firstly, statistical methods such as Friedman, Aligned Friedman, Quade [29, 30]
are used to evaluate the differences among results obtained by the aforemen-
tioned algorithms.

• Secondly, the hypothesis of equivalence of means of the results obtained by
algorithms in the first step is rejected, and then the post-hoc statistical pro-
cedures [29, 30] are applied to the obtained results to compute the concrete
differences among algorithms and compare the control algorithm with the re-
maining algorithms.

Tables 4 and 5 present the experimental results obtained by algorithms on the
types of instances. In these tables, the italic, red cells in a column of an algorithm
denote instances where this algorithm exceeds the others.

The results of Friedman’s, Iman-Davenport’s, Aligned Friedman’s, and Quade’s
tests are shown in Table 6. As we can see in this table, all values of the Fried-
man, Iman-Davenport, Aligned Friedman, and Quade tests are greater than their
associated critical values. Furthermore, all p-values are less than 0.05, so all the
null hypotheses, i.e., the equivalence of the medians of the results of the different
benchmarks are rejected. It means that there are significant differences among the
observed results with a level of significance α ≤ 0.05.

Table 7 presents the ranks computed through the Friedman, Friedman Aligned,
and Quade procedures. The results in this table point out the existence of significant

dMFEA-II to Solve the IDPC-NDU 115

Case Instance
TLGA PGA N-dMFEA-II

BF Avg Std BF Avg Std BF Avg Std

1
idpc ndu 1002 22 36564 42 42 0.0 30 34 2.9 30 30 0.0
idpc ndu 1192 19 37744 63 63 0.0 40 47.3 5.1 40 40.1 0.5

2
idpc ndu 1202 22 65521 22 22.5 0.9 22 22 0.0 22 22 0.0
idpc ndu 1256 21 44446 77 97.1 4.0 46 47.9 2.6 42 42.3 0.5

4
idpc ndu 1322 22 48821 48 48 0.0 44 44 0.0 26 42.7 3.2
idpc ndu 1506 9 130556 19 20 1.5 11 12.3 3.0 11 11 0.0

5
idpc ndu 1514 16 78292 37 50.3 2.6 33 33 0.0 33 33 0.0
idpc ndu 1602 22 60574 52 101.8 13.9 46 46.8 0.4 46 46 0.0

6
idpc ndu 1514 30 78351 30 30 0.0 30 30 0.0 30 30 0.0
idpc ndu 1682 23 67612 78 78 0.0 46 55 11.5 46 46 0.0

7
idpc ndu 1730 20 88509 42 42 0.0 39 41.8 0.8 39 39 0.0
idpc ndu 2002 22 178026 24 24.7 4.0 24 24 0.0 24 24 0.0

8
idpc ndu 427 7 14927 13 13 0.0 8 8 0.0 8 8 0.0
idpc ndu 704 15 16990 34 72.6 13.1 31 31 0.0 31 31 0.0

S
m
a
ll

in
st
a
n
c
e
s

9
idpc ndu 842 23 31617 22 22 0.0 22 22 0.0 22 22 0.0
idpc ndu 1002 12 82252 14 14.2 0.5 8 13.8 1.1 8 8.4 1.5

10
idpc ndu 2102 23 164811 27 27 0.2 27 27 0.0 27 27 0.0
idpc ndu 2402 22 260967 24 25.4 5.0 24 24 0.0 24 24 0.0

11
idpc ndu 2494 12 276620 26 30.8 5.9 23 23 0.0 16 21.1 3.2
idpc ndu 2502 22 229601 35 36.2 2.7 29 29 0.0 29 29 0.0

12
idpc ndu 2522 20 171940 77 77.3 1.5 41 41 0.0 18 37.2 8.7
idpc ndu 2715 22 592246 13 13.9 0.8 13 13 0.0 8 8.8 1.9

