
Computing and Informatics, Vol. 42, 2023, 37–74, doi: 10.31577/cai 2023 1 37

COST-EFFECTIVE SCHEDULING AND LOAD
BALANCING ALGORITHMS IN CLOUD COMPUTING
USING LEARNING AUTOMATA

Ali Sarhadi, Javad Akbari Torkestani∗

Department of Computer Engineering
Arak Branch, Islamic Azad University
Arak, Iran
e-mail: {asarhadi, j-akbari}@iau-arak.ac.ir, abbas.karimi@iau.ac.ir

Abstract. Cloud computing is a distributed computing model in which access is
based on demand. A cloud computing environment includes a wide variety of re-
source suppliers and consumers. Hence, efficient and effective methods for task
scheduling and load balancing are required. This paper presents a new approach
to task scheduling and load balancing in the cloud computing environment with
an emphasis on the cost-efficiency of task execution through resources. The pro-
posed algorithms are based on the fair distribution of jobs between machines, which
will prevent the unconventional increase in the price of a machine and the unem-
ployment of other machines. The two parameters Total Cost and Final Cost are
designed to achieve the mentioned goal. Applying these two parameters will cre-
ate a fair basis for job scheduling and load balancing. To implement the proposed
approach, learning automata are used as an effective and efficient technique in rein-
forcement learning. Finally, to show the effectiveness of the proposed algorithms we
conducted simulations using CloudSim toolkit and compared proposed algorithms
with other existing algorithms like BCO, PES, CJS, PPO and MCT. The proposed
algorithms can balance the Final Cost and Total Cost of machines. Also, the pro-
posed algorithms outperform best existing algorithms in terms of efficiency and
imbalance degree.

Keywords: Cloud computing, load balancing, learning automata, efficiency

∗ Corresponding author

https://doi.org/10.31577/cai_2023_1_37

38 A. Sarhadi, J. Akbari Torkestani

1 INTRODUCTION

Cloud computing, the new form of on demand computing gains its popularity in
the last few years [1]. Cloud computing is used to provide the calculation platform
for Internet users as a large-scale distributed computing environment. The cloud
computing is usually in ultra large scale and high scalability. To be more specific,
cloud computing can be linked with a large number of idle resources and constitute
a large scale resource pool [2]. Cloud computing offers services with minimum cost
compared to the setting up a datacenter. Cloud Service Providers (CSPs) permits
the users to select the machine hours based on their requirement regardless of the
costs without paying a premium for large scale. As cloud environment is evolving
day by day and confronted with various issues, one of them being uncovered is
scheduling. Job scheduling methods is one of the most challenging hypothetical
problems in the Cloud computing environment. Grid and cloud environment have
the same primary goals such as decreasing computing cost, enhancing flexibility
and reliability by converting systems from something that we purchase and process
our-selves to something that is worked by a third party. The existing scheduling
methods are according to the factors like service response time, resource utilization,
cost and performance [3]. There are various factors that can be mentioned as the
parameter of allocation issue like system load balance, throughput, reliability, cost
of service, etc. Today, low cost and appropriate resource utilization of job scheduling
problem has persuaded innovators to propose different cost related job scheduling
and load balancing strategies [4].

Load balancing is playing a main role in maintaining the organization of Cloud
computing. The main goal of load balancing mechanism is to map the jobs which are
set forth to the cloud domain to the unoccupied resources so that the overall available
response time is improved, and it also provides efficient resource utilization [5, 6].

Therefore, providing the efficient load-balancing algorithms and mechanisms is
a key to the success of cloud computing environments. On the other hand, devel-
oping the economic-based resource load balancing and scheduling system is a very
vital issue that has not been addressed properly. So, this work presents an im-
plementation economic aspect of resource load balancing strategies with simulated
result in CloudSim3.0 software by considering the economic parameters. New learn-
ing automata based resource load balancing algorithms solves the problem posed by
imbalanced loads and the subsequent increase in the price of one resource and the
idleness of other resources by defining new economic parameters.

1.1 Proposed Approach

Learning Automata are adaptive decision-making devices operating on unknown
random environments. They have proved capable of solving NP-complete problems
which need extensive search in solution space. Therefore, using this tool can in-
crease the efficiency of the proposed algorithms. The obtained results indicate the
improvement of the proposed algorithms in comparison with the existing ones. In

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 39

this paper, our main concern is to address the consequences imposed by the un-
fair distribution of tasks between resources that lead to an excessive increase in the
price of a resource in the computational networks such as cloud computing, using
an enhanced learning scheme known as Learning Automata.

Therefore, a learning automata based approach is designed to distribute tasks
between resources to increase resource efficiency and to prevent the price increase
of a resource. By defining two economic parameters Total Cost (TC) and Final
Cost (FC), we will try to solve economic-based load balancing problem using a learn-
ing automata.

1.2 Contributions

The main contributions of our paper can be expressed as follows:

• We proposed a set of learning automata based algorithms for cloud computing
load balancing and scheduling problem.

• We designed a framework for economic task scheduling and resource manage-
ment by defining Total Cost (TC) and Final Cost (FC) parameters.

• We conducted a series of experiments to evaluate the performance of the pro-
posed algorithms under the defined dataset.

1.3 Organization of the Paper

The paper is organized as follows: In Section 2, the related works are discussed. We
introduce research motivation and challenges in Section 3. Techniques, concepts,
general proposed approach are introduced in Section 4. The automata model for
scheduling and load balancing is provided in Section 5. The proposed algorithms
are discussed in Section 6. Simulation and experimental results are introduced in
Section 7. Finally, there is our conclusion in Section 8.

2 RELATED WORKS

At present, traditional scheduling algorithms, list scheduling algorithms and meta-
heuristic scheduling algorithms for cloud workflow task scheduling are available.
Traditional scheduling algorithms, such as round robin scheduling algorithm, MIN-
MIN algorithm and MIN-MAX algorithm, have the advantages of simple imple-
mentation and low algorithm complexity, but they can only be applied to specific
scenarios. A literature task scheduling survey based on three different perspectives
(methods, applications, and parameter-based measures utilized) is organized in [7].
MCT heuristic technique is used in both the static and dynamic (online mode) load
balancing strategy. [8] have used MCT technique where they considered both ready-
to-execute time and the expected execution time of the tasks for balancing purposes.
They allocate the task to the core that has the least completion time. The MCT

40 A. Sarhadi, J. Akbari Torkestani

will perform after allocation of task to a machine for the selection of the appropriate
core.

Meta-heuristic techniques proved to be very capable solving scheduling prob-
lems. From a cloud perspective a brief on traditional and heuristic scheduling meth-
ods is firstly provided, and only secondly it dives deeply into the most popular
meta-heuristics for the cloud task scheduling [9]. [10] introduces an improved parti-
cle swarm optimization algorithm (IPSO). [11] presents a novel hybrid antlion opti-
mization algorithm with elite-based differential evolution for solving multi-objective
task scheduling problems in cloud computing environments.

The proposed task scheduling algorithm in [12] is based on the gray wolf op-
timizer – a nature-inspired algorithm. A new method of initial optimization on
the crossover mutation probability of adaptive genetic algorithm, is introduced
in [13, 14].

Load balancing is another aspect of scheduling services which is the process of
distributing workloads and computing resources in a cloud computing environment.
So we need to introduce some of the most important study in this area.

[15] proposed a complete survey of cloud computing load balancing algorithms.
This paper presents a comprehensive and comparative study of various load bal-
ancing algorithms. Load balancing principles are introduced to many forms of con-
straints and environment settings [16, 17]. Perfect surveys of the published load bal-
ancing algorithms achieved by server consolidation via a meta-analysis is introduced
in [18]. [19] presents a state-of-the-art (SOTA) review of issues and challenges asso-
ciated with the existing load balancing techniques for researchers to develop more
effective algorithms. [20] proposes hybrid metaheuristics technique which combines
the osmotic behavior with bio inspired load balancing algorithms. [21] proposes
an efficient binary version of PSO algorithm with low time complexity and low cost
for scheduling and balancing tasks in cloud computing. In [22], a massive study on
the scheduling and load balancing algorithms of cloud computing was proposed with
the objective to minimize the performance and the makespan.

2.1 Economic-Based Scheduling and Load Balancing

On the other hand, economic concepts play a key role in cloud computing envi-
ronment. In distributed computing with a lot of different participants and con-
tradicting requirements, the well-known efficient approaches are based on economic
principles [23]. Here, we will mainly discuss the economic-based cloud resource load
balancing and task scheduling strategy. We have focused on economic aspect of
cloud computing scheduling and load balancing mechanism, so we need to introduce
a brief overview.

To address these issues, the economic-based distributed resource management
and scheduling has become a hot point of research for domestic and foreign schol-
ars, and there is a great deal of research results [24]. Buyya proposed distributed
computational economy-based framework called the Grid Architecture for Compu-
tational Economy (GRACE) [25]. This economic-based framework offers an in-

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 41

centive to resource owners for contributing and sharing resources. [5] addressed
the idea of applying economic models to the task scheduling. The efficiency of
this approach in terms of response and wait time minimization as well as utiliza-
tion is evaluated. [25] developed three heuristic scheduling algorithms for cost,
time, and time-variant optimization strategies that support deadline and budget
constraints.

For cost-critical parallel applications, the cost-aware scheduling algorithms have
been proposed for minimizing execution cost or satisfying the budget constraint on
heterogeneous systems in [26]. [27] presents a new opportunistic scheduling and re-
source consolidation system based on an economic model related to different service
level agreements (SLAs) classes. [28] proposes a new load balancing and scheduling
technique, Hybrid Genetic Gravitational Search Algorithm (HG-GSA) for reduc-
ing the total cost of computation in this paper. An adaptive fitness function is
used that takes into account both the cost and the makespan. The main objec-
tive of [29] is to propose a Completion Time Driven Hyper-Heuristic (CTDHH)
approach for cost optimization of SWFS in a cloud environment. fundamental re-
search issue addressed in [30] is the potential trade-off between the makespan and
the cost of virtual machine usage. This paper proposes a HEFT-ACO approach,
which is based on the heterogeneous earliest end time (HEFT), and the ant colony
algorithm (ACO) to minimize them. [31] proposed a critical-greedy (CG) algorithm
to minimize the end-to-end delay of budget constrained parallel applications. [32]
discussed task scheduling and resource allocation problem for implementing tasks
in clouds; a novel provisioning and scheduling algorithm is presented to execute
tasks under budget constraint while reducing the slowdown. [33] presented HCOC
(the Hybrid Cloud Optimized Cost) scheduling algorithm. HCOC decides which re-
sources should be leased from the public cloud and aggregated to the private cloud
to provide sufficient processing power to execute a workflow within a given execution
time. One of the most important studies from the economic aspect of scheduling
was done by Buyya and it is known as BCO algorithm, which is collected in [25].
In BCO (Buyya Cost Optimization) algorithm a designation queue is allocated to
each resource. The user’s requests are set in the designation queue in an ascending
order of time. [34] suggested a new eonomic based scheduling strategy known as
Cost-based Job Scheduling (CJS). The CJS algorithm uses data, processing power
and network characteristics in job allocation process. The CJS strategy computes
three important costs: the cost of network, cost of computation and data transfer
cost.