13
idpc ndu 2918 29 293109 30 31.5 2.0 30 30 0.0 30 30 0.0
idpc ndu 3161 15 339881 30 41.7 11.9 30 30 0.0 30 30 0.0L

a
rg

e
in
st
a
n
c
e
s

14
idpc ndu 3602 32 406192 71 78.3 5.4 35 38.8 2.0 35 35 0.0
idpc ndu 3602 32 406192 71 78.3 5.4 35 38.8 2.0 35 35 0.0

Table 4. Results obtained by TLGA, PGA and N-dMFEA-II on instances in Type 1

differences among the algorithms considered. From this table, TLGA is the worst
performing algorithm, whereas N-dMFEA-II is the best. Therefore, N-dMFEA-II is
the control algorithm.

Table 8 shows ranks, unadjusted p-value, and z-values which are computed for
the algorithms TLGA and PGA. The unadjusted p-values demonstrated that both
algorithms TLGA and PGA are significantly worse than the control algorithm at
a level of significance α = 0.05.

The above mentions lead to the conclusion that, N-dMFEA-II beats both algo-
rithms TLGA and PGA on most cases.

116 T. Pham Dinh

Case Instance
TLGA PGA N-dMFEA-II

BF Avg Std BF Avg Std BF Avg Std

1
idpc ndu 1002 32 60942 19 37.1 3.5 19 19.6 0.9 13 18.8 1.1
idpc ndu 1102 17 56280 49 57.9 2.7 25 25.6 1.2 25 25 0.0

2
idpc ndu 52 6 204 6 16.3 11.2 6 6 0.0 6 6 0.0
idpc ndu 102 10 834 19 26.9 5.9 7 7 0.0 7 7 0.0

3
idpc ndu 1202 18 68002 31 34.9 0.7 24 24.7 1.0 15 23.7 1.6
idpc ndu 1302 22 78953 45 63.2 6.8 25 25.9 0.3 25 25 0.0

4
idpc ndu 1402 24 92365 41 80.3 9.5 24 24.8 0.4 16 23.7 1.5
idpc ndu 1502 27 104878 30 57 9.4 27 29 1.3 26 26 0.0

5
idpc ndu 1602 14 96765 46 80.9 10.0 32 33.7 1.2 17 18 3.8
idpc ndu 1702 18 110993 40 40 0.0 29 31.1 2.3 20 20.9 2.7

6
idpc ndu 1802 21 123666 68 70.9 0.6 34 36.3 0.8 33 33.1 0.3
idpc ndu 1902 27 137407 73 101.1 8.1 30 35.1 5.0 30 30 0.0

7
idpc ndu 152 14 1869 16 34.8 12.3 16 16 0.0 8 8 0.0
idpc ndu 202 22 2341 27 31.3 10.3 20 21.9 3.0 9 16 5.4

8
idpc ndu 252 11 3513 24 41.4 9.9 11 17.9 6.6 11 11 0.0
idpc ndu 302 12 4930 42 45.9 0.7 11 19.2 6.4 11 12.7 4.5

9
idpc ndu 352 17 6667 36 46.9 11.3 28 30.4 0.9 13 19.6 5.5
idpc ndu 402 22 8220 32 51.1 24.3 26 26.7 1.4 13 25.6 2.4

10
idpc ndu 452 32 10406 22 86.7 32.9 22 22 0.0 13 21.7 1.6
idpc ndu 502 12 10949 29 54.5 12.0 11 26 6.8 11 11 0.0

T
y
p
e
2
S
m
a
ll

11
idpc ndu 2002 17 128021 78 78 0.0 37 42 2.3 16 34.2 7.3
idpc ndu 2102 19 141155 96 107.6 3.5 36 36 0.0 36 36 0.0

12
idpc ndu 2202 22 153764 44 88.8 14.1 36 36.4 0.5 35 35 0.0
idpc ndu 2302 27 169859 76 105.3 6.7 42 53.9 8.9 36 36.5 1.1

13
idpc ndu 2402 29 186438 124 136.1 3.0 37 41.1 5.4 37 37 0.0
idpc ndu 2502 32 201852 67 124.7 13.2 34 54.9 12.4 34 34 0.0L

a
rg

e
in
st
a
n
c
e
s

14 idpc ndu 2802 30 215589 79 154.4 22.2 50 71.6 9.9 40 40.3 1.0

Table 5. Results obtained by TLGA, PGA and N-dMFEA-II on instances in Type 2

5.5.2 Detail of Comparison Among the Algorithms TLGA, PGA,
and N-dMFEA-II

The results obtained by N-dMFEA-II in comparison with two algorithms (PGA
and TLGA) are briefed in Table 9. In this table, A ≪ B denotes the number of
instances on which algorithm A outperforms algorithm B. Similarly, A ≈ B denotes
the number of instances on which algorithm A is equivalent to algorithm B.

Some comments are worth being mentioned from Table 9:

• N-dMFEA-II surpasses both algorithms PGA and TLGA on almost all cases.
More specifically, it is noted that N-dMFEA-II outperforms TLGA on all in-
stances in Type 2 and there is no test case on which PGA or TLGA outperforms
N-dMFEA-II.

dMFEA-II to Solve the IDPC-NDU 117

Friedman Value X2 Value p-Value I-D Value FF Value p-Value

84.38 5.99 5.0 ∗ 10−11 202.92 3.08 1.3 ∗ 10−36

A. Friedman Value X2 Value p-Value Quade Value FF Value p-Value

35.66 5.99 1.8 ∗ 10−8 121.01 3.08 7.1 ∗ 10−28

A. Friedman: Aligned Friedman; I-D: Iman-Davenport;

Table 6. Results of the Friedman, Iman-Davenport, Aligned Friedman and Quade tests
(α = 0.05)

Algorithms Friedman Friedman Aligned Quade

N-dMFEA-II 1.1698 46.6038 1.0776
TLGA 2.9434 132.3585 2.9958
PGA 1.8868 61.0377 1.9266

Table 7. Average rankings achiedved by the Friedman, Friedman Aligned, and Quade
tests

• N-dMFEA-II beats PGA on 13 of 25 instances on Type 1 (approximation 52%
of total cases) and on 25 of 28 instances on Type 2 (approximation 89% of
total cases). It means that the performance of N-dMFEA-II tends to increase
on instances in Type 2 in comparison with PGA.

• There are only 3 test cases where the results obtained by TLGA are equal to the
ones obtained by N-dMFEA-II. It leads to the conclusion that the performance
of N-dMFEA-II significantly exceeds that of TLGA.

5.5.3 Analysis of Influential Factors

Because the individual encoding depends on the number of domains, this subsection
analyzes the influence of the number of domains on the performance of N-dMFEA-II
in comparison with the existing algorithms.

To determine the correlation between the number of domains and the results
obtained by algorithms, the scatter plots of the relationship between the number of
domains and the comparison between N-dMFEA-II with two algorithms TLGA and
PGA for each type are plotted. In these figures, the circle symbols mean that the
performance of N-dMFEA-II exceeds the comparing algorithms; on the contrary, the

Friedman Quade

i Alg z p Holm Hol z p Holm Hol

2 TLGA 9.13 6.8 ∗ 10−20 0.025 0.025 8.59 8.6 ∗ 10−18 0.025 0.025
1 PGA 3.69 2.2 ∗ 10−4 0.05 0.05 3.80 1.4 ∗ 10−4 0.05 0.05

Alg: Algorithms; Hol: Holland; z: z-values; p: unadjusted p-values

Table 8. The z-values and p-values of the Friedman, Quade procedures (N-dMFEA-II is
the control algorithm)

118 T. Pham Dinh

N-dMFEA-II
≪PGA ≈ PGA ≪ TLGA ≈ TLGA Total

Type 1
Small 9 7 14 2 16
Large 4 5 8 1 9

Type 2
Small 18 2 20 0 20
Large 7 1 8 0 8

Table 9. The summary of comparison of achieved results from N-dMFEA-II and the ex-
isting algorithms

square symbols represent instances where the performance of N-dMFEA-II is worse
than the performance of the comparing algorithms. The triangle symbols mean that
the performance of two algorithms is equal.