Preference-based Economic Scheduling (PES) algorithm is proposed for dis-
tributed computing with regard to preferences given by various groups of virtual
organization (VO) stakeholders (such as users, resource owners and administrators)
to improve the overall quality of service and resource load efficiency. In this paper,
a problem of finding a balance between VO stakeholders’ preferences to provide fair
resource sharing and distribution is studied [35]. Our approach is to apply a new
method to cloud computing load balancing based on the economic criteria using
learning automata.

42 A. Sarhadi, J. Akbari Torkestani

2.2 Learning Automata Based Scheduling and Load Balancing

Learning Automata are adaptive decision-making devices operating on unknown
random environments. Learning Automata has a finite set of actions and each ac-
tion has a certain probability (unknown to the automata) of getting rewarded by
the environment of the automata. The aim is to learn to choose the optimal action
(i.e. the action with the highest probability of being rewarded) through repeated
interaction on the system. If the learning algorithm is chosen properly, then the
iterative process of interacting on the environment can result in selection of the
optimal action. Learning Automata can be classified into two main families: fixed
structure learning automata and variable structure learning automata (VSLA). In
addition to very low computational requirements, the learning automata impose
a small amount of communication costs in interacting with the environment. This
feature distinguishes learning automata as a suitable alternative for use in envi-
ronments with energy constraints and bandwidth than the other models [36, 37].
Learning automata have a perfect adaptability to environmental changes. This fea-
ture is very suitable for use in distributed computational environments such as cloud
environment with a high degree of dynamism [38].

A task scheduling service that adopts cost optimization strategy should map het-
erogeneous grid resources for heterogeneous user applications so that their execution
finishes in the specified deadline with minimum cost proposed in [39]. [40] proposed
new algorithms based on learning automata. For this purpose a set of learning
automata-based algorithms are proposed to solve resource scheduling and load bal-
ancing with economic parameter and fair distribution of tasks over resources in grid
computing environment.

Our study typically focuses on resource load balancing and scheduling based
on learning automata, especially with economic concepts. However, the literature
review that reports the extensive use of learning automata to typically achieve these
specific goals has been limited.

[41] proposed a novel learning automata-based scheduling framework for deadline
sensitive tasks in the cloud. In [42] authors proposed a self-adapting task scheduling
algorithm (ADATSA) using learning automata to solve these problems. [43] designed
a model for task offloading using learning automata based decision making algorithm
(LADMA). This algorithm considers the completion time and energy consumption
of the tasks during the allocation of the tasks to the suitable VMs in the cloud.

A learning automata model for the task scheduling in distributed environments
was introduced by [44]. The mechanism introduced by the authors of this paper
acts absolutely without a prior information about the task but rather adapts to the
changing loads of the servers. To minimize the response time, a heuristic approach
based on the model of a learning automata was introduced by [45]. In this pa-
per, depending on the status of the current load distribution, a new task would be
scheduled to be executed either locally or on some other machine. [46] introduced
a scheme based on learning automata that is capable to solve some of the problems
on various cloud applications.

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 43

A cost attentive Reward Minimum-Penalty approach was introduced in [47].
In the doctoral thesis of Meybodi [48] a threshold was introduced, which was the
average response time taken over both streams, and the response time of a served
dispatched request from the chosen stream by the learning automata was compared
with that threshold for the inferred learning automata response. But in the field of
applying learning automata in economic scheduling and load balancing, scattered
and partial work has been done. Authors in this paper try to present a compre-
hensive study in this field. In addition to the work mentioned above, the learning
automata and its hybrid models can be considered as a suitable model for solving
the above problem due to the following features:

1. The learning automata are able to perfectly adapt themselves to environmental
changes. This feature is very suitable for use in Cloud environments with a high
degree of dynamism [49].

2. In addition to very low computational requirements, the learning automata im-
pose a small amount of communication costs in interacting with the environ-
ment. This feature distinguishes learning automata as a suitable alternative
for use in environments with energy constraints and bandwidth than the other
models [36, 50, 51].

3. Interacting with each other, the learning automata are able to perfectly model
the distribution of Cloud environments and in addition, simulate the chang-
ing behavioral patterns of the nodes in relation to each other and with the
environment, considering their learning ability and adaptability to the environ-
ment [52, 53, 54, 55].

4. Interacting with each other, the learning automata are able to converge to the
global optimal answer based only on the local decisions when solving optimiza-
tion problems. Therefore, learning automata-based algorithms can be considered
as an appropriate choice for the Cloud as they can resolve the slag resulted from
aggregation or dissemination of information in centralized algorithms [56, 57, 58].

5. The learning automata complete their information required for decision-making
in an iterable process and over time, from the environment in which they are lo-
cated. Accordingly, the tolerance of learning automata-based algorithms, in case
of the occurrence of possible errors, will not affect the algorithm’s performance
like the other algorithms [53].

Also, other learning techniques such as reinforcement learning and deep learning
have also been used in cloud computing scheduling and load balancing problem.

Reinforcement learning (RL) is broadly used to solve problems in partially visible
environments. As the most recent state-of-the-art (SOTA) reinforcement learning
(RL) algorithms, they have many advantages in solving problems. Asynchronous
Advantage Actor-Critic (A3C) [59], Proximal Policy Optimization (PPO) [60] and
Soft Actor-Critic (SAC) [61] are the most important models of SOTA algorithm.
Those models are already being used to solve various problems, such as robot navi-

44 A. Sarhadi, J. Akbari Torkestani

gation, elevator controls, military applications, medical diagnostics, task scheduling,
and education [62].

Proximal Policy Optimization (PPO) is one of the SOTA models and a type of
reinforcement learning algorithm. The PPO algorithm is gradient policy algorithm
that is suitable for continuous control problems. PPO is an offline learning method,
and its strategy to interact with the environment and the strategy to be learned
differ. The main idea of the PPO algorithm is to transfer online learning to offline
learning based on importance sampling and adopt two networks to improve the
network convergence rate [63].

2.3 Multi Objective Scheduling Strategy

Simultaneous time and cost optimization is another aspect of the reported studies
of resource scheduling and load balancing. [64] presented a hybrid strategy named
FUGE on the base of fuzzy approach and a genetic method that wants to reduce the
execution time and costs. [65] proposed a job scheduling strategy by heuristic search
approaches within cloud computing system where time and cost optimization is the
main object of this paper. [66] optimized the job scheduling approach on the base of
biogeography-based optimization (BBO). BBO strategy provides the advantageous
of adaptive strategy that is proposed to solve the challenge of binary integer job
scheduling in cloud environment. In [67, 68] authors proposed an algorithm for task
scheduling based on multiple criteria and multiple decision to choose a task to be
executed in a particular VM, Multiple criteria include the various QoS parameters.
This algorithm helps to reduce the makespan of the system. In [69] authors proposed
an algorithm based on NSGA-II for load balancing of CPU, memory and bandwidth
in cloud computing and [70] author uses the combination of genetic algorithm along
with fuzzy optimization theory. In [71, 72] authors implement the modified ant
colony optimization to minimize the execution time and cost by considering the
execution time, arrival time and other QoS parameters as a criteria for searching
the best VM for the execution of tasks such that the make span of the system is
reduced.

3 RESEARCH MOTIVATION AND CHALLENGES

Although, cloud is equipped with high performance elements, it is found that the
lack of resource load balancing and efficient job scheduling controlled it from working
in its full capacity. Hence, in this study we have given a great emphasis to the job
scheduling and load balancing in the cloud right after the identification of high-level
problems such as economic aspect of load balancing and fair distribution of task over
resources. Obviously, attempting to solve the scheduling and load balancing problem
in the cloud and delivering an enhanced load balancing mechanism as a result does
not only increase the performance of the cloud but also the pleasure of users who
are the main factors in the cloud environment.

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 45

Load balancing concerns the distribution of resources among users or it re-
quests, in a uniform manner, so that no node is overloaded or sitting idle. Like
in all other internet based distributed computing, load balancing is an important
aspect in cloud computing [73]. In the absence of load balancing provision, effi-
ciency of some overloaded nodes can sharply degrade at times, leading to violation
of SLA [74].

On the other hand, cloud computing approach, ideas and strategy need a new
field for researching in economic aspect of resource load balancing. Following Cost-
effective load balancing strategies, this paper proposes a new cloud resource load
balancing and scheduling algorithms, which can not only increase the usage of re-
sources or system utilization, but also, by trying to import new parameters, it can
satisfy both the resource providers and consumers. This satisfaction will be achieved
when both of them receive economic benefits. In fact, in this paper we propose the
set of cost-efficient and fair cloud computing load balancing algorithms which try to
balance different economic parameters.

4 TECHNIQUES, CONCEPTS, GENERAL PROPOSED APPROACH

LA theory is appropriate for the environment which is dynamic, complex, and
there is a large number of uncertainties like cloud environment, computer networks.
[51] presented a survey in the area of learning automata. Their study mainly fo-
cused on norms and behavior of learning automata, reinforcement learning schemes,
the convergence of learning algorithm, the interaction of several automata. Variable
Structure Learning Automata (VSLA) is a quintuple (α, β, p, T (α, β, p)), where α is
the action set of automata, β is an environment response set, p is the probability
vector, each being the probability of performing every action in the current internal
automaton state, and the function of T is the reinforcement algorithm. If the re-
sponse of the environment takes binary values learning automata model is P-model,
and if it takes finite output set with more than two elements that take values in
the interval [0, 1] such a model is referred to as Q-model, and when the output of
the environment is a continuous variable in the interval [0, 1], it is referred to as S-
model. The function of T is the reinforcement algorithm, which modifies the action
probability vector P with respect to the performed action and received response.
Assume β ∈ [0, 1]. A general linear schema for updating action probabilities can be
represented as Equation (1) and Equation (2). Let action i be performed then:

Pj(n+ 1) = Pj(n) + β(n)[b/(r − 1)− bpj(n)]− [1− β(n)]αpj(n), (1)

Pi(n+ 1) = Pi(n)− β(n)bpi(n) + [1− β(n)]α[1− Pi(n)], (2)

where a and b are reward and penalty parameters. When a = b, the automaton
is called LRP , if b = 0 the automaton is called LRI and if 0 < b ≪< a < 1, the
automaton is called LReP . For more information about learning automata the reader
may refer to [52, 75, 76, 77].

46 A. Sarhadi, J. Akbari Torkestani

Load balancing is the process of improving the performance of a parallel and
distributed system through a Reassign of load among the VMs. It can also generally
be described as anything from distributing computation and communication evenly
among processors, or a system that divides many client requests among several
servers.

To analyze and implementation the proposed learning automata based load bal-
ancing and scheduling approach and before introducing proposed model, the task ex-
ecution cost must be estimated on each machine. The estimate is stored in an M ∗N
matrix, named ECC (Expected Cost to Compute). This matrix can be changed to
obtain different ranges of computing environments varying price or resource value.
To generate this matrix, an M ∗ 1 basic column vector, named B, is first made
of floating-point values. The upper bound of possible values in the basic vector is
shown by ωb. The basic column vector is generated through the frequent repeti-
tion of a uniform random number when xi

b ∈ [1, ωb). Then B(i) = xi
b is defined

for 1 ≤ i ≤ M . After that, ECC rows are generated. To obtain each element
ECC(ti,mj) on the ith row of ECC, the basic value B(i) is multiplied by a uniform
random number xi,j

r (j ≤ 1 ≤ N), which is a random number ranging in [1, ωb). It
is called the row multiplier. Each row requires N row multipliers. Each row of ECC
can be described as ECC(tj,mj) = B(i) × xi,j

r , the basic column does not appear
in the final ECC. This process is repeated for each row until the ECC is filled with
M ∗N elements. Therefore, all of the ECC elements range in [1, ωb ∗ ωr). Now we
will explain how to use the ECC matrix in the proposed model based on the learning
automata.