Figures 9 and 10 illustrate the relationship between the number of domains
and the comparative results among TLGA, PGA, and N-dMFEA-II for Type 1 and
Type 2, respectively.

It is inferred from Figure 9 that N-dMFEA-II and TLGA are equal on three in-
stances idpc ndu 2102 23 164811, idpc ndu 842 23 31617 and
idpc ndu 1514 30 78351. In other words, the proposed scheme performs better than
TLGA on instances in which the number of domains is 23 or less. The comparative
results between N-dMFEA-II and PGA in Figure 9 b) are different from other cases
when square and trial symbols are interspersed. It means that the comparative
results are less dependent on the number of domains.

Because N-dMFEA-II outperforms TLGA on all instances in Type 2, only the
graph of comparison between N-dMFEA-II and PGA is plotted in this type. As can
be observed from the results in Figure 10, the two algorithms are equal on instances,
in which the number of domains is 19 or less; for larger instances, N-dMFEA-II
outperforms PGA all test cases. It implies that the performance of N-dMFEA-II
tends to be better than that of PGA when the number of domains increases.

According to the above mentions, the performance of N-dMFEA-II tends to
increase when the number of domains decreases (for instances in Type 1) or the
number of domains increases (for instances in Type 2).

5.6 Experimental Results on the ITZD Dataset

To provide a wider perspective to the evaluation of the proposed algorithm, we also
implemented it on the ITZD [28]. This dataset has been created by a project at
the University of Adelaide, Australia, which collects data network topologies from
around the world.

Table 10 shows the results obtained by N-dMFEA-II and the two existing al-
gorithms on instances in the ITZD dataset. As shown in Table 10, neither TLGA
nor PGA algorithms can find the solution on all test cases, whereas N-dMFEA-II
finds the IDPC-NDU solution in all test cases. PGA has five instances in which
the solution is not found on all runs, while TLGA has two instances. For example,

dMFEA-II to Solve the IDPC-NDU 119

a) The comparison between N-dMFEA-II and TLGA

b) The comparison between N-dMFEA-II and PGA

Figure 9. The scatter of the number of domains and the comparison among algorithms
on the instances in Types 1

120 T. Pham Dinh

Figure 10. The scatter of the number of domains and the comparison among algorithms
on the instances in Type 2

Case Instance
N-dMFEA-II PGA TLGA
BF Avg NoNF BF Avg NoNF BF Avg

1
Bandcon 130.6 130.6 – 130.6 130.6 – 130.6 130.6
Bellcanada 105.9 105.9 – 105.9 105.9 – 105.9 105.9

2
Bics 23.4 23.4 26 34.7 34.7 – 23.4 23.4
Claranet 5.7 5.7 – 5.7 5.7 – 5.7 5.7

3
Geant2001 5.0 5.0 – 5.0 5.0 – 5.0 5.0
Geant2009 20.0 20.0 – 20.0 20.0 – 20.0 20.0

4
Geant2010 27.5 27.5 19 30.0 30.0 19 27.5 27.5
Geant2012 30.0 30.0 19 30.0 30.0 – 30.0 30.0

5
HiberniaNireland 4.6 4.6 – 4.6 4.6 – 4.6 4.6
Highwinds 4.4 4.4 – 4.4 4.4 – 4.4 4.4

6
HostwayInternational 51.8 51.8 – 51.8 51.8 – 51.8 51.8
HurricaneElectric 123.2 123.2 – 123.2 123.2 – 123.2 123.2

7
Ntt 131.8 131.8 – 131.8 131.8 – 131.8 131.8
Oteglobe 28.0 28.0 30 – – 30 – –

8
Packetexchange 92.5 92.5 – 92.5 92.5 – 92.5 92.5
Peer1 21.6 21.6 – 21.6 21.6 – 21.6 21.6

9
Quest 331.8 331.8 – 331.8 331.8 – 331.8 331.8
VtlWavenet2011 18.3 18.3 – 18.3 18.3 – 18.3 18.3

10
Xeex 76.7 76.7 – 76.7 76.7 – 76.7 76.7
DeutscheTelekom 14.0 14.0 – 14.0 14.0 – 14.0 14.0

11 Gblnet 40.6 40.6 – 40.6 40.6 – 40.6 40.6

Table 10. Results obtained by TLGA, PGA and N-dMFEA-II on instances in ITZD

dMFEA-II to Solve the IDPC-NDU 121

TLGA and PGA are unable to find the solution of the Oteglobe instance on all 30
runs; TLGA and PGA do not find the solution of the Geant2010 instance on 19 out
of 30 runs.

Instance NVer NDo NEd

Bandcon 22 6 28
Bellcanada 48 2 65
Bics 33 25 48
Claranet 15 6 18
Gblnet 8 6 7
Geant2001 27 27 38
Geant2009 34 33 52
Geant2010 37 37 58
Geant2012 40 37 61
Highwinds 18 8 53
Ntt 47 31 216
HiberniaNireland 18 2 22
HostwayInternational 16 9 21
HurricaneElectric 24 11 37
DeutscheTelekom 39 21 62
Oteglobe 93 31 106
Packetexchange 21 9 27
Peer1 16 5 20
Quest 20 12 31
VtlWavenet2011 92 7 96
Xeex 24 3 34

NoVer: The number of Vertices; NoDo: The number of domains; NoEd: The number of edges

Table 11. Summary the selected instance in the ITZD dataset

The remarkable point in the data in Table 10 is that in most cases, the results
obtained by the N-dMFEA-II are equal to those obtained by the two existing algo-
rithms. One of the reasons for this result is that the instances in the ITZD dataset
have a small number of domains and vertices. Besides, Table 11 also shows that
the number of links in each instance is close to the number of nodes, so the number
of inter-domain paths connecting two nodes is not large. For example, Figure 11
presents the real map of the Bandcon instance, with the left side representing nodes
in the US while the right side represents nodes in Europe. Since there are only 6
inter-domain edges and 6 domains, there is only a small number of inter-domain
paths to consider, i.e., if the source vertex is a node in the US and the destination
vertex is a node in the UK, then there are only two inter-domain paths connecting
these nodes.

From the above mentioned, all three algorithms are able to find solutions and
their costs are very close.

122 T. Pham Dinh

Figure 11. The real map of the Bandcon instance (source: www.topology-zoo.org)

6 CONCLUSION

This paper introduces the approach based on an adaptive multifactorial evolutionary
algorithm to solve the IDPC-NDU. The proposed algorithm also describes an indi-
vidual representation based on the permutation representation and a method for
constructing the IDPC-NDU solution. The proposed algorithm is evaluated on
a variety of different types of problem cases. The experimental results point out
that the proposed algorithm performed very well in most instances and thus is very
promising for future research and reference. Moreover, the relationship between the
number of domains and the performance of the proposed algorithm may suggest
new directions for further improvements of both the proposed algorithm and the
IDPC-NDU solutions.

To enhance the performance of the proposed algorithm, in the future, the author
will look for evolutionary operators and attempt to find an effective mechanism for
combining the proposed algorithm with a local search algorithm.

Acknowledgment

This work is funded by the Ministry of Education and Training of Vietnam under
the Contract Number B2021-TTB-01.