In this paper a general maping function, Q(i) = j is defined from the domain
of tasks i = 1, . . . ,M to the domain of machines j = 1, . . . , N and its general
procedure is shown in Figure 1. In this paper the required cost of executing all the
tasks assigned to a machine in the nth iteration is called the Total Cost (TC) of that
machine, indicated by C(n)(j). It is determined through the Equation (3):

c(n)(j) =
∑

ECC(k, j), j = Q(k), 1 ≤ k ≤ M. (3)

The maximum value of c(n)(j) on 1 ≤ j ≤ N , in the nth iteration is called the Final
Cost (FC) and it is shown by F (n). In the proposed model, a Learning Automata
was assigned to each task Ti. The tasks can be assigned to each of N machines,
Automata share the same actions. Hence, there can be α(i) = m1,m2, . . . ,mn−1 and
0 ≤ β(i) ≤ 1 or each task Ti (1 ≤ i ≤ M). The closer β(i) gets to zero, the more
satisfactory the action of automata i gets, however the action will be dissatisfactory
if β(i) gets closer to 1 according to Figure 1.

5 AUTOMATA MODEL FOR SCHEDULING
AND LOAD BALANCING

This section presents a model of the computational cloud studied for scheduling
and load balancing algorithms. Figure 2 shows the schematic representation of the

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 47

Figure 1. General proposed procedure used by Learning Automata mapping algorithms

environment. The environment consists of the virtual machines (VM) which will be
used to execute the application. The scheduling and load balancing system consists
of the automata, and the model of the application and the virtual machines.

Figure 2. Model of the cloud computing

The learning automata model, as shown in Figure 3, is constructed by associating
every task si, i with a variable structure learning automaton, which is represented
by a 3-tuple. Each action of an automaton is associated with a virtual machine, and
since the tasks can be assigned to any of the N virtual machines (N : number of
virtual machines), the action set of all learning automata is identical. Therefore, for
any task si, 1 ≤ i ≤ M (M : number of tasks), α(i) = m1,m2, . . . ,mN (mi is the i

th

virtual machine) and β(i) ∈ [0, 1]. Environment may be interpreted as a P-model,
Q-model, or S-model.

48 A. Sarhadi, J. Akbari Torkestani

Figure 3. Learning Automata model for scheduling and load balancing algorithm

6 PROPOSED ALGORITHMS

This section introduces three category of learning automata based algorithms, em-
phasizing FC and TC parameters.

6.1 Cost-Efficient Load-Balancing Profit-Based Algorithms

The innovative feature behind Profit-based algorithms is to simultaneously decrease
Final Cost as well as reduce Total Cost of the selected machine in comparison to
previous iterations. In other words, the highest reward is given to an automaton
when both Final Cost and Total Cost of selected machine are less than their values
in previous iteration.

6.1.1 The Profit-Based Algorithm with Specified Rewarding (PS)

Profit-based algorithm with specified rewarding(PS) evaluates goodness of an au-
tomaton action considering the Final Cost and Total Cost of machine associated
with the action. This algorithm describes the environment as the Q-Model. In the
nth iteration, the Final Cost might be greater than, smaller than, or equal to the
Final Cost in the (n − 1)th iteration. Likewise, the Total Cost of a selected ma-
chine by automata A(i) in the nth iteration might be greater than, smaller than,
or equal to the Total Cost of a selected machine in the (n − 1)th iteration. There-
fore, given the Final Cost and Total Cost of selected machines in two consecutive

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 49

iterations, 9 possible cases can occur for the determination of β(n)(i). One value
is allocated to each of these 9 cases. This value shows the goodness of the action
taken by the automata. The environmental response to automata A(i) in the nth

iteration is determined in the following way: This value indicates how appropriate is
the automaton’s action. Equation (4) is employed to determine the environmental
response to automata A(i) in the nth iteration:

β(n)(i) = 1− (f(F (n−1), F n)βF + f(C(n−1)(Q(n−1)(i), Cn(Qn(i)))βC). (4)

In this equation, βF + βC = 1, and βF shows the received amount of reward if the
Final Cost is smaller than that of the previous iteration. Moreover, βC shows the
received amount of reward if the Total Cost of the selected machine is smaller than
that of the previous iteration. The f(x, y) in Equation (4) can be defined as:

f(x, y) =

0, x < y,

1/2, x = y,

1, x > y.

(5)

The coefficient f(F (n−1), F n) prevents βF from involving in the determination
of environmental response if the Final Cost is greater than that of the previous
iteration. If the Final Cost remains constant, βF is put into action with a coef-
ficient of 1

2
. If the Final Cost is smaller than before, βF is involved. Further-

more, f(C(n−1)(Q(n−1)(i), Cn(Qn(i))) involves βC in determining the environmental
response if the Total Cost of the selected machine is smaller than that of the previous
iteration. If it is equal to that of the previous iteration, βC is put into action with
a coefficient of 1

2
. If it is greater, βC is not involved. Therefore, the environmental

response is one of the 9 values shown in Table 1, in which D, U, and I indicate
a decrease, an unchanged value, and an increase, respectively. If the Total Cost and
the Final Cost decrease, the automata will receive the total reward. If they increase,
it will receive no reward (and it will be fined).

Final Cost Total Cost Penalty

D D 0

D U 1/2βC
D I βC
U D 1/2βF
U U 1/2βF + 1/2βC
U I 1/2βF + βC
I D βF
I U βF + 1/2βC
I I βF + βC = 1

Table 1. Probabilities of rewards allocated to the nine possible cases

50 A. Sarhadi, J. Akbari Torkestani

Four tests were conducted with different values of βC and βF . In the first test
(PS-1), all of the automata are rewarded if the total cost decreases; therefore, βC = 0
and βF = 1. In the second test (PS-2), an automaton is rewarded if the total cost of
the selected machine is smaller than that of the previous iteration; therefore, βC = 1
and βF = 0. In the third test (PS-3), βC = 0.75 and βF = 0.25. Since βF < βC ,
decreasing the total cost of the selected machine will have a greater effect on reward
determination than the previous iteration. In the fourth test (PS-4), βC = 0.25 and
βF = 0.75. Unlike the previous test, increasing the final cost will have a greater
effect on reward determination than the previous iteration because (βF > βC).

6.1.2 The Profitability-Based Algorithm with Random Rewarding (PR)

In this algorithm, abbreviated as PR, the appropriateness of an action, determines
the probability of receiving reward. This algorithm determines the value of β(n)(i)
for automata A(i) by considering the Final Cost and Total Cost of the selected
machine. The PR algorithm describes the environment as the P-Model; therefore,
β(n)(i) ∈ {0, 1}. The Final Cost of the nth iteration might be greater than, smaller
than, or equal to the Final Cost of the (n − 1)th iteration. Likewise, the Total
Cost of the selected machine by automata A(i) in the nth iteration might be greater
than, smaller than, or equal to that of the selected machine by the automata in
the (n − 1)th iteration. Hence, there will be 9 possible cases with respect to the
Final Cost and Total Cost of the selected machine in the two consecutive iterations.
A probability value is allocated to each of these 9 cases. These values determine the
probability of rewarding the selected action, which is obtained from Equation (7)
for automata A(i) in the nth iteration:

P (n)(i) = f(F (n−1), F n)PF + f(C(n−1)(Q(n−1)(i)), Cn(Qn(i)))PC . (6)

In Equation (6), PF +PC = 1, PF ̸= 0, PC ̸= 0, and PF is the probability of receiving
reward if the Final Cost is smaller than of the previous iteration. Moreover, PC is the
probability of receiving reward if the Total Cost of the selected machine is smaller
than the Total Cost of the selected machine in the previous iteration. f(x, y) is
defined according to Equation (5). The environmental response to automata A(i),
β(n)(i) is determined through Equation (7) in the nth iteration:

β(n)(i) = I(1− P (n)(i)). (7)

In Equation (7), I(q) is an indicator function [78], which returns 1 for q and
0 for 1 − q. Table 2, shows the probability of rewarding in the 9 possible cases.
Accordingly, D, U, and I indicate the decreased, unchanged, and increased values,
respectively, compared with the previous iteration.

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 51

Final Cost Total Cost Probability of receiving rewards

D D pF + PC = 1

D U pF + 1/2PC

D I pF
U D 1/2pF + PC

U U 1/2pF + 1/2PC

U I 1/2pF
I D PC

I U 1/2PC

I I 0

Table 2. Probabilities of Rewards Allocated to the Nine Possible Cases

6.2 Cost-Efficient Load-Balancing Threshold-Based Algorithms

Threshold-based algorithms benefit from a threshold in addition to the Total Cost
and Final Cost in order to determine the goodness of an action taken by an automa-
ton. If the Final Cost is lower than the threshold, automata’s action is evaluated
appropriate, otherwise it is considered inappropriate. A problem of profit-based
algorithms is that, an automata fails to receive the full reward when it approaches
a good mapping and starts converging because the Total Cost of a selected VM or
the Final Cost of consecutive iterations might remain constant. Therefore, profit-
based algorithms interpret this case as inappropriate and cease to reward the au-
tomaton completely, so they prevent the automata from reaching the appropriate
mapping. To avoid this problem, threshold-based algorithms use a threshold to
determine reward or penalty in addition to considering the Total Cost and Final
Cost. Threshold-based cost-effective load-balancing algorithms are divided in two
categories:

• The threshold-based algorithm with specific rewarding (TS),

• The threshold-based algorithm with random rewarding (TR).

6.2.1 Threshold-Based Algorithm with Specific Rewarding (TS)

TS evaluates goodness of an automaton action similarly to PS algorithm. This
algorithms interpret the environment as the Q-model. The Final Cost of the nth

iteration might be greater than, smaller than, or equal to that of the (n − 1)th

iteration. Likewise, the Total Cost of the selected VM by automaton A(i) in the
nth iteration might be greater than, smaller than, or equal to that of the selected
vm by automata in the (n − 1)th iteration. In addition, the Final Cost might be
smaller or greater than a Threshold. Thus, there are 18 possible states based on
the Final Cost and Total Cost of the selected VM in two consecutive iterations. In
fact, two rewarding policies are applied. One policy pertains to the case when the
Final Cost is greater than the threshold, whereas the other policy indicates the case
where the Final Cost is smaller than the threshold. To determine β(n)(i) a value

52 A. Sarhadi, J. Akbari Torkestani

is allocated to each of these 18 states. This value indicates the inappropriateness
of automata’s actions. The environmental response to automaton A(i) in the nth

iteration is calculated in the function (8):

β(n)(i) =

1− (fl(F
(n−1), F n)βf + fl(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))βc), F n < T,

1− (fg(F
(n−1), F n)βf + fg(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))βc), F n ≥ T.

(8)
where βf + βc = 1.