REFERENCES

[1] Paolucci, F.—Cugini, F.—Giorgetti, A.—Sambo, N.—Castoldi, P.: A Sur-
vey on the Path Computation Element (PCE) Architecture. IEEE Commu-

dMFEA-II to Solve the IDPC-NDU 123

nications Surveys and Tutorials, Vol. 15, 2013, No. 4, pp. 1819–1841, doi:
10.1109/SURV.2013.011413.00087.

[2] Ogino, N.—Nakamura, H.: An Inter-Domain Path Computation Scheme Adap-
tive to Traffic Load in Domains. IEICE Transactions on Communications, Vol. E93-B,
2010, No. 4, pp. 907–915, doi: 10.1587/transcom.E93.B.907.

[3] Banerjee, G.—Sidhu, D.: Comparative Analysis of Path Computation Techniques
for MPLS Traffic Engineering. Computer Networks, Vol. 40, 2002, No. 1, pp. 149–165,
doi: 10.1016/S1389-1286(02)00270-0.

[4] Maggi, L.—Leguay, J.—Cohen, J.—Medagliani, P.: Domain Clustering
for Inter-Domain Path Computation Speed-Up. Networks, Vol. 71, 2018, No. 3,
pp. 252–270, doi: 10.1002/net.21800.

[5] Eiben, A. E.—Smith, J. E.: Introduction to Evolutionary Computing. 2nd Edition.
Springer, 2015, doi: 10.1007/978-3-662-44874-8.

[6] Bäck, T.—Fogel, D.B.—Michalewicz, Z.: Evolutionary Computation 1: Basic
Algorithms and Operators. CRC Press, 2018, doi: 10.1201/9781482268713.

[7] Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, 1996, doi:
10.1093/oso/9780195099713.001.0001.

[8] Binh, H.T.T.—Thangy, T.B.—Long, N.B.—Hoang, N.V.—Thanh, P.D.:
Multifactorial Evolutionary Algorithm for Inter-Domain Path Computation under
Domain Uniqueness Constraint. 2020 IEEE Congress on Evolutionary Computation
(CEC), 2020, pp. 1–8, doi: 10.1109/CEC48606.2020.9185701.

[9] Bali, K.K.—Ong, Y. S.—Gupta, A.—Tan, P. S.: Multifactorial Evolutionary
Algorithm with Online Transfer Parameter Estimation: MFEA-II. IEEE Trans-
actions on Evolutionary Computation, Vol. 24, 2020, No. 1, pp. 69–83, doi:
10.1109/TEVC.2019.2906927.

[10] Wei, T.—Wang, S.—Zhong, J.—Liu, D.—Zhang, J.: A Review on
Evolutionary Multitask Optimization: Trends and Challenges. IEEE Transac-
tions on Evolutionary Computation, Vol. 26, 2022, No. 5, pp. 941–960, doi:
10.1109/TEVC.2021.3139437.

[11] Xu, Q.—Wang, N.—Wang, L.—Li, W.—Sun, Q.: Multi-Task Optimization and
Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review. Math-
ematics, Vol. 9, 2021, No. 8, Art. No. 864, doi: 10.3390/math9080864.

[12] Osaba, E.—Del Ser, J.—Martinez, A.D.—Hussain, A.: Evolutionary Mul-
titask Optimization: A Methodological Overview, Challenges, and Future Re-
search Directions. Cognitive Computation, Vol. 14, 2022, No. 3, pp. 927–954, doi:
10.1007/s12559-022-10012-8.

[13] Ban, H.B.—Pham, D.H.: Multifactorial Evolutionary Algorithm for Simultane-
ous Solution of TSP and TRP. Computing and Informatics, Vol. 40, 2021, No. 6,
pp. 1370–1397, doi: 10.31577/cai 2021 6 1370.