In the above function, βF is the received reward if the Final Cost is smaller
than the previous iteration, and βC is the received reward if the Total Cost of the
selected VM is smaller than the Total Cost of the selected VM in the previous
iteration. Moreover, T is the predefined threshold. Functions fl(x, y) ∈ {0, 1} and
fg(x, y) ∈ {0, 1/2, 1}, can return 0, 0.5 or 1 if the two inputs are greater, equal, or
smaller. They are defined whenever necessary. In fact, fg determines the reward and
penalty policy when the Final Cost is greater than the threshold, and fl determines
the reward and penalty policy when the Final Cost is smaller than the threshold.
To determine the threshold, it is possible to use the Final Cost obtained from one
of the existing algorithms. For instance, the BCO algorithm is first executed in the
tests for each meta task, and then the obtained Final Cost result is used as the
threshold. When the Final Cost is smaller than the threshold in the TS algorithm,
the equality of smallness (of the Total Cost of the selected VM or the Final Cost in
comparison with the previous iteration) is regarded as the goodness solution, whereas
the greatness (of the Total Cost of the selected VM and Final Cost in comparison
with the previous iteration) is regarded as the inappropriate solution. When the
Final Cost is greater than the threshold, then the greatness, equality, and smallness
(of the Total Cost or Final Cost in comparison with the previous iteration) are
regarded as inappropriate, semi-appropriate, and appropriate solutions, respectively.
Accordingly, fg and fl are defined as functions (9) and (10):

fg =

0, x < y,

1/2, x = y,

1, x > y,

(9)

fl =

0, x < y,

1, x. ≥ y
(10)

6.2.2 Threshold-Based Algorithm with Random Rewarding (TR)

Called TR, this algorithm acts like the PR algorithm, however, it is interpreted as
the P-model. In the nth iteration, the Final Cost might be greater than, smaller
than, or equal to the Final Cost in the (n− 1)th iteration. Likewise, the Total Cost

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 53

of the selected VM by automaton A(i) in the nth iteration might be greater than,
smaller than, or equal to the Total Cost of the selected VM by automata in the
(n− 1)th iteration. In addition, the Final Cost might be smaller than, greater than,
or equal to a threshold. Therefore, there might be 18 possible cases based on the
Final Cost and Total Cost of the selected VM in two consecutive iterations. In fact,
two rewarding policies are applied. One policy is allocated to the cases in which
the Final Cost is greater than the threshold, whereas the other one is allocated
to the case in which the Final Cost is smaller than the threshold. To determine
β(n)(i), a value is attributed to each of the 18 states. This value is the probability
of rewarding the automaton. It is calculated in function (11) for automaton A(i) in
nth iteration:

p(n)(i) =

(fg(F
(n−1), F n)pf + fg(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))pc), F n < T,

(fl(F
(n−1), F n)pf + fl(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))pc), F n ≥ T.

(11)
In this function, pf is the probability of rewarding if the Final Cost is smaller

than the previous iteration, and pc is the probability of rewarding if the selected
VM’s Total Cost is smaller than that of the selected VM in the previous iteration
(pf +pc = 1). Moreover, Ω shows the threshold. Functions fl(x, y) ∈ {0, 1/2, 1} and
fg(x, y) ∈ {0, 1/2, 1} return 0, 0.5 or 1 with respect to the greatness, equality, or
smallness of two inputs, which are defined when necessary. In fact, fl determines the
reward and penalty policy when the Final Cost is greater than the threshold, and fg
determines the reward and penalty policy when the Final Cost is smaller than the
threshold. To determine the threshold, it is possible to use the Final Cost obtained
from one of the existing algorithms. For instance, the BCO algorithm is executed
first in the tests for each meta task, and then the obtained Final Cost result is used
as the threshold. The environmental response to automata A(i) in the nth iteration
is calculated in the following way:

β(n)(i) = I(1− p(n)(i)). (12)

In Equation (12), I(q) as described above is an indicator function, which re-
turns 1 and 0 for the probabilities of q and 1 − q, respectively. When the Final
Cost is smaller than the threshold in the TR algorithm, the equality or smallness
(of the Total Cost of the selected VM or the Final Cost in comparison with the
previous iteration) is regarded as the goodness solution, and the greatness (of the
Total Cost of the selected machine or the Final Cost in comparison with the pre-
vious iteration) is regarded as the inappropriate solution. When the Final Cost is
greater than the threshold, the greatness, equality, or smallness (of the Total Cost
or Final Cost in comparison with the previous iteration) is considered inappropriate,
semi-appropriate, and appropriate, respectively. Functions fo and fb are defined as
Equations (9) and (10). When the Final Cost is smaller than the threshold in the
TR algorithm, only the greatness (of the Total Cost of the selected VM or the Final
Cost in comparison with the previous iteration) is considered inappropriate. When

54 A. Sarhadi, J. Akbari Torkestani

the Final Cost is greater than the threshold, the equality and greatness (of the Total
Cost of the selected VM or the Final Cost in comparison with the previous iteration)
are considered inappropriate.

6.3 Cost Utilization and Financial Efficiency Algorithm

When every job is executed on the machine with the lowest execution cost, it is
defined as an ideal resource selection which is represented as λmin(i), 1 ≤ j ≤ N
and evaluated as bellow relation:

λmin(i) = jSuchthatECC(i, j) = minECC(i, q), 1 ≤ q ≤ N.

On the other hand, when a resource is selected for a job with the heights of cost,
it is defined as the worst matching which is represented as λmax(i), 1 ≤ j ≤ N and
evaluated as bellow:

λmax(i) = j such that ECC(i, j) = maxECC(i, q), 1 ≤ q ≤ N.

Selecting a resource for a job can be measured by a parameter called financial
efficiency [9]. To better selecting machines, the machine should be selected for a job
with smaller ECC. Financial efficiency at iteration n is evaluated in Equation (13):

ω(n) =

∑
0<i<M ECC(i, λmin(i))∑
0<i<M ECC(i, λ(n)(i))

, (13)

where 0 < ω ≤ 1. When ω = 1, we have the ideal selecting. For more efficiency, the
load should be balanced to avoid increasing the cost of athe machine. Load balance
can be measured by cost utilization [13] as evaluated in Equation (14).

σ(n) =

∑
0<i<M ECC(i, λ(n)(i))

M × TN

. (14)

When the system is completely balanced (based on machines cost), then σ = 1;
otherwise σ < 1. In this section, we propose a new category of load balancing algo-
rithms by means of learning automata where the load balancing problem is reduced
to an optimization problem with cost effective and cost utilization as objective func-
tions. From Equations (13) and Equation (14), it can be inferred that Final Cost is
dependent on financial efficiency and cost utilization, as shown in Equation (15).

F (n) =

∑
0<i<M

λmin(i)
N

ω(n) × σ(n)
. (15)

Thus, to minimize the Final Cost, ω and σ must be maximized. However, these
design goals are in conflict with each other because mapping jobs to their first
choice of machines may cause the load imbalance.

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 55

Therefore, selecting is essentially a tradeoff between the two criteria; a good algo-
rithm must balance between financial efficiency and cost utilization. The algorithms
proposed in this section exploit learning automata to find mappings by optimizing
the matching and the load balancing criteria simultaneously. Two algorithms named
as CF1, CF2, are introduced and analyzed.

6.3.1 CF1 Algorithm

This algorithm interprets the environment as an S-model; that is β(n)(i) ∈ [0, 1] To
evaluate the contribution of each automaton to improve the financial efficiency and
cost utilization at each iteration, we define two parameters, financial efficiency LA
(fe LA) and max monetization LA (mm LA). Input to each automaton is a linear
combination of fe LA (denoted by ω(n)(i)), and mm LA (denoted by σ(n)(i):

β(n)(i) = ω(n)(i)θω + σ(n)(i)θσ

θω and θσ are weights associated with fe LA and mm LA, respectively. fe LA for
each automaton A(i) at iteration n is evaluated as Equation (16):

ω(n)(i) =
ECC(i, λ(n)(i))− ECC(i, λ(min)(i))

ECC(i, λ(max)(i))− ECC(i, λ(min)(i))
, (16)

where λ(max)(i) is the worst selecting (which was mentioned above). The closer
ω(n)(i) to 0, the more favorable the response from the environment as far as the
selecting is concerned. In the case that the automaton selects the machine with
the worst selecting, ω(n)(i) is evaluated to 1. mm LA for each automaton A(i) at
iteration n is evaluated as Equation (17) and Equation (18):

σ(n)(i) =
|c(n)(λ(n)(i))− c(n)|

Max1≤j≤N |ci(n)(j)− c(n)|
, (17)

where

c(n) =

∑N
j=1 c

(n)(j)

N
. (18)

CF1 evaluates mm LA by comparing the Total Cost of each machine with the aver-
age Total Cost of all machines. Higher reward is granted to those learning automata
which select the machines with Total Cost near the average. In this way, learning
automata are guided to select machines with the average Total Cost.

6.3.2 CF2 Algorithm

Algorithm CF2 is the same as CF1, but differs in evaluation of mm LA. The heuristic
for evaluation of mm LA in algorithm CF1 suffers from two defections. Firstly, when
the Total Cost is relatively balanced, the maximum distance between the Total Cost
of machines and the average Total Cost is a small value. Thus, as the Total Cost

56 A. Sarhadi, J. Akbari Torkestani

gets more balanced, σ(i) tends to higher values. As a result, even if an automaton
chooses a machine with the Total Cost close to the average Total Cost, it receives
a penalty. This makes the learning automata convergence more difficult.

Secondly, Total Cost evaluated in CF1 is in favor of high Total Cost machines.
By numerous experiments, we learned that in certain situations, no task is assigned
to a machine while others are heavily overloaded. In fact, when the average Total
Cost is close to the Total Cost of machines with heavy Total Cost, thus the machines
with the Total Cost close to zero have a greater distance from the average Total Cost,
mm LA of automata choosing these machines are evaluated closer to 1 than that of
automata choosing machines with the higher Total Cost. Consequently, machines
with the lower Total Cost have less chance to be selected. In order to address
mentioned defections, CF2 evaluates mm LA for each automaton A(i) at iteration
n, as shown in Equation (19):

σ(n)(i) =
c(n)(λ(n)(i))

F
(n)
N

(
1− e

−1
2 (

(σ(n)−1
0.1)

2
)
. (19)

The former part of the above expression is close to 0 when the chosen machine
has the Total Cost less than the maximum Total Cost. Thus, the learning automata
are encouraged to choose machines with the low Total Cost, thus, they are guided in
a way to decrease the distance between the maximum Total Cost and the minimum
Total Cost. The latter part of the expression is a Gaussian function. It gets closer to
0 as the Financial Efficiency increases; therefore, when the Total Cost is relatively
balanced, mm L of each automaton is close to 0.

7 SIMULATION AND EXPERIMENTAL RESULTS

Let us presume that the cloud system composed of number of machines shown in
Table 3 (each host has between 10 and 20 virtual machines). And 500 tasks which
properties of some of them are included in Table 4. Termination condition occurs
when no change in Final Cost is made for 2 000 consecutive repetitions, or the
number of repetitions is more than 200 000. The scheduling and load balancing
policies can be categories into two methods, immediate and batch mode [79, 80].
In the batch mode, jobs are gathered into a set, called metatask, which is further
examined for mapping at prescheduled times. We have proposed a set of scheduling
and load balancing algorithms based on Learning Automata for batch mode.

For the simulation studies, characteristics of the ECC matrices where defined
above are used. The algorithms are simulated on a discrete-event Cloud simulation
toolkit for cloud environment called CloudSim [81]. This toolkit provides facilities for
modeling and simulating Cloud resources and Cloud users with different capabilities
and configuration CloudSim is a self-configured platform that provides an extensible
simulation environment which enables modeling and simulation of cloud computing
systems and application provisioning environments [82]. The performance of the
proposed algorithm has been analysed based on the results of the simulation. The

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 57

cloud computing experiment has been carried out through the CloudSim3.0.3 sim-
ulator and this simulator runs on the machine with the configuration of Intel core
i7 processor, 8GB RAM, 3.4GHz CPU and Window 7 platform. Table 2 shows the
complete information on cloud resources distributed on different geographic sites.
This method is used to show how well the scheduler service exploits resources even
if there are different resources that could center run cloudlets. The aforesaid data
center methods described in the above section are realized by applying packages in
the CloudSim. Furthermore, “Datacenter” is the main class applied to simulation
of cloud environment. It is a cloud resource whose host list is virtualized.

The CloudSim was configured with three datacenters that include 3–5 physical
resources – or “host” in CloudSim terminology – with the following parameters:
Architecture = ‘x64’, host OS = ‘linux’, vmware machine = “xeon 5600”, Time
Zone = 004 (GMT-08:00) Pacific Time (US and Canada). Table 3, presents the
specifications of the configured simulation environment and resource features. Each
host has between 10 and 20 virtual machines. To demonstrate the efficiency of
the proposed algorithm, the obtained results were compared with BCO, PES, CJS,
PPO, MCT algorithms in terms of Total Cost (TC), Final Cost (FC), Degree of
imbalance, Efficiency, Waiting Time and Error Rate which are described in detail in
the next section. These algorithms are mentioned with details in the Related work
section.

Data Host RAM Size MIPS BandWith Extended Memory
Center (MB) (MBPS) (MB)

DC0
H1 4 096 5 100 300 100 000
H2 1 024 4 600 300 300 000
H3 2 048 2 500 300 1 000 000

DC1
H1 2 048 8 000 300 750 000
H2 512 6 140 300 250 000
H3 4 096 2 570 300 125 000

DC2

H1 1 024 6 500 300 300 000
H2 4 096 1 250 300 800 000
H3 512 3 540 300 450 000
H4 2 048 2 700 300 700 000

Table 3. Cloud computing resource model

The execution unit of the instructions is based on million instruction per sec-
ond (MIPS), RAM and extended memory units are based on mega byte (MByte),
network bandwidth is introduced in Mega Byte Per Second (Mbps). The processing
powers of each processor are specified. So, the job scheduling issue must be assigned
jobs to hosts and achieve efficient resource utilization. All Cloudlets are sending to
the service providers based on the Poisson distribution. This platform helps us to
experiment with custom job scheduler policies, like the one presented in this work,
which was in fact compared against the other job schedulers.

58 A. Sarhadi, J. Akbari Torkestani

Job creation component is responsible to implement user actions by generating
different size jobs throughout the scheduling period. As it is known, executing
such type of operations must have a multi-threaded component in order to execute
concurrently.

Table 4, shows the number of jobs and requirements of cloudlets applied in this
experiment. We randomly generate various jobs among these three types. The
introduced jobs are the combination of data intensive and computation intensive
jobs.

Job Length File Output Execution Time Execution
Name (MI) Size Size (Normal Distribution) Cost

J0 40 000 2 500 100 N(5, 10) Based on ECC Matrix

J1 37 000 3 000 120 N(5, 10) Based on ECC Matrix

J2 24 000 7 800 230 N(5, 10) Based on ECC Matrix

J3 18 000 4 300 180 N(5, 10) Based on ECC Matrix

J4 42 000 11 000 400 N(5, 10) Based on ECC Matrix

J5 36 000 6 500 230 N(5, 10) Based on ECC Matrix

J6 22 000 3 500 320 N(5, 10) Based on ECC Matrix

J7 31 000 7 600 160 N(5, 10) Based on ECC Matrix

J8 19 000 10 000 220 N(5, 10) Based on ECC Matrix

J9 24 000 9 600 290 N(5, 10) Based on ECC Matrix

J10 31 000 4 300 310 N(5, 10) Based on ECC Matrix

Table 4. Job features and specifications

7.1 Performance Evaluation Parameters

In addition to the proposed framework, the designed evaluation parameters are
among the innovations of this paper in comparison with the existing algorithms. In
this paper, the proposed and existing algorithms are evaluated in terms of Total
Cost (TC), Final Cost (FC), Degree of imbalance, Efficiency, Waiting Time and
Error Rate parameters. for the first time two main important parameters TC and
FC are defined based on tasks execution cost. in reported economic-based scheduling
and load balancing studies so far, evaluation of algorithms are often based on some
existing economic parameters such as, the users profit, system utilization or resource
owner profits. The definitions of these two parameters are mentioned below:

Total Cost: The required cost of executing all the tasks assigned to a machine in
the nth iteration is called the Total Cost (TC) of that machine, indicated by
C(n)(j):

c(n)(j) =
∑

ECC(k, j), j = Q(k), 1 ≤ k ≤ M

Final Cost: The maximum value of C(n)(j), 1 ≤ j ≤ N in above equation is called
the Final Cost (FC) in the nth iteration.

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 59

Degree of Imbalance: It is one of the most important parameters for evaluating
the proposed algorithms and improving this parameter, is one of the main ob-
jectives of this paper. It is calculated based on Equation (20). The proposed
definitions for the degree of imbalance in existing papers such as [83, 84] are
often designed based on the total tasks execution time on a VM and computa-
tional power of that VM. In this paper, it is for the first time when the purely
economic-based definition of imbalance degree has been proposed. Based on
the following equation, the proposed definition is based on the TC parameter
mentioned above.

cnavg =
cn(1) + cn(2) + · · ·+ cn(m)

m
,

cnmin = min{cn(1) + cn(2) + · · ·+ cn(m)},

cnmax = max{cn(1) + cn(2) + · · ·+ cn(m)}, (20)

imbalance d =
cnmax − cnmin

cnavg
.

Efficiency: The definitions of Efficiency in most of the reported studies such as [85,
86] are mostly based on speed and completion time. In this paper, for the first
time, an innovation has been created in the definition of efficiency. A completely
economic-based definition of efficiency is proposed based on Equation (21). The
denominator in Equation (21) indicates the total cost obtained for the execution
of all the assigned tasks in cloud environment. So, for each of algorithms a larger
number represents a better result.

Efficiency =
M∑N

j=1

∑M
k=1ECC(k, j)

. (21)

Error rate: The Error rate parameter in load balancing algorithms is regulated
with regard to each allocation, for instance in failure cases of allocation, or in
cases demanding reallocation.

Waiting time: It is defined as the time when a process waits from its submission
to completion in the queues.

7.1.1 Total Cost (TC) and Final Cost (FC)

The Total Cost (TC) is one of the most important parameters, and the proposed
algorithms are designed according to it. In fact, this parameter is general optimiza-
tion criteria which the proposed algorithms are trying to reduce and balance. It
can be defined as the total monetization by a machine for executing all allocated
jobs. According to Figures 4, 5 all proposed algorithms PS, TS, PR outperforms the
existing algorithms in the inconsistent environment, and in the consistent environ-
ment TS and PS outperform the existing algorithms but CJS algorithm has a better

60 A. Sarhadi, J. Akbari Torkestani

result from the proposed PR and TR algorithms. The results also show that algo-
rithm PS performs better than others in the inconsistent environment and in the
consistent environment TS performs better than others. Figure 6 also shows that
with respect to the number of virtual machines, the proposed algorithms PS have
better performance than existing algorithms and between the proposed algorithms
produces the best result.

Another important optimization criteria is Final Cost (FC) as previously ex-
plained, is maximum value of Total Cost, that’s mean choosing a machine which
has the highest monetization. Based on the results shown in Figure 4, PS, TS and
PR have better performance than other algorithms and CJS algorithm outperform
the proposed algorithms CF2, TR and CF1 in the inconsistent environment. Fig-
ure 5 shows that in the consistent environment TS and PS algorithms have a better
performance but CJS algorithm outperforms other proposed algorithms and other
existing algorithms. According to Figure 6, the results obtained for comparing the
proposed algorithms with the existing algorithms, are precisely similar to the To-
tal Cost (TC) parameter. Figures 7, 8 and 9 show the comparison of the Final
Cost parameter of the proposed algorithms with the existing algorithms. As shown
in Figure 7 in the inconsistent environment PS and TS have a better performance
than other algorithms and CJS. CJS algorithm outperforms the proposed algorithms
CF2, TR and CF1. Figure 8 shows that TS has a better performance in consistent
environment. Finally, the simulation results shown in Figure 9 show the comparison
of the Final Cost according to the number of VMs.

Figure 4. Total Cost versus number of jobs in proposed and existing algorithms in incon-
sistent environment

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 61

Figure 5. Total Cost versus number of jobs in proposed and existing algorithms in con-
sistent environment

Figure 6. Total Cost versus number of VMs in proposed and existing algorithms in con-
sistent environment

62 A. Sarhadi, J. Akbari Torkestani

Figure 7. Final Cost versus number of jobs in proposed and existing algorithms in incon-
sistent environment

Figure 8. Final Cost versus number of jobs in proposed and existing algorithms in con-
sistent environment

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 63

Figure 9. Final Cost versus number of VMs in proposed and existing algorithms in con-
sistent environment

7.1.2 Waiting Time

Waiting time is the total time spent by the job in the ready state for allocate to
a machine and execute. Figure 10 presents Average waiting time required by every
job in the proposed and existing algorithms. It shows that the average waiting time
for each algorithm has rises by increasing the number of jobs. Usually, load balanc-
ing policies lead to a reduction in waiting time because one of the important goals of
traditional load balancing algorithms is often time criteria, but in the proposed algo-
rithms the criterion of load balancing is the resource’s cost and preventing excessive
increase in the price of a resource, so unlike traditional approaches of load balanc-
ing, the waiting time of the proposed algorithms is longer than traditional models.
Also, the centrality of learning automata in the proposed algorithms can increase
waiting time. This is also true about PPO algorithm. According to Figure 10 among
the proposed algorithms, TR has the shortest waiting time, and PS has the longest
waiting time and between all simulated algorithms the MCT algorithm provides the
best waiting time.

7.1.3 Degree of Imbalance

Degree of imbalance is one of the most important parameters for the evaluation of
the proposed algorithm. Degree of imbalance indicates whether the jobs are dis-
tributed monotonously among VMs or not. Traditional load balancing algorithms
give a discussion on the Degree of Imbalance (DI) by presenting its relationship with

64 A. Sarhadi, J. Akbari Torkestani

Figure 10. Average waiting time versus number of jobs comparisons

makespan, resource utilization or completion time. Our objective is to reduce the
Degree of Imbalance of all VMs in a dynamic cloud computing environment. How-
ever, in this paper, due to the design of economic criteria in proposed scheduling and
load balancing algorithms, the imbalance factor is also based on economic parame-
ter (TC). The small value for the degree of imbalance (DI) in Equation (20) unveils
how tasks on a system are balanced, either the better the performance. Hence, our
aim to ensure load balancing across VMs through minimizing Degree of Imbalance
is achieved. In denoted Equation, the closer difference between the maximum and
minimum Total Cost (TC) of VMs to the average Total Cost (TC) will decrease De-
gree of Imbalance. According to Figure 11 all proposed algorithms outperform the
existing ones. Between the proposed algorithms, PS algorithm has the best results.
And between the existing algorithms, CJS has a better performance.

7.1.4 Efficiency

Other most important parameter in the evaluation of the proposed algorithms and
existing algorithms is efficiency. Based on the purposes of this paper, the authors
presented a new definition of efficiency based on economic criteria illustrated in
Equation (21) to recognize the quality of economic distribution of jobs among VMs,
so that jobs can be executed at a lower cost. The higher value in Equation (21)
represents better results. As shown in Figure 12 the proposed algorithms PS and
TS outperform other algorithms and also one of the existing algorithms called CJS
has better results than the proposed algorithms PR, TR, CF1 and CF2. Also, with
the increase in the number of VMs, efficiency has increased.