[14] Thanh, P.D.—Binh, H.T.T.—Trung, T.B.: An Efficient Strategy for Using
Multifactorial Optimization to Solve the Clustered Shortest Path Tree Problem. Ap-
plied Intelligence, Vol. 50, 2020, No. 4, pp. 1233–1258, doi: 10.1007/s10489-019-
01599-x.

https://doi.org/10.1109/SURV.2013.011413.00087
https://doi.org/10.1587/transcom.E93.B.907
https://doi.org/10.1016/S1389-1286(02)00270-0
https://doi.org/10.1002/net.21800
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1201/9781482268713
https://doi.org/10.1093/oso/9780195099713.001.0001
https://doi.org/10.1109/CEC48606.2020.9185701
https://doi.org/10.1109/TEVC.2019.2906927
https://doi.org/10.1109/TEVC.2021.3139437
https://doi.org/10.3390/math9080864
https://doi.org/10.1007/s12559-022-10012-8
https://doi.org/10.31577/cai_2021_6_1370
https://doi.org/10.1007/s10489-019-01599-x
https://doi.org/10.1007/s10489-019-01599-x

124 T. Pham Dinh

[15] Osaba, E.—Martinez, A.D.—Galvez, A.—Iglesias, A.—Del Ser, J.:
dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for Permutation-
Based Discrete Optimization Problems. Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion (GECCO ’20), ACM, 2020,
pp. 1690–1696, doi: 10.1145/3377929.3398084.

[16] Do Tuan, A.—Hoang, L.N.—Bao, T.T.—Binh, H.T.T.—Su, S.: A Two-
Level Strategy Based on Evolutionary Algorithm to Solve the Inter-Domain Path
Computation under Node-Defined Domain Uniqueness Constraint. In: Pham, T.,
Solomon, L. (Eds.): Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications III. Proceedings of the SPIE, Vol. 11746, 2021, pp. 687–700,
doi: 10.1117/12.2588199.

[17] Binh, H.T.T.—Long, N.H.—Thang, T.B.—Simon, S.: A Two-Level Genetic
Algorithm for Inter-Domain Path Computation under Node-Defined Domain Unique-
ness Constraints. 2021 IEEE Congress on Evolutionary Computation (CEC), 2021,
pp. 87–94, doi: 10.1109/CEC45853.2021.9504728.

[18] Narvaez, P.—Siu, K.Y.—Tzeng, H.Y.: New Dynamic Algorithms for Shortest
Path Tree Computation. IEEE/ACMTransactions on Networking, Vol. 8, 2000, No. 6,
pp. 734–746, doi: 10.1109/90.893870.

[19] Chan, E. P. F.—Yang, Y.: Shortest Path Tree Computation in Dynamic Graphs.
IEEE Transactions on Computers, Vol. 58, 2009, No. 4, pp. 541–557, doi:
10.1109/TC.2008.198.

[20] Gupta, A.—Ong, Y. S.—Feng, L.: Multifactorial Evolution: Toward Evolution-
ary Multitasking. IEEE Transactions on Evolutionary Computation, Vol. 20, 2016,
No. 3, pp. 343–357, doi: 10.1109/TEVC.2015.2458037.

[21] Yuan, Y.—Ong, Y. S.—Gupta, A.—Tan, P. S.—Xu, H.: Evolutionary Mul-
titasking in Permutation-Based Combinatorial Optimization Problems: Realization
with TSP, QAP, LOP, and JSP. 2016 IEEE Region 10 Conference (TENCON), 2016,
pp. 3157–3164, doi: 10.1109/TENCON.2016.7848632.

[22] Ong, Y. S.: Towards Evolutionary Multitasking: A New Paradigm in Evolutionary
Computation. In: Senthilkumar, M., Ramasamy, V., Sheen, S., Veeramani, C., Bon-
ato, A., Batten, L. (Eds.): Computational Intelligence, Cyber Security and Compu-
tational Models. Springer, Sigapore, Advances in Intelligent Systems and Computing,
Vol. 412, 2016, pp. 25–26, doi: 10.1007/978-981-10-0251-9 3.