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 65

Figure 11. Imbalance Degree versus number of jobs comparisons

Figure 12. Efficiency versus number of jobs in proposed and existing algorithms

66 A. Sarhadi, J. Akbari Torkestani

7.1.5 Error Rate

The Error Rate is the number of jobs not completed successfully, due to any reason,
in the total number of jobs submitted. As shown in Figure 13 the Error Rate
in the proposed algorithms is higher than the existing algorithms due to the use
of learning automata in the structure of the proposed algorithms. The learning
automata is prone to higher Error Rates as many iterations and reallocation job to
VMs converge to desired response. MCT algorithm has the lowest error rate among
all the proposed and existing algorithms.

Figure 13. Error Rate versus number of jobs in the presented and existing algorithms

8 CONCLUSIONS

Cloud computing is a collection of distributed and parallel computing to create
shared resources, including hardware, software, and information. scheduling and
load balancing is an important technique to enhance the overall performance of the
distributed system. Usually traditional methods for scheduling and load balancing in
cloud environments are often based on concepts such as Makespan, execution time,
resource utilization etc. In this paper, for the first time, a complete set of learning
automata based algorithms with economic criteria such as Total Cost (TC), Final
Cost (FC) for solving load balancing challenge are proposed. The main idea in the
proposed algorithms is the fair allocation of tasks to VMs in order to prevent the
excessive increase in the price of one VMs and unemployment of other VMs. For

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 67

performance evaluation of the proposed algorithms and comparison with existing
mechanisms, several simulations have been performed on consistent and inconsistent
cloud computing environment with cloudsim simulator. Finally, the results of the
proposed algorithms PS, PR, TS, TR, CF1 and CF2 were compared with the results
of BCO, CJS, PES, PPO and MCT algorithms. Results show that the proposed
algorithms outperform the existing algorithms in terms of Total Cost (TC), Final
Cost (FC), Degree of Imbalance and efficiency.

Acknowledgment

This article was derived from a Ph.D. degree thesis in the Islamic Azad University-
Arak branch.

REFERENCES

[1] Rochwerger, B.—Breitgand, D.—Levy, E.—Galis, A.—Nagin, K.—
Llorente, I.M.—Montero, R.—Wolfsthal, Y.—Elmroth, E.—
Caceres, J.—Ben-Yehuda, M.—Emmerich, W.—Galan, F.: The Reservoir
Model and Architecture for Open Federated Cloud Computing. IBM Jour-
nal of Research and Development, Vol. 53, 2009, No. 4, pp. 4:1–4:11, doi:
10.1147/JRD.2009.5429058.

[2] Nurmi, D.—Wolski, R.—Grzegorczyk, C.—Obertelli, G.—Soman, S.—
Youseff, L.—Zagorodnov, D.: The Eucalyptus Open-Source Cloud-Computing
System. 2009 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, 2009, pp. 124–131, doi: 10.1109/CCGRID.2009.93.

[3] Foster, I.—Zhao, Y.—Raicu, I.—Lu, S.: Cloud Computing and Grid Comput-
ing 360-Degree Compared. 2008 Grid Computing Environments Workshop, IEEE,
2008, pp. 1–10, doi: 10.1109/GCE.2008.4738445.

[4] Fang, Y.—Wang, F.—Ge, J.: A Task Scheduling Algorithm Based on Load Bal-
ancing in Cloud Computing. In: Wang, F. L., Gong, Z., Luo, X., Lei, J. (Eds.): Web
Information Systems and Mining (WISM 2010). Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 6318, 2010, pp. 271–277, doi: 10.1007/978-3-642-
16515-3 34.

[5] Ernemann, C.—Hamscher, V.—Yahyapour, R.: Economic Scheduling in Grid
Computing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (Eds.): Job
Scheduling Strategies for Parallel Processing (JSSPP 2002). Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 2537, 2002, pp. 128–152, doi:
10.1007/3-540-36180-4 8.

[6] Garg, S.K.—Yeo, C. S.—Anandasivam, A.—Buyya, R.: Environment-
Conscious Scheduling of HPC Applications on Distributed Cloud-Oriented Data Cen-
ters. Journal of Parallel and Distributed Computing, Vol. 71, 2011, No. 6, pp. 732–749,
doi: 10.1016/j.jpdc.2010.04.004.

https://doi.org/10.1147/JRD.2009.5429058
https://doi.org/10.1109/CCGRID.2009.93
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1007/978-3-642-16515-3_34
https://doi.org/10.1007/978-3-642-16515-3_34
https://doi.org/10.1007/3-540-36180-4_8
https://doi.org/10.1016/j.jpdc.2010.04.004

68 A. Sarhadi, J. Akbari Torkestani

[7] Arunarani, A.R.—Manjula, D.—Sugumaran, V.: Task Scheduling Techniques
in Cloud Computing: A Literature Survey. Future Generation Computer Systems,
Vol. 91, 2019, pp. 407–415, doi: 10.1016/j.future.2018.09.014.

[8] Kim, S. I.—Kim, H.T.—Kang, G. S.—Kim, J.K.: Using DVFS and Task
Scheduling Algorithms for a Hard Real-Time Heterogeneous Multicore Processor En-
vironment. Proceedings of the 2013 Workshop on Energy Efficient High Performance
Parallel and Distributed Computing (EEHPDC ’13), ACM, 2013, pp. 23–30, doi:
10.1145/2480347.2480350.

[9] Houssein, E.H.—Gad, A.G.—Wazery, Y.M.—Suganthan, P.N.: Task
Scheduling in Cloud Computing Based on Meta-Heuristics: Review, Taxonomy, Open
Challenges, and Future Trends. Swarm and Evolutionary Computation, Vol. 62, 2021,
Art. No. 100841, doi: 10.1016/j.swevo.2021.100841.

[10] Wu, D.: Cloud Computing Task Scheduling Policy Based on Improved Particle
Swarm Optimization. 2018 International Conference on Virtual Reality and Intelligent
Systems (ICVRIS), IEEE, 2018, pp. 99–101, doi: 10.1109/ICVRIS.2018.00032.

[11] Abualigah, L.—Diabat, A.: A Novel Hybrid Antlion Optimization Algorithm
for Multi-Objective Task Scheduling Problems in Cloud Computing Environments.
Cluster Computing, Vol. 24, 2021, pp. 205–223, doi: 10.1007/s10586-020-03075-5.

[12] Bacanin, N.—Bezdan, T.—Tuba, E.—Strumberger, I.—Tuba, M.—
Zivkovic, M.: Task Scheduling in Cloud Computing Environment by Grey Wolf
Optimizer. 2019 27th Telecommunications Forum (TELFOR), IEEE, 2019, pp. 1–4,
doi: 10.1109/TELFOR48224.2019.8971223.

[13] Jang, S.H.—Kim, T.Y.—Kim, J.K.—Lee, J. S.: The Study of Genetic
Algorithm-Based Task Scheduling for Cloud Computing. International Journal of
Control and Automation, Vol. 5, 2012, No. 4, pp. 157–162.

[14] Yiqiu, F.—Xia, X.—Junwei, G.: Cloud Computing Task Scheduling Algo-
rithm Based on Improved Genetic Algorithm. 2019 IEEE 3rd Information Technol-
ogy, Networking, Electronic and Automation Control Conference (ITNEC), 2019,
pp. 852–856, doi: 10.1109/ITNEC.2019.8728996.

[15] Hota, A.—Mohapatra, S.—Mohanty, S.: Survey of Different Load Balancing
Approach-Based Algorithms in Cloud Computing: A Comprehensive Review. In:
Behera, H. S., Nayak, J., Naik, B., Abraham, A. (Eds.): Computational Intelligence
in Data Mining (CIDM 2017). Springer, Singapore, Advances in Intelligent Systems
and Computing, Vol. 711, 2019, pp. 99–110, doi: 10.1007/978-981-10-8055-5 10.

[16] Afzal, S.—Kavitha, G.: Load Balancing in Cloud Computing – A Hierarchi-
cal Taxonomical Classification. Journal of Cloud Computing, Vol. 8, 2019, No. 1,
Art. No. 22, doi: 10.1186/s13677-019-0146-7.

[17] Jyoti, A.—Shrimali, M.—Tiwari, S.—Singh, H. P.: Cloud Computing Using
Load Balancing and Service Broker Policy for IT Service: A Taxonomy and Survey.
Journal of Ambient Intelligence and Humanized Computing, Vol. 11, 2020, No. 11,
pp. 4785–4814, doi: 10.1007/s12652-020-01747-z.

[18] Ala’anzy, M.—Othman, M.: Load Balancing and Server Consolidation in
Cloud Computing Environments: A Meta-Study. IEEE Access, Vol. 7, 2019,
pp. 141868–141887, doi: 10.1109/ACCESS.2019.2944420.

https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1145/2480347.2480350
https://doi.org/10.1016/j.swevo.2021.100841
https://doi.org/10.1109/ICVRIS.2018.00032
https://doi.org/10.1007/s10586-020-03075-5
https://doi.org/10.1109/TELFOR48224.2019.8971223
https://doi.org/10.1109/ITNEC.2019.8728996
https://doi.org/10.1007/978-981-10-8055-5_10
https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1007/s12652-020-01747-z
https://doi.org/10.1109/ACCESS.2019.2944420

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 69

[19] Kumar, P.—Kumar, R.: Issues and Challenges of Load Balancing Techniques
in Cloud Computing: A Survey. ACM Computing Surveys, Vol. 51, 2019, No. 6,
Art. No. 120, doi: 10.1145/3281010.

[20] Gamal, M.—Rizk, R.—Mahdi, H.—Elnaghi, B. E.: Osmotic Bio-Inspired
Load Balancing Algorithm in Cloud Computing. IEEE Access, Vol. 7, 2019,
pp. 42735–42744, doi: 10.1109/ACCESS.2019.2907615.

[21] Mapetu, J. P. B.—Chen, Z.—Kong, L.: Low-Time Complexity and Low-Cost
Binary Particle Swarm Optimization Algorithm for Task Scheduling and Load Bal-
ancing in Cloud Computing. Applied Intelligence, Vol. 49, 2019, No. 9, pp. 3308–3330,
doi: 10.1007/s10489-019-01448-x.

[22] Hu, J.—Gu, J.—Sun, G.—Zhao, T.: A Scheduling Strategy on Load Balancing of
Virtual Machine Resources in Cloud Computing Environment. 2010 3rd International
Symposium on Parallel Architectures, Algorithms and Programming, IEEE, 2010,
pp. 89–96, doi: 10.1109/PAAP.2010.65.

[23] Toporkov, V.—Toporkova, A.—Bobchenkov, A.—Yemelyanov, D.: Re-
source Selection Algorithms for Economic Scheduling in Distributed Systems. Proce-
dia Computer Science, Vol. 4, 2011, pp. 2267–2276, doi: 10.1016/j.procs.2011.04.247.

[24] Malawski, M.—Juve, G.—Deelman, E.—Nabrzyski, J.: Algorithms for
Cost- and Deadline-Constrained Provisioning for Scientific Workflow Ensembles in
IaaS Clouds. Future Generation Computer Systems, Vol. 48, 2015, pp. 1–18, doi:
10.1016/j.future.2015.01.004.

[25] Buyya, R.: Economic-Based Distributed Resource Management and Scheduling for
Grid Computing. Ph.D. Thesis. Monash University, Melbourne, Australia, 1968, doi:
10.48550/arXiv.cs/0204048.

[26] Toporkov, V.—Bobchenkov, A.—Toporkova, A.—Tselishchev, A.—
Yemelyanov, D.: Slot Selection and Co-Allocation for Economic Scheduling in
Distributed Computing. In: Malyshkin, V. (Ed.): Parallel Computing Technolo-
gies (PaCT 2011). Springer, Berlin, Heidelberg, Lecture Notes in Computer Science,
Vol. 6873, 2011, pp. 368–383, doi: 10.1007/978-3-642-23178-0 32.

[27] Menouer, T.—Cérin, C.—Hsu, C.H.: Opportunistic Scheduling and Resources
Consolidation System Based on a New Economic Model. The Journal of Supercom-
puting, Vol. 76, 2020, No. 12, pp. 9942–9975, doi: 10.1007/s11227-020-03231-z.

[28] Chaudhary, D.—Kumar, B.: Cost Optimized Hybrid Genetic-Gravitational
Search Algorithm for Load Scheduling in Cloud Computing. Applied Soft Computing,
Vol. 83, 2019, Art. No. 105627, doi: 10.1016/j.asoc.2019.105627.

[29] Alkhanak, E.N.—Lee, S. P.: A Hyper-Heuristic Cost Optimisation Approach for
Scientific Workflow Scheduling in Cloud Computing. Future Generation Computer
Systems, Vol. 86, 2018, pp. 480–506, doi: 10.1016/j.future.2018.03.055.

[30] Belgacem, A.—Beghdad-Bey, K.: Multi-Objective Workflow Scheduling in
Cloud Computing: Trade-Off Between Makespan and Cost. Cluster Computing,
Vol. 25, 2022, No. 1, pp. 579–595, doi: 10.1007/s10586-021-03432-y.

[31] Wu, C.Q.—Lin, X.—Yu, D.—Xu, W.—Li, L.: End-to-End Delay Minimization
for Scientific Workflows in Clouds Under Budget Constraint. IEEE Transactions on
Cloud Computing, Vol. 3, 2014, No. 2, pp. 169–181, doi: 10.1109/TCC.2014.2358220.

https://doi.org/10.1145/3281010
https://doi.org/10.1109/ACCESS.2019.2907615
https://doi.org/10.1007/s10489-019-01448-x
https://doi.org/10.1109/PAAP.2010.65
https://doi.org/10.1016/j.procs.2011.04.247
https://doi.org/10.1016/j.future.2015.01.004
https://doi.org/10.48550/arXiv.cs/0204048
https://doi.org/10.1007/978-3-642-23178-0_32
https://doi.org/10.1007/s11227-020-03231-z
https://doi.org/10.1016/j.asoc.2019.105627
https://doi.org/10.1016/j.future.2018.03.055
https://doi.org/10.1007/s10586-021-03432-y
https://doi.org/10.1109/TCC.2014.2358220

70 A. Sarhadi, J. Akbari Torkestani

[32] Thanasias, V.—Lee, C.—Hanif, M.—Kim, E.—Helal, S.: VM Capacity-
Aware Scheduling Within Budget Constraints in IaaS Clouds. PloS ONE, Vol. 11,
2016, No. 8, Art. No. e0160456, doi: 10.1371/journal.pone.0160456.

[33] Bittencourt, L. F.—Madeira, E.R.M.: HCOC: A Cost Optimization Algorithm
for Workflow Scheduling in Hybrid Clouds. Journal of Internet Services and Applica-
tions, Vol. 2, 2011, pp. 207–227, doi: 10.1007/s13174-011-0032-0.

[34] Mansouri, N.—Javidi, M.M.: Cost-Based Job Scheduling Strategy in Cloud Com-
puting Environments. Distributed and Parallel Databases, Vol. 38, 2020, No. 2,
pp. 365–400, doi: 10.1007/s10619-019-07273-y.

[35] Toporkov, V.—Yemelyanov, D.—Bobchenkov, A.—Potekhin, P.:
Preference-Based Economic Scheduling in Grid Virtual Organizations. Procedia
Computer Science, Vol. 80, 2016, pp. 1071–1082, doi: 10.1016/j.procs.2016.05.411.

[36] Asnaashari, M.—Meybodi, M.R.: Irregular Cellular Learning Automata and
Its Aplication to Clustering in Sensor Networks. Proceedings of 15th Conference on
Electrical Engineering (15th ICEE), Volume on Communication, 2007.

[37] Ranjbari, M.—Torkestani, J. A.: A Learning Automata-Based Algorithm for
Energy and SLA Efficient Consolidation of Virtual Machines in Cloud Data Centers.
Journal of Parallel and Distributed Computing, Vol. 113, 2018, pp. 55–62.

[38] Che, H.—Li, S.Q.—Lin, A.: Adaptive Resource Management for Flow-Based
IP/ATM Hybrid Switching Systems. IEEE/ACM Transactions on Networking, Vol. 6,
1998, No. 5, pp. 544–557, doi: 10.1109/90.731188.

[39] Sarhadi, A.—Meybodi, M.R.: New Algorithm for Resource Selection in Eco-
nomic Grid with the Aim of Cost Optimization Using Learning Automata. 2010
International Conference on Challenges in Environmental Science and Computer En-
gineering, IEEE, Vol. 1, 2010, pp. 32–35, doi: 10.1109/CESCE.2010.185.

[40] Sarhadi, A.: Learning Automata Based Method for Grid Computing Resource Val-
uation with Resource Suitability Criteria. International Journal of Grid Computing
and Applications, Vol. 2, 2011, No. 4, pp. 1–9, doi: 10.5121/ijgca.2011.2401.

[41] Sahoo, S.—Sahoo, B.—Turuk, A.K.: A Learning Automata-Based Scheduling
for Deadline Sensitive Task in the Cloud. IEEE Transactions on Services Computing,
Vol. 14, 2019, No. 6, pp. 1662–1674, doi: 10.1109/TSC.2019.2906870.

[42] Zhu, L.—Huang, K.—Hu, Y.—Tai, X.: A Self-Adapting Task Scheduling Algo-
rithm for Container Cloud Using Learning Automata. IEEE Access, Vol. 9, 2021,
pp. 81236–81252, doi: 10.1109/ACCESS.2021.3078773.

[43] Krishna, P.V.—Misra, S.—Nagaraju, D.—Saritha, V.—Obaidat, M. S.:
Learning Automata Based Decision Making Algorithm for Task Offloading in Mobile
Cloud. 2016 International Conference on Computer, Information and Telecommuni-
cation Systems (CITS), 2016, pp. 1–6, doi: 10.1109/CITS.2016.7546451.

[44] Rahmanian, A.A.—Ghobaei-Arani, M.—Tofighy, S.: A Learning Automata-
Based Ensemble Resource Usage Prediction Algorithm for Cloud Computing En-
vironment. Future Generation Computer Systems, Vol. 79, 2018, pp. 54–71, doi:
10.1016/j.future.2017.09.049.

[45] Kunz, T.: The Influence of Different Workload Descriptions on a Heuristic Load
Balancing Scheme. IEEE Transactions on Software Engineering, Vol. 17, 1991, No. 7,

https://doi.org/10.1371/journal.pone.0160456
https://doi.org/10.1007/s13174-011-0032-0
https://doi.org/10.1007/s10619-019-07273-y
https://doi.org/10.1016/j.procs.2016.05.411
https://doi.org/10.1109/90.731188
https://doi.org/10.1109/CESCE.2010.185
https://doi.org/10.5121/ijgca.2011.2401
https://doi.org/10.1109/TSC.2019.2906870
https://doi.org/10.1109/ACCESS.2021.3078773
https://doi.org/10.1109/CITS.2016.7546451
https://doi.org/10.1016/j.future.2017.09.049

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 71

pp. 725–730, doi: 10.1109/32.83908.

[46] Misra, S.—Krishna, P.V.—Kalaiselvan, K.—Saritha, V.—Obaidat, M. S.:
Learning Automata-Based QoS Framework for Cloud IaaS. IEEE Transactions
on Network and Service Management, Vol. 11, 2014, No. 1, pp. 15–24, doi:
10.1109/TNSM.2014.011614.130429.

[47] Velusamy, G.—Lent, R.: Dynamic Cost-Aware Routing of Web Requests. Future
Internet, Vol. 10, 2018, No. 7, 57 pp., doi: 10.3390/fi10070057.

[48] Meybodi, M.R.: Learning Automata and Its Application to Priority Assignment in
a Queueing System with Unknown Characteristics. Ph.D. Thesis. The University of
Oklahoma, 1983.

[49] Howell, M.N.—Frost, G. P.—Gordon, T. J.—Wu, Q.H.: Continuous Action
Reinforcement Learning Applied to Vehicle Suspension Control. Mechatronics, Vol. 7,
1997, No. 3, pp. 263–276, doi: 10.1016/S0957-4158(97)00003-2.

[50] El-Osery, A. I.—Baird, D.—Abd-Almageed, W.: A Learning Automata Based
Power Management for Ad-Hoc Networks. 2005 IEEE International Conference on
Systems, Man and Cybernetics, Vol. 4, 2005, pp. 3569–3573, doi: 10.1109/IC-
SMC.2005.1571701.

[51] Narendra, K. S.—Thathachar, M.A. L.: Learning Automata – A Survey. IEEE
Transactions on Systems, Man, and Cybernetics, 1974, No. 4, pp. 323–334, doi:
10.1109/TSMC.1974.5408453.

[52] Atlasis, A. F.—Saltouros, M.P.—Vasilakos, A.V.: On the Use of a Stochas-
tic Estimator Learning Algorithm to the ATM Routing Problem: A Methodology.
Computer Communications, Vol. 21, 1998, No. 6, pp. 538–546, doi: 10.1016/S0140-
3664(98)00122-4.

[53] Billard, E.—Lakshmivarahan, S.: Simulation of Period-Doubling Behavior in
Distributed Learning Automata. Proceedings of the 1998 ACM Symposium on Ap-
plied Computing (SAC ’98), 1998, pp. 690–695, doi: 10.1145/330560.331066.

[54] Economides, A.A.—Ioannou, P.A.—Silvester, J.A.: Decentralized Adaptive
Routing for Virtual Circuit Networks Using Stochastic Learning Automata. IEEE
INFOCOM ’88, Seventh Annual Joint Conference of the IEEE Computer and Com-
muncations Societies. Networks: Evolution or Revolution?, 1988, pp. 613–622, doi:
10.1109/INFCOM.1988.12972.

[55] Narendra, K. S.—Thathachar, M.A. L.: On the Behavior of a Learning Au-
tomaton in a Changing Environment with Application to Telephone Traffic Rout-
ing. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 10, 1980, No. 5,
pp. 262–269, doi: 10.1109/TSMC.1980.4308485.

[56] Beigy, H.: Intelligent Channel Assignment in Cellular Networks: A Learning Au-
tomata Approach. Ph.D. Thesis. Amirkabir University of Technology, Tehran, Iran,
2004.

[57] Beigy, H.—Meybodi, M.R.: A Mathematical Framework for Cellular Learning
Automata. Advances in Complex Systems, Vol. 7, 2004, No. 03n04, pp. 295–319, doi:
10.1142/S0219525904000202.