[23] Ammi, M.—Chikhi, S.: A Generalized Island Model Based on Parallel and Co-
operating Metaheuristics for Effective Large Capacitated Vehicle Routing Problem
Solving. Journal of Computing and Information Technology, Vol. 23, 2015, No. 2,
pp. 141–155, doi: 10.2498/cit.1002465.

[24] Misevičius, A.—Ostreika, A.—Šimaitis, A.—Žilevičius, V.: Improving Local
Search for the Traveling Salesman Problem. Information Technology and Control,
Vol. 36, 2007, No. 2, pp. 187–195, doi: 10.5755/J01.ITC.36.2.11839.

[25] Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. In:
Apt, K.R., Hoare, T. (Eds.): Edsger Wybe Dijkstra: His Life, Work, and Legacy.
ACM, 2022, pp. 287–290, doi: 10.1145/3544585.3544600.

[26] Xu, M.H.—Liu, Y.Q.—Huang, Q. L.—Zhang, Y.X.—Luan, G. F.: An Im-

https://doi.org/10.1145/3377929.3398084
https://doi.org/10.1117/12.2588199
https://doi.org/10.1109/CEC45853.2021.9504728
https://doi.org/10.1109/90.893870
https://doi.org/10.1109/TC.2008.198
https://doi.org/10.1109/TEVC.2015.2458037
https://doi.org/10.1109/TENCON.2016.7848632
https://doi.org/10.1007/978-981-10-0251-9_3
https://doi.org/10.2498/cit.1002465
https://doi.org/10.5755/J01.ITC.36.2.11839
https://doi.org/10.1145/3544585.3544600

dMFEA-II to Solve the IDPC-NDU 125

proved Dijkstra’s Shortest Path Algorithm for Sparse Network. Applied Mathematics
and Computation, Vol. 185, 2007, No. 1, pp. 247–254, doi: 10.1016/j.amc.2006.06.094.

[27] Pham Dinh, T.—Ta Bao, T.—Hoang, N.V.—Do, T.A.: Inter-Domain Path
Computation under Node-Defined Domain Uniqueness Constraint Instances. Mende-
ley Data, 2022, doi: 10.17632/tpg2nbcsc5.2.

[28] Knight, S.—Nguyen, H.X.—Falkner, N.—Bowden, R.—Roughan, M.:
The Internet Topology Zoo. IEEE Journal on Selected Areas in Communications,
Vol. 29, 2011, No. 9, pp. 1765–1775, doi: 10.1109/JSAC.2011.111002.

[29] Derrac, J.—Garćıa, S.—Molina, D.—Herrera, F.: A Practical Tutorial on
the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolu-
tionary and Swarm Intelligence Algorithms. Swarm and Evolutionary Computation,
Vol. 1, 2011, No. 1, pp. 3–18, doi: 10.1016/j.swevo.2011.02.002.

[30] Carrasco, J.—Garćıa, S.—Rueda, M.M.—Das, S.—Herrera, F.: Recent
Trends in the Use of Statistical Tests for Comparing Swarm and Evolutionary Com-
puting Algorithms: Practical Guidelines and a Critical Review. Swarm and Evolution-
ary Computation, Vol. 54, 2020, Art. No. 100665, doi: 10.1016/j.swevo.2020.100665.

Thanh Pham Dinh received his Ph.D. degree in mathematical
foundations for informatics from the Military Technical Acade-
my in 2021. Since 2022, he has done postdoctoral research at
the University of Engineering and Technology, Vietnam National
University, Hanoi. Since 2006, he has joined the Faculty of Math-
ematics, Physics, Informatics, Tay Bac University, Vietnam as
Lecturer. His current research interests include computational
intelligence, evolutionary computation, memetic computing, and
evolutionary multitasking. He is a member of the IEEE Com-
putational Intelligence Society.

https://doi.org/10.1016/j.amc.2006.06.094
https://doi.org/10.17632/tpg2nbcsc5.2
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2020.100665