[58] Hariri, A.—Rastegar, R.—Navi, K.—Zamani, M. S.—Meybodi, M.R.: Cel-
lular Learning Automata Based Evolutionary Computing (CLA-EC) for Intrinsic

https://doi.org/10.1109/32.83908
https://doi.org/10.1109/TNSM.2014.011614.130429
https://doi.org/10.3390/fi10070057
https://doi.org/10.1016/S0957-4158(97)00003-2
https://doi.org/10.1109/ICSMC.2005.1571701
https://doi.org/10.1109/ICSMC.2005.1571701
https://doi.org/10.1109/TSMC.1974.5408453
https://doi.org/10.1016/S0140-3664(98)00122-4
https://doi.org/10.1016/S0140-3664(98)00122-4
https://doi.org/10.1145/330560.331066
https://doi.org/10.1109/INFCOM.1988.12972
https://doi.org/10.1109/TSMC.1980.4308485
https://doi.org/10.1142/S0219525904000202

72 A. Sarhadi, J. Akbari Torkestani

Hardware Evolution. 2005 NASA/DoD Conference on Evolvable Hardware (EH ’05),
2005, pp. 294–297, doi: 10.1109/EH.2005.12.

[59] Mnih, V.—Badia, A. P.—Mirza, M.—Graves, A.—Lillicrap, T.—
Harley, T.—Silver, D.—Kavukcuoglu, K.: Asynchronous Methods for
Deep Reinforcement Learning. In: Balcan, M.F., Weinberger, K.Q. (Eds.): Pro-
ceedings of the 33rd International Conference on Machine Learning. Proceedings of
Machine Learning Research (PMLR), Vol. 48, 2016, pp. 1928–1937.

[60] Schulman, J.—Wolski, F.—Dhariwal, P.—Radford, A.—Klimov, O.:
Proximal Policy Optimization Algorithms. 2017, doi: 10.48550/arXiv.1707.06347.

[61] Haarnoja, T.—Zhou, A.—Abbeel, P.—Levine, S.: Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
In: Dy, J., Krause, A. (Eds.): Proceedings of the 35th International Conference on
Machine Learning. Proceedings of Machine Learning Research (PMLR), Vol. 80, 2018,
pp. 1861–1870.

[62] Cassandra, A.R.: A Survey of POMDP Applications. Working Notes of AAAI 1998
Fall Symposium on Planning with Partially Observable Markov Decision Processes,
1998, pp. 17–24.

[63] Mnih, V.—Kavukcuoglu, K.—Silver, D.—Rusu, A.A.—Veness, J. et al.:
Human-Level Control Through Deep Reinforcement Learning. Nature, Vol. 518, 2015,
No. 7540, pp. 529–533, doi: 10.1038/nature14236.

[64] Shojafar, M.—Javanmardi, S.—Abolfazli, S.—Cordeschi, N.: FUGE:
A Joint Meta-Heuristic Approach to Cloud Job Scheduling Algorithm Using Fuzzy
Theory and a Genetic Method. Cluster Computing, Vol. 18, 2015, pp. 829–844, doi:
10.1007/s10586-014-0420-x.

[65] Parthasarathy, S.—Jothi Venkateswaran, C.: Scheduling Jobs Using
Oppositional-GSO Algorithm in Cloud Computing Environment. Wireless Networks,
Vol. 23, 2017, pp. 2335–2345, doi: 10.1007/s11276-016-1264-5.

[66] Kim, S. S.—Byeon, J.H.—Yu, H.—Liu, H.: Biogeography-Based Optimization
for Optimal Job Scheduling in Cloud Computing. Applied Mathematics and Compu-
tation, Vol. 247, 2014, pp. 266–280, doi: 10.1016/j.amc.2014.09.008.

[67] Ghanbari, S.—Othman, M.: A Priority Based Job Scheduling Algorithm in Cloud
Computing. International Conference on Advances Science and Contemporary Engi-
neering 2012 (ICASCE 2012), 2012.

[68] Lawrance, H.—Silas, S.: Efficient QoS Based Resource Scheduling Using PA-
PRIKA Method for Cloud Computing. International Journal of Engineering Science
and Technology (IJEST), Vol. 5, 2013, No. 3, pp. 638–643.

[69] Zhao, J.—Zeng, W.—Liu, M.—Li, G.: Multi-Objective Optimization Model of
Virtual Resources Scheduling Under Cloud Computing and It’s Solution. 2011 Inter-
national Conference on Cloud and Service Computing, IEEE, 2011, pp. 185–190, doi:
10.1109/CSC.2011.6138518.

[70] Tayal, S.: Tasks Scheduling Optimization for the Cloud Computing Systems.
IJAEST – International Journal of Advanced Engineering Sciences and Technologies,
Vol. 5, 2011, No. 2, pp. 111–115.

[71] Raju, R.—Babukarthik, R.G.—Chandramohan, D.—Dhavachelvan, P.—

https://doi.org/10.1109/EH.2005.12
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/s10586-014-0420-x
https://doi.org/10.1007/s11276-016-1264-5
https://doi.org/10.1016/j.amc.2014.09.008
https://doi.org/10.1109/CSC.2011.6138518

Cost-Effective Scheduling and Load Balancing Algorithms in Cloud Computing 73

Vengattaraman, T.: Minimizing the Makespan Using Hybrid Algorithm for Cloud
Computing. 2013 3rd IEEE International Advance Computing Conference (IACC),
2013, pp. 957–962, doi: 10.1109/IAdCC.2013.6514356.

[72] Gogulan, R.—Kavitha, A.—Kumar, U.K.: An Multiple Pheromone Algorithm
for Cloud Scheduling with Various QoS Requirements. International Journal of Com-
puter Science Issues (IJCSI), Vol. 9, 2012, No. 3, pp. 232–238.

[73] Luo, J.—Rao, L.—Liu, X.: Temporal Load Balancing with Service Delay Guaran-
tees for Data Center Energy Cost Optimization. IEEE Transactions on Parallel and
Distributed Systems, Vol. 25, 2013, No. 3, pp. 775–784, doi: 10.1109/TPDS.2013.69.

[74] Chaisiri, S.—Lee, B. S.—Niyato, D.: Optimization of Resource Provisioning
Cost in Cloud Computing. IEEE Transactions on Services Computing, Vol. 5, 2011,
No. 2, pp. 164–177, doi: 10.1109/TSC.2011.7.

[75] Beigy, H.—Meybodi, M.R.: Utilizing Distributed Learning Automata to Solve
Stochastic Shortest Path Problems. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, Vol. 14, 2006, No. 5, pp. 591–615, doi:
10.1142/S0218488506004217.

[76] Torkestani, J. A.—Meybodi, M.R.: A Cellular Learning Automata-Based Algo-
rithm for Solving the Vertex Coloring Problem. Expert Systems with Applications,
Vol. 38, 2011, No. 8, pp. 9237–9247.

[77] Economides, A.A.: Real-Time Traffic Allocation Using Learning Automata.
1997 IEEE International Conference on Systems, Man, and Cybernetics. Compu-
tational Cybernetics and Simulation, Vol. 4, 1997, pp. 3307–3312, doi: 10.1109/IC-
SMC.1997.633133.

[78] Fontana, R.—Pistone, G.—Rogantin, M.P.: Classification of Two-Level Fac-
torial Fractions. Journal of Statistical Planning and Inference, Vol. 87, 2000, No. 1,
pp. 149–172, doi: 10.1016/S0378-3758(99)00173-1.

[79] Vijayalakshmi, R.—Vasudevan, V.: Static Batch Mode Heuristic Algorithm for
Mapping Independent Tasks in Computational Grid. Journal of Computer Science,
Vol. 11, 2015, No. 1, pp. 224–229, doi: 10.3844/jcssp.2015.224.229.

[80] Xhafa, F.—Barolli, L.—Durresi, A.: Batch Mode Scheduling in Grid Systems.
International Journal of Web and Grid Services, Vol. 3, 2007, No. 1, pp. 19–37, doi:
10.1504/IJWGS.2007.012635.

[81] Calheiros, R.N.—Ranjan, R.—Beloglazov, A.—De Rose, C.A. F.—
Buyya, R.: CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms. Software: Prac-
tice and Experience, Vol. 41, 2011, No. 1, pp. 23–50, doi: 10.1002/spe.995.

[82] Bux, M.—Leser, U.: DynamicCloudSim: Simulating Heterogeneity in Computa-
tional Clouds. Future Generation Computer Systems, Vol. 46, 2015, pp. 85–99, doi:
10.1016/j.future.2014.09.007.

[83] Kong, L.—Mapetu, J. P. B.—Chen, Z.: Heuristic Load Balancing Based Zero
Imbalance Mechanism in Cloud Computing. Journal of Grid Computing, Vol. 18,
2020, No. 1, pp. 123–148, doi: 10.1007/s10723-019-09486-y.

[84] Hashem, W.—Nashaat, H.—Rizk, R.: Honey Bee Based Load Balancing in Cloud
Computing. KSII Transactions on Internet and Information Systems (TIIS), Vol. 11,

https://doi.org/10.1109/IAdCC.2013.6514356
https://doi.org/10.1109/TPDS.2013.69
https://doi.org/10.1109/TSC.2011.7
https://doi.org/10.1142/S0218488506004217
https://doi.org/10.1109/ICSMC.1997.633133
https://doi.org/10.1109/ICSMC.1997.633133
https://doi.org/10.1016/S0378-3758(99)00173-1
https://doi.org/10.3844/jcssp.2015.224.229
https://doi.org/10.1504/IJWGS.2007.012635
https://doi.org/10.1002/spe.995
https://doi.org/10.1016/j.future.2014.09.007
https://doi.org/10.1007/s10723-019-09486-y

74 A. Sarhadi, J. Akbari Torkestani

2017, No. 12, pp. 5694–5711, doi: 10.3837/tiis.2017.12.001.

[85] Wang, T.—Wei, X.—Tang, C.—Fan, J.: Efficient Multi-Tasks Scheduling Algo-
rithm in Mobile Cloud Computing with Time Constraints. Peer-to-Peer Networking
and Applications, Vol. 11, 2018, No. 4, pp. 793–807, doi: 10.1007/s12083-017-0561-9.

[86] Mathew, T.—Sekaran, K.C.—Jose, J.: Study and Analysis of Various Task
Scheduling Algorithms in the Cloud Computing Environment. 2014 International
Conference on Advances in Computing, Communications and Informatics (ICACCI),
IEEE, 2014, pp. 658–664, doi: 10.1109/ICACCI.2014.6968517.

Ali Sarhadi received his B.Sc. and M.Sc. degrees in computer
engineering in Iran, in 2004 and 2007, respectively. He is also
Ph.D. candidate under Javad Akbari Torkestani in the Depart-
ment of Computer Engineering, Islamic Azad University, Arak
Branch, Arak, Iran.

Javad Akbari Torkestani received his B.Sc. and M.Sc. de-
grees in computer engineering in Iran, in 2001 and 2004, respec-
tively. He also received his Ph.D. degree in computer engineer-
ing from the Science and Research University, Iran, in 2009. He
joined the Computer Engineering Department at the Arak Azad
University as Lecturer in 2005. Currently, he is Associate Profes-
sor at the Department of Computer Engineering faculty, Islamic
Azad University, Arak Branch, Arak, Iran.

https://doi.org/10.3837/tiis.2017.12.001
https://doi.org/10.1007/s12083-017-0561-9
https://doi.org/10.1109/ICACCI.2014.6968517

